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Abstract

It is pointed out that the average semi-inclusive particle phase-
space density at freeze-out can be determined from the coincidence
probability of the events observed in multiparticle production. The
method of measurement is described and its accuracy examined.

1. Recently, several methods were proposed which allow to estimate the
average of the single-particle inclusive phase-space density produced in ultra-
relativistic heavy ion collisions [1]-[5]. This quantity is useful in discussions
of the equilibrated systems and therefore such measurements open possibil-
ities to verify the expected presence of the thermal phase-space distribution
at freeze-out [6] and/or search for more exotic phenomena [7].

In the present paper we propose an extension of these studies by in-
cluding, in addition, the exclusive and semi-inclusive M-particle phase-space
densities. We show that their averages can be estimated from measured co-
incidence probabilities of the multiparticle events observed in high-energy
collisions. The information one may gain from this approach is complemen-
tary to that obtained from single-particle inclusive measurements. In partic-
ular, it gives an insight into the correlation structure of the final state of the
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collision (including both dynamic and Bose-Einstein correlations), a feature
which is ignored in the single-particle inclusive measurements described in
[1]-[5]. Furthermore, one can show [8] that the average semi-inclusive phase-
space densities are closely related to the second Renyi entropy [9] and thus
their measurement allows to estimate a lower limit of the true (Shannon)
entropy of the system (without assuming the thermodynamic equilibrium).
Needless to say, a comparison of the measured average semi-inclusive phase-
space densities with expectations for the thermalized systems would be very
interesting indeed.

As emphasized in [1, 3], the phase-space distribution of particles produced
in high-energy collisions is not a precisely defined quantity. Apart from
the standard problems with the uncertainty principle, one has to take into
account that particles may be produced at different times [1]. Following
Bertsch [1], we shall ignore this problem and assume that all particles are
created at the same time. That is to say, we are considering a time-average
of the density [1, 3].

To define the average semi-inclusive phase-space density, consider a collec-
tion of events in which exactly M particles were observed in a given region of
the momentum space. We shall call them M-particle events (independently
of how many particles were actually produced)1. These events can be de-
scribed by the normalized M particle phase-space distribution WM(X,K),
with X = X1, ..., ZM , K = K(1)

x , ..., K(M)
z . The corresponding particle phase-

space density is DM(X,K) = MWM (X,K) and thus

< |DM | >= M
∫

dXdK|WM(X,K)|2 ≡ M(2π)−3MCM .l7c (1)

gives the average phase-space density of the M particle system.
It should be emphasized that, as is clear from this discussion, the phase-

space density DM , describing the semi-exclusive distribution, refers only to
particles actually measured in a given experiment and in a given mometum
region. It gives no direct information about the particles which are not regis-
tered in the detector. To obtain information on the phase-space density of all

1This is terminology often used in experimental description of multiparticle processes.
The proper technical term is the exclusive distribution if all particles are observed, and
semi-inclusive distribution if besides a given number of observed particles there is an
unspecified number of other particles. This should not be confused with inclusive M -
particle distributions.
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produced particles additional assumptions (e.g. thermodynamic equilibrium)
are necessary.

Note that the average semi-inclusive phase-space density averaged over
all particle multiplicities is simply obtained from (??), using

<< D >>=
∑

M

P (M) < DM > l77c (2)

where P (M) is the multiplicity distribution. Therefore from now on, to
simplify the discussion, we shall only consider the case of a fixed multiplicity.

Our method is based on the observation that, for a rather wide class
of models of particle production, the quantitity C, defined in (??)2, can be
approximated by the measured coincidence probability Cexp of the events
with M particles, defined as [10, 11]

Cexp =
N2

N(N − 1)/2
l31 (3)

where N2 is the number of the observed pairs of identical events and N is the
total number of events. N(N − 1)/2 is the total number of pairs of events3.

It is clear that, since the observed events are described by the particle
momenta which are continuous variables, Eq. (??) is not directly applicable:
a discretization is necessary. Then one can define the identical events as those
which have the same population of the predefined bins and thus counting
of coincidences becomes straightforward4. The counting of identical events
obviously depends on the binning, so the procedure is ambiguous [10, 11, 13,
15]. In order to obtain a viable estimate of the average particle density, we
thus have to select the binning in such a way that the result of (??) is as close
as possible to the exact value of C which, as seen from (??), gives directly
the particle phase-space density.

