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Abstract

We calculate the physical scalar contribution to the fermionic self energy matrix at one

loop. We make a comment about the difference of our results from those in the existing

literature.

We want to calculate physical scalar contribution to the fermionic self energy matrix in a
generalized gauge theory that was originally done by Weinberg [1]. In general there should
be a symmetry breaking scalar potential. Non zero vacuum expectation values of the scalar
fields break the gauge symmetry to lower group and generate mass terms for gauge fields and
fermionic fields. The scalar potential about the vacuum generate mass term for scalar fields
also. The scalar mass matrix have nonzero eigenvalues along with the zero eigenvalues. Scalar
fields with zero mass are known as Goldstone scalars which can be absorbed into the gauge
fields under proper gauge transformation. Rest of the scalars are physical. We have chosen the
basis of the scalar fields where they have definite mass. We only concentrate on the contribution
of those physical scalars to fermionic self energy matrix at the 1-loop level. The relevant part
of the Lagrangian for our calculations is

L = −f̄amabfb −
∑

i

f̄a(Γi)abfbhi (1)

where fa’s, hi’s, m and Γi’s are respectively the fermionic fields, physical scalar fields with
definite mass Mi’s, zeroth order fermionic mass matrix and Yukawa coupling matrices of the
fermions with the scalars hi’s. The Feynman diagram relevant for this calculation is in Figure.
1. We choose a basis of the fermionic fields where the fermionic mass matrix is free from γ5.
So, it will be hermitian. The fermionic fields in this basis will be f̂ = Sf where S is a unitary
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Figure 1: Self energy diagram of fermion with physical scalar.

transformation matrix. The fermionic mass matrix, Yukawa coupling matrix and self energy
matrix in this basis will be [2]

m̂ = γ0Sγ0mS†, Γ̂i = γ0Sγ0ΓiS
† and Σ̂ = γ0Sγ0ΣS

† (2)

where Σ is fermionic self energy matrix in the original basis. So, the physical scalar contributions
to the self energy matrix in this basis will be

iΣ̂scal =
∑

i

∫

d4k

(2π)4
(−iΓ̂i)×

i

k2 −M2
i

×
i

/p− /k − m̂
× (−iΓ̂i) (3)

The above Eq. (3) can be written down as

iΣ̂scal =
∑

i

∫

d4k

(2π)4
Γ̂i ×

1

k2 −M2
i

×
/p− /k + m̂

(p− k)2 − m̂2
× Γ̂i. (4)

There are basically two fundamental integrals. Their forms in d dimension for dimensional
regularization scheme are

I =
∫

ddk

(2π)d
1

k2 −M2
i

×
1

(p− k)2 − m̂2

Iµ =
∫

ddk

(2π)d
1

k2 −M2
i

×
kµ

(p− k)2 − m̂2
. (5)

Results of the integrals under Feynman parameterization are

I =
i

(4π)d/2
Γ(

4− d

2
)
∫ 1

0
dxD

−(4−d)/2

Iµ = pµ
i

(4π)d/2
Γ(

4− d

2
)
∫ 1

0
xdxD

−(4−d)/2 (6)

where

D = m̂2x+M2
i (1− x)− p2x(1− x). (7)

Using the integral results of Eq. (6) in the Eq. (4) we have

iΣ̂scal =
∑

i

(µ(4−d)/2Γ̂i)× {(/p+ m̂)I − γµI
µ} × (µ(4−d)/2Γ̂i)

=
∑

i

(µ2)(4−d)/2Γ̂i
i

(4π)d/2
Γ(

4− d

2
)
∫ 1

0
dx{/p(1− x) + m̂}D−(4−d)/2Γ̂i. (8)
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where µ is an arbitrary mass scale which has been introduced to keep Γi dimensionless in d
dimension. Now using the expansion of type Aǫ/2 = 1+ ǫ

2
ln(A)+O(ǫ2) and Γ( ǫ

2
) = 2

ǫ
−γ+O(ǫ)

where ǫ = 4− d, we obtain

iΣ̂scal =
∑

i

Γ̂i
i

(4π)2

[

W
∫ 1

0
dx{/p(1− x) + m̂}

−
∫ 1

0
dx{/p(1− x) + m̂} lnD +O(ǫ)

]

Γ̂i. (9)

where

W = ln(4π) +
2

ǫ
− γ + ln(µ2). (10)

Due to the scalar pseudoscalar bi-linear combination of Yukawa term, Γ̂i/p = /pγ0Γ̂iγ0. The
self energy matrix can be written as

Σ = (/p− m̂)F (p2) +G(p2)(/p− m̂) + Σeff(p
2) (11)

Upto first order term in F , G and Σeff fermionic propagator can be written down as [1]

SF (p) =
1

1 +G
×

1

/p− m̂+ Σeff
×

1

1 + F
. (12)

It shows that the pole of the propagator does not depend on F and G. So, we can easily
substitute /p by m̂ whenever /p will appear at the extreme right or extreme left in the expression
for Σ. Following the above discussion and using p2 = m̂2 inside D under the consideration of
first order correction of mass we obtain

Σ̂scal =
∑

i

1

(4π)2

[

W
∫ 1

0
dx{m̂γ0Γ̂iγ0(1− x) + Γ̂im̂}

−
∫ 1

0
dx{m̂γ0Γ̂iγ0(1− x) + Γ̂im̂} ln{m̂2x2 +M2

i (1− x)}+O(ǫ)
]

Γ̂i. (13)

Coefficient of W is equivalent to the coefficient of ln(Λ2) in [1] where cutoff regularization was
used. Compared to the expression of [1] this result has different signs in the terms containing
the combination γ0Γ̂iγ0, both in finite as well as diverging parts. Later various people [2, 3]
used the results of Weinberg [1]. Turning back to the original basis with the relations in Eq.
(2), using the hermiticity of m̂ and the decompositions like B = BR(1 + γ5)/2 +B†

R(1− γ5)/2
for both m and Γi due to the hermiticity of the Lagrangian we obtain

Σscal =
∑

i

1

(4π)2

[

W
∫ 1

0
dx{mΓ†

i (1− x) + Γim
†}

−
∫ 1

0
dx{mΓ†

i(1− x) + Γim
†} ln{mm†x2 +M2

i (1− x)}+O(ǫ)
]

Γi. (14)

which is similar to the results of [2] except the sign correction here.
Note Added: After doing the above calculations we came to know that in another paper [4]
the authors used the results of [1]. Later [5] it was commented that there was a sign error in
[4].
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