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Abstract

We investigate the space of functions in which the BFKL kernel acts. For the ampli-
tudes which describe the scattering of colorless projectiles it is convenient to define, in
transverse coordinates, the Möbius space in which the solutions to the BFKL equation
vanish as the coordinates of the two reggeized gluons coincide. However, in order to
fulfill the bootstrap relation for the BFKL kernel it is necessary to modify the space
of functions. We define and investigate a new space of functions and show explicitly
that the bootstrap relation is valid for the corresponding spectral form of the kernel.
We calculate the generators of the resulting deformed representation of the sl(2,C)
algebra.

1 Introduction

The leading order BFKL kernel [1], derived from Feynman diagrams in momentum space, has
been investigated in much detail. As a function of the transverse momenta, it is a meromor-
phic function. In the color singlet exchange channel, it describes the Pomeron contribution
in pQCD, consisting of ladder diagrams with reggeized gluons. This BFKL Pomeron couples
to the impact factors of colourless particles which, because of gauge invariance, vanish as one
of the two reggeized gluons carries a zero transverse momentum. This property allows us to
modify the space of functions to which the Pomeron wave function belongs. On the other
hand, in the color octet exchange channel the BFKL equation has the bootstrap solution,
which represents a fundamental consistency property derived from the s-channel unitarity.
A manifestation of this bootstrap property also takes place for the color singlet state of two
gluons and inside the coupling of three or more gluons to colorless particle impact factors. In
particular, it plays an important role in the Odderon solution [2] which appears as a bound
state of three reggeized gluons.
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An important virtue of the color singlet kernel is its invariance under the Möbius trans-
formations in the space of transverse coordinates. Exploiting the gauge invariance of the
colorless impact factor to which the BFKL Pomeron couples, the Möbius symmetry allows
to search solutions of the BFKL eigenvalues equation in the space of Möbius functions which
vanish as the coordinates of the two reggeized gluons coincide, and to define a spectral
representation of the BFKL kernel in terms of conformal eigenfunctions. In this space of
functions, the BFKL kernel also enjoys the property of holomorphic separability. Translating
back to the momentum representation, the kernel in the corresponding spectral form acquires
δ function - like pieces which, because of the special properties of the impact factors, do not
contribute to physical amplitudes.

As mentioned above, the BFKL kernel, when applied to the color octet wave function in
momentum space, satisfies the bootstrap condition, which reflects the s-channel consistency
of the BFKL calculation. When transforming to transverse coordinates one finds that, in the
space of Möbius functions, this bootstrap condition cannot be satisfied, i.e. the colour octet
wave function lies outside this space of functions. In this paper we will define a similarity
transform, Φ, which takes us from the Möbius space of functions (M space) to another space
of functions (named ‘analytic Feynman diagram’ (AF) space) in which the bootstrap holds.
With the same transformation we can also define ‘deformed’ Möbius transformations and a
‘deformed’ spectral representation of the BFKL kernel.

The paper is organized as follows. In the following section we review the properties of
the BFKL kernel, both in momentum space and in the space of transverse coordinates. In
section 3 we introduce the deformed representation, and we define the similarity transform
which takes us from the Möbius space (M space) to the new deformed space (AF space)
of functions. In section 4 we explicitly show that, in the AF representation, the bootstrap
properties are fulfilled. Section 5 is devoted to the deformed representation of the conformal
algebra which follows from the particular choice of the scalar product; in particular we
compute the transformed generators of the Möbius group sl(2,C). Some details of our
calculations are collected in two appendices.

2 The BFKL equation and bootstrap relation in LLA

In this section we give a brief review of the BFKL approach describing the dynamics of the
reggeized gluons in LLA of perturbative QCD. Let us start from the Schrödinger-like BFKL
equation [1] describing the compound state of two reggeized gluons,

K
(R)
2 ⊗ ψE = E ψE , K

(R)
2 = −

Nc

2
(ω̃1 + ω̃2)− λRV̄12 . (1)

Here R labels the colour representation of the two gluon state and in the singlet and octet
channel one has respectively λ1 = Nc and λ8 = Nc/2. The symbol ⊗ denotes an integration
in the transverse space in the case of the integral operator V̄12, while E = −ω = 1 − j
where j is the t-channel angular momentum. The eigenvalues of KR