In the present paper we argue that for a fairly large class of physically
sensible models, one can find an adequate binning procedure and thus to
determine rather precisely < D > by measuring Cexp, i.e., by counting the
number of pairs of identical events. The method turns out to be particularly
suitable for large systems and thus may be useful in heavy ion collisions.

2To simplify the formulae we shall from now on omit the index M in all quantities.
Since we are discussing solely M -particle events, this should not lead to any confusion.

3Formula (??) was first suggested, in a different context, by Ma [12].
4A detailed description of this procedure was given in [13] and applied in [14].
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In the next section the discretization procedure is described in some detail
and the corresponding formulae for Cexp are written down. The phase-space
density < D > and its relation to Cexp are discussed in Section 3. Our
conclusions and outlook are given in the last section.

2. In this section we discuss how the discretization procedure afects the
definition (??) of the coincidence probability. To this end we first express
the Cexp given by (??) in terms of the momentum distribution of M particles
w(K) = w(K(1), ..., K(M)).

Consider a set of discretized events constructed by dividing the particle
momentum space into J rectangular bins of volume

ωj = (∆x∆y∆z)j ; j = 1, ..., J.l33a (4)

Then the probability to find a particle in bin ωj1, another one in bin ωj2, etc.
is

P (j1, j2, ..., jM) =
M
∏

m=1

ωjm < w
(

K
(1)
j1

, ..., K
(M)
jM

)

> ls1 (5)

where

< w
(

K
(1)
j1

, ..., K
(M)
jM

)

>=

=
M
∏

m=1

(ωjm)
−1

∫

ωj1

dK(1)...
∫

ωjM

dK(M)w(K(1), ..., K(M)).ls2 (6)

Note that the bins ωj1, ..., ωjM do not have to be different.
Thus the coincidence probability as measured by the formula (??) is

Cexp
M =

∑

j1

...
∑

jM

[P (j1, j2, ..., jM)]2 =

=
∑

j1

...
∑

jM

M
∏

m=1

[ωjm]
2[< w

(

K
(1)
j1

, ..., KM
jM

)

>]2ls3 (7)

The first equality follows from the observation that sampling a series of events
is the Bernoulli process and thus probability to find, after N trials, n1, ..., nJ

events in configurations {1}, ...{J} is

B(n1, ...nJ) =
N !

n1!...nJ !
(P1)

n1 ...(PJ)
nJ l32 (8)
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From this formula it is not difficult to see that

< N2 >≡
∑

n1,...,nJ

J
∑

j=1

nj(nj − 1)

2
B(n1, ...nJ ) =

N(N − 1)

2

J
∑

j=1

(Pj)
2l33 (9)

The question now is: how to select the bins ωj to obtain a result as close
as possible to C giving the average value of the particle phase-space density
< D > [c.f. (??)]. This is discussed in the next section.

3. To analyze the relation between Cexp and C we consider theM-particle
phase-space distribution of the general form

W (X,K) =
1

(LxLyLz)M
G[X/L]w(K)l36a (10)

with X/L ≡ (X1−X̄1)/Lx, ..., (ZM−Z̄M)/Lz, K = K1, ..., KM . The function
G satisfies the normalization conditions

∫

d3MuG(u) = 1 →
∫

dXG(X/L) = (LxLyLz)
M ;

∫

d3MuuiG(u) = 0 → < Xi, Yi, Zi >= X̄i, Ȳi, Z̄i;
∫

d3Mu(ui)
2G(u) = 1 → < (Xi − X̄i)

2, ... >= L2
x, ...l37 (11)

The first condition insures that w(K) is the observed (multidimensional)
momentum distribution5, the second defines the central values of the par-
ticle distribution in configuration space and the third defines Lx, Ly, Lz as
giving root mean square sizes of the distribution in configuration space. Both
sizes and central positions may depend on the particle momenta6. The form
of the function G describes the shape of the multiparticle distribution in
configuration space.

Ansatz (??) for the time-averaged phase space density is satisfied in a
large variety of models [16].

Using (??) we obtain from (??)