2 give the positions of
singularities of the t channel partial waves, related to the scattering amplitude by the Mellin
transformation in the variable ln s, where s is the squared total energy of colliding particles.
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In LLA, in the momentum representation, the gluon trajectory (scaled by Nc/2) is given
by the well known expression

ω̃i = ω̃(ki) = −c

∫
d2l

k2
i

l2(ki − l)2
, c =

g2

(2π)3
(2)

and the interaction term is defined by its action on the wave functions

V̄12 ⊗ φ (k1, q − k1) =

∫
d2k′

1 V̄ (k1, q − k1|k
′

1, q − k′

1)φ(k
′

1, q − k′

1) (3)

= c

∫
d2k′

1

[
k2
1

(k′

1)
2(k1 − k′

1)
2
+

(q − k1)
2

(q − k′

1)
2(k1 − k′

1)
2
−

q2

(k′

1)
2(q − k′

1)
2

]
φ(k′

1, q − k′

1)

and q = k1 + k2. Let us note that this form is proper when the kernel acts on amputated
(without gluon propagators) impact factors, otherwise the propagators should be removed
from the kernel, as for example is the case for the expression in eq. (9).

We stress that this form of the LL BFKL kernel is obtained directly from the Feynman
diagrams analysis in perturbative QCD and has a simple analytic behavior in the transverse
momentum space. In particular it does not contain δ-functions δ2(k′1) and δ

2(q − k′1).
In the construction of the BFKL kernels a very important property is the gluon reggeiza-

tion which can be verified with the bootstrap relation for the amplitude with the octet
quantum numbers [1]. The bootstrap relation is a consequence of the s-channel unitarity.
It claims, that the scattering amplitude with octet quantum numbers obtained as a solution
of the corresponding BFKL equation should coincide with the Born term multiplied by the
Regge factor sω̃(q).

Because the BFKL equation was obtained by summing contributions from the multi-
particle production described by the multi-Regge amplitudes, the bootstrap relation valid in
the leading and next-to-leading orders allows to connect the gluon trajectory and interaction
terms. In LLA the bootstrap condition for the BFKL kernel can be written as

ω(q)− ω(k1)− ω(k2) = V̄12 ⊗ 1 or K̄
(8)
12 ⊗ 1 = −ω(q) , (4)

where the constant 1 is the wave function which can be conveniently obtained after rescaling
any function depending only on q, and the kernel K

(8)
12 acts on the amputated amplitudes.

Let us note that it is crucial in the bootstrap relation in LLA that the two gluons are
located at the same point in the transverse coordinate plane. It has played a crucial role in
the discovery of the leading Odderon solution in the LLA of perturbative QCD [2] and also
some general relation [3] between bound states of n and n+ 1 reggeized gluons.

In the following we shall use its equivalent form [3], which has the virtue of being infrared
finite and which uses the standard BFKL singlet kernel:

K̄
(1)
12 ⊗ 1 = −2ω(q) + ω(k1) + ω(k2) . (5)

On using an infrared mass regularization (m→ 0) one may write

ω(k) = −
1

2
ᾱs log

(
k2

m2

)
, (6)
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where ᾱs = αsNc/π and αs = g2/(4π), so that a relation equivalent to the bootstrap, but
explicitely infraredly finite, is given by

K̄
(1)
12 ⊗ 1 =

1

2
ᾱs log

(
q4

k2
1k

2
2

)
. (7)

The 2-gluon kernel (1) in the singlet channel has been investigated in great details in the
coordinate representation [4]. The amplitude for the scattering of colorless objects is factor-
ized, in the high energy limit, in the product of the Green’s function (which exponentiates
the BFKL kernel) and two impact factors. The impact factors vanish as the momentum
of one of the attached reggeized gluons goes to zero. This permits to choose a special rep-
resentation for the two-gluon propagator and for the full BFKL kernel acting in the space
of the so called Möbius functions (for two gluon states these are functions f(ρ1, ρ2) such
that f(ρ, ρ) = 0) [5]. This is a special choice among infinite others compatible with the
gauge freedom of integrating a colorless impact factor with any function belonging to the set
defined by the equivalence relation

f(ρ1,ρ2) ∼ f̃(ρ1,ρ2) = f(ρ1,ρ2) + f (1)(ρ1) + f (2)(ρ2) , (8)

since the corresponding shift in the momentum representation is proportional to δ(2)(pi).
In such a representation the operators are Möbius (conformal) invariant [4]. Using

complex coordinates, the BFKL hamiltonian H12 = K
(1)
12 2/ᾱs acting on functions with

propagators included can be written in the operator form [6]

H12 = ln |p1|
2 + ln |p2|

2 +
1

p1p
∗

2

ln |ρ12|
2 p1p

∗

2 +
1

p∗1p2
ln |ρ12|

2 p∗1p2 − 4Ψ(1) , (9)

where Ψ(x) = d ln Γ(x)/dx, and we introduced the gluon holomorphic momenta pr = i∂/∂ρr .
On the Möbius space of functions the holomorphic separability applies:

H12 = h12 + h∗12, h12 =

2∑

r=1

(
ln pr +

1

pr
ln(ρ12) pr −Ψ(1)

)
, (10)

and it is possible to find more easily the solutions of the homogeneous BFKL pomeron equa-
tion which belong to irreducible unitary representations of the Möbius group. In particular
the symmetry generators in this representation are

M3
r = ρr∂r , M

+
r = ∂r , M

−

r = −ρ2r∂r . (11)

For two reggeized gluons one has Mk =
∑2

r=1M
k
r and the Casimir operator is defined as

follows
M2 = | ~M |2 = −ρ212 ∂1 ∂2 , (12)

where ~M =
∑2

r=1
~Mr and ~Mr ≡ (M+

r ,M
−

r ,M
3
r ).

The eigenfunctions of the BFKL kernel are also eigenstates of two Casimir operators and
given by [4]

Eh,h̄(ρ10, ρ20) ≡ 〈ρ|h〉 =

(
ρ12
ρ10ρ20

)h(
ρ∗12
ρ∗10ρ

∗

20

)h̄

, (13)
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where h = 1+n
2

+ iν , h̄ = 1−n
2

+ iν are conformal weights for the principal series of the
unitary representations of the Möbius group, n is the conformal spin and d = 1 − 2iν is
the anomalous dimension of the operator Oh,h̄(ρ0) describing the compound state of two
reggeized gluons (note, that here and below we use other notations for conformal weights
m, m̃ in Refs. [4, 7]). The corresponding eigenvalues of the BFKL kernel are given by

χh ≡ χ(ν, n) = ᾱs

(
ψ(

1 + |n|

2
+ iν) + ψ(

1 + |n|

2
− iν)− 2ψ(1)

)
= ᾱs ǫh . (14)

The action of the BFKL kernel can also be written, again on the space of Möbius func-
tions, after a duality transformation [6, 8, 5], in terms of integral operator appearing in the
dipole picture [9]

H12 fω(ρ1,ρ2) =

∫
d2ρ3

π

|ρ12|
2

|ρ13|
2 |ρ23|

2 (fω(ρ1,ρ2)− fω(ρ1,ρ3)− fω(ρ2,ρ3)) . (15)

We now consider the pomeron eigenstates in the momentum representation. Different
forms of the Fourier transform of the function in eq. (13) have been given in the most general
case. One finds a sum of an analytic term ẼA

h,h̄
, which has been given in an explicit way or

in a integral form, and a δ-like one Ẽδ
h,h̄

. More precisely we obtain

Ẽh,h̄(k1,k2) =

∫
d2r1

(2π)2
d2r2

(2π)2

(
r12
r1r2

)h(
r∗12
r∗1r

∗

2

)h̄

ei(k1·r1+k2·r2) = ẼA
h,h̄(k1,k2) + Ẽδ

h,h̄(k1,k2)

= 〈k|h〉 = 〈k|hA〉+ 〈k|hδ〉 , (16)

where a bra-ket compact notation is also introduced. By explicit computation one finds

Ẽδ
h,h̄(k1,k2) =

[
δ(2)(k1) + (−1)nδ(2)(k2)

] in
2π

21−h−h̄Γ(1− h̄)

Γ(h)
qh̄−1q∗h−1 , (17)

where the complex form v = vx + ivy of any bidimensional transverse vector v = (vx, vy)
(coordinate or momentum) is used. In the calculation of a physical cross section one per-
forms integrations with two-gluon colourless impact factors and this δ-like term gives zero
contribution, so that all the physics is related to the analytic term. In fact the δ-terms
have been introduced when one has chosen to move to the Möbius representation which is
characterized by the simple and beautiful form in the coordinate representation.

The analytic part can be written, for example, as given in [10] wherein one finds

ẼA
hh̄(k1,k2) = Cv

(
X(k1,k2) + (−1)nX(k2,k1)

)
, (18)

with the coefficient Cv given by

Cv =
(−i)n

(4π)2
hh̄(1− h)(1− h̄)Γ(1− h)Γ(1− h̄). (19)

5



The expression for X in complex notation was written in terms of the hypergeometric func-
tions

X(k1,k2) =

(
k1
2

)h̄−2(
k∗2
2

)h−2

2F1

(
1− h, 2− h

2

∣∣∣∣−
k∗1
k∗2

)
2F1

(
1− h̄, 2− h̄

2

∣∣∣∣−
k2
k1

)
.(20)

Another expression for ẼA
hh̄
(k1,k2) which will be very useful for our purposes has been given

in [11] in an integral form:

ẼA
hh̄(k1,k2) = Cl

1

k2
1k

2
2

∫
d2p

[
p (q − p)

k1 − p

]h̄−1 [
p∗(q∗ − p∗)

k∗1 − p∗

]h−1

, (21)

where

Cl = −(−1)n
ih̄−hh h̄

2h+h̄π3

Γ(1− h)

Γ(h̄)
. (22)

Below we shall consider the completeness relation and the spectral representation for the
BFKL kernel (cf. Ref. [7]).

Let us before discuss the scalar product in the space of functions where the kernel is acting
on. For the kernel in the momentum space associated to the Feynman diagram derivation
there is only one scalar product available. If we consider non amputated functions of two
momenta k1,k2, i.e. with 2-dimensional propagators 1/(k2

1k
2
2) included, the scalar product

is defined as

〈f |g〉 ≡

∫
dµ(k)f ∗(k1,k2)g(k1,k2) , (23)

with the integration measure

dµ(k) = k2
1k

2
2 δ

2(q − k1 − k2) d
2k1d

2k2 (24)

which kills the extra propagators.
In the Möbius space of functions (in coordinate space) for the principal series of the

Möbius group representation, whenever functions with conformal weight h = 0 or h = 1 are
not considered, two possible choices are available [6]. Since the Möbius functions contain
propagators, one possibility is to remove, as before, the propagators in one function, acting
with the operator ∂2

1∂
2
2. The other possibility, related to the form of the Casimir operator of

the Möbius group, is to use instead the measure d2ρ1d
2ρ2/|ρ12|

4. The latter is not equivalent
to the former when we consider the conformal wheights h = 0 or h = 1. Note, that, providing
that we go from the Regge kinematics to the deep-inelastic scattering in the Bjorken regime,
the additional series of the unitary representations of the Möbius group should be also used
[11] (cf. Ref. [12]).

We now consider the completeness relation in coordinate space [4], in the space of Möbius
functions, where the eigenfunctions of the Casimir operator of the Möbius group, defined in
(13), constitute a suitable spectral basis for the operators acting on the space of the colourless
impact factors, which, we stress, never “feel” the presence of the terms with a δ-distribution
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behavior in momentum space, i.e. those of eq. (17). For the operators amputated (spatial

propagators removed) to the left (with notation 1̂L and ˆ̄K
(1)
12 ) one can write [4]