C = (2π)3M
∫

d3MK[w(K1, ..., KM)]2
∫

dX1...dZM

(LxLyLz)2M
[G(X/L)]2 =

= (2πg)3M
∫

d3MK[w(K1, ..., KM)]2
1

(LxLyLz)M
l38 (12)

5By definition, w(K) =
∫

dXW (X,K).
6They may be also different for different kinds of particles.
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with

g3M =
∫

d3Mu[G(u)]2l39 (13)

The constant g depends on the shape of particle distribution in config-
uration space. This dependence is, however, rather mild. For example, we
obtain g−1 = 2

√
π for Gaussians and g−1 = 2

√
3 for a rectangular box.

In the discretized form, (??) can be written as

C = (2πg)3M
∑

j1,...,jM

M
∏

m=1

ωjm

(LxLyLz)jm
< [wj1,...,jM ]2 > l40 (14)

where

< [wj1,...,jM ]2 >=

=
M
∏

m=1

(ωjm)
−1

∫

ωj1

dK(1)...
∫

ωjM

dK(M)
{

w(K(1), ..., K(M))
}2

l36 (15)

and (LxLyLz)jm is a suitable average of (LxLyLz) over bin jm.
Comparing (??) with (??) one sees that to have Cexp

M as close as possible
to C, the best volume of the bins is

ωjm = (∆x∆y∆z)jm =
(2πg)3

(LxLyLz)jm
l41 (16)

One sees from this formula that ω depends crucially on the volume of the
system in configuration space. One sees, furthermore, that with this choice
of ω the coincidence probability Cexp, determined by counting the number
of pairs of identical events [c.f. (??)]4, is related to C, giving directly the
average particle phase-space density < D > [c.f. (??) and (??)], by the
formula

C = Cexp

∑

j1,...,jM
< [wj1,...,jM ]2 >

∑

j1,...,jM
[< wj1,...,jM >]2

l42 (17)

It is thus clear that the accuracy of determination of C increases with
increasing volume of the system. Indeed, for a volume large enough, the bins
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defined by (??) are small and the ratio on the R.H.S. of (??) approaches
unity. For smaller volumes the method is less accurate but one may try to
estimate the correcting ratio from the (measured) single particle distribution.

4. Several comments are in order.
(i) One sees from (??) that the optimal size of the bin does not depend

on the average position of the particles at freezeout. This implies that the
momentum-position correlations induced by the K-dependence of X̄ do not
influence significantly the measurement of the coincidence probability.

(ii) It is also seen from (??) that only the volume of the bin ωjm =
(∆x∆y∆z)jm, but not its shape, matters in the determination of the optimal
discretization. One can use this freedom to improve the accuracy of the
measurement by taking bins large in the directions with weak momentum
dependence and small in the direction where the momentum dependence is
significant.

(iii) One may improve the accuracy of the measurement by estimating
the ratio {∑j1,...,jM

< [wj1,...,jM ]2 >}/{∑j1,...,jM
[< wj1,...,jM >]2}. This may

be possible if the momentum distribution of particles is measured with good
accuracy.

(iv) Our analysis can be applied to any part of the momentum space.
This allows to measure the local particle density in momentum space, av-
eraged over all configuration space. In case of strong momentum-position
correlations, the selection of a given momentum region can induce, however,
a selection of a corresponding region in configuration space.

(v) The accuracy of the measurement depends crucially on the correct
estimate of the size of the system. Information from HBT measurements
should allow to determine the parameters Lx, Ly, Lz and -at least in principle-
also the shape7 of the function G(u) (some procedures are described in [2, 4]).
Therefore good HBT data are essential for a successful application of the
method.

(vi) The presented analysis of the discretization procedure can be gener-
alized to higher order coincidence probabilities [17]. This opens the way to
a determination of higher Renyi entropies [9] and then, by extrapolation, to
obtain information on the Shannon entropy of the system [11].

In conclusion, we propose to estimate the phase-space density of particles
produced in high-energy collisions by measuring the coincidence probability

7Needed to evaluate the parameter g [cf. (??)]. Fortunately, as we already noted, the
sensitivity of g to the shape of G(u) is rather mild.
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of the observed events. The accuracy of the determination of the coincidence
probability by counting the number of the identical events [10, 11] was anal-
ysed for a large class of physically sensible models. It was shown that the
accuracy improves with increasing volume of the system and, therefore, the
method is particularly suitable for heavy ion collisions. A formula giving
the optimal discretization method in terms of the size of the system in the
configuration space [Eq. (??)] was derived.
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