〈ρ|1̂L|ρ
′〉 ≡ (2π)4δ2(ρ11′) δ

2(ρ22′) =

∫
d2ρ0

∑

h

Nh

|ρ12|
4
Eh,h̄(ρ10, ρ20)E

∗

h,h̄(ρ1′0, ρ2′0) ,

〈ρ| ˆ̄K
(1)
12 |ρ

′〉=

∫
d2ρ0

∑

h

Nh

|ρ12|
4
Eh,h̄(ρ10, ρ20)χhE

∗

h,h̄(ρ1′0, ρ2′0) , (25)

where we have defined the weights Nh, as well as Ñh for later use,

Nh = 16(ν2 + n2/4) , Ñh = (2π)2
ν2 + n2/4

[ν2 + (n− 1)2/4][ν2 + (n+ 1)2/4]
(26)

and
∑

h ≡
∑

n

∫
dν. If we try to extrapolate these operators to a wider domain which

contains functions which no longer vanish for zero momenta, contrary to the colorless impact
factor case, one needs some care. For example, for the function, which in momentum space
depends only on the total momentum, just the case we meet in the bootstrap relation in LLA,
one obtains the the result δ2(ρ12) in coordinate space (for the amputated impact factor). But
such generalized function is orthogonal to the basis constituted by the functions in eq. (13)
since

∫
d2ρ1′E

∗

h,h̄
(ρ1′0, ρ2′0)δ

2(ρ1′2′) = 0 and therefore the application of the operators in eq.

(25) on this function will give zero. In other words the bootstrap relation cannot be fullfilled
in such a framework with the spectral representations given in eq. (25).

But this should not be surprising, since the choice done thanks to the equivalence relation
in eq. (8), is based on a restriction of the action of the kernel to the functions similar to
colorless impact factors.

3 Deformed representation

Moving to the momentum representation, one may write the Fourier transform of the rela-
tions in (25) and the same considerations done above may be repeated in this case, leading to
the same conclusions. In particular one cannot write a bootstrap relation in a spectral basis
built upon the states of eq. (16). On the other hand one notices that the BFKL kernel K

(1)
12

in momentum space, as constructed from the Feynman diagram analysis, has an analytic
behavior which must be reflected also in its spectral decomposition. It can also be noted
that the behavior in |q| of the δ-like term (17) is |q|−1+2iν , which is singular in the forward

limit where analytic behavior is expected for fixed ~k1 = −~k2.
Therefore it is natural to suggest the modified relations for the eigenfunction completeness

and for the spectral representation of the BFKL kernel:

〈k|1̂L|k
′〉 ≡ 1 =

∑

h

Ñh Ẽ
A
hh̄(k1,k2) Ẽ

A∗

hh̄ (k
′

1,k
′

2) ,

〈k| ˆ̄K
(1)
12 |k

′〉 =
∑

h

Ñh Ẽ
A
hh̄(k1,k2)χh Ẽ

A∗

hh̄ (k
′

1,k
′

2) , (27)

〈k|Ĝ
(1)
12 (y)|k

′〉 =
∑

h

Ñh Ẽ
A
hh̄(k1,k2) e

yχh ẼA∗

hh̄ (k
′

1,k
′

2) ,

7



where only the analytic contribution from each state of the spectral basis is used and the
measure for integration is defined in eq. (24), according to our choice of considering functions
with propagators included. Below we shall verify this anzatz.

Firstly we consider a space of functions (with removed propagators) which includes func-
tions corresponding to the colorless impact factors and at least one function depending only
on the total momentum, which is associated to a particular colored impact factor. Secondly
we modify the spectral representation of the LL BFKL kernel, wherein the eigenvalues are
assumed to be the same expressions of the conformal weights as for the restriction on the
Möbius space of function, and the eigenfunctions are deformed in order to be analytic in the
momentum space. A similar idea was already considered in the literature in an attempt to
couple the LL BFKL pomeron to a quark [13, 14].

We proceed now with the definition of a transformation between the Möbius (M) basis
and the analytic Feynman (AF) basis. Let us observe that one can go from one basis to the
other by a simple transformation, which reads in coordinate representation as follows

Φ−1 : M → AF , EA
h (ρ10,ρ20) = EM

h (ρ10,ρ20)− lim
ρ1→∞

EM
h (ρ10,ρ20)− lim

ρ2→∞

EM
h (ρ10,ρ20)

= EM
h (ρ10,ρ20)− 2−h−h̄

(
EM

h (−ρ20,ρ20) + (−1)nEM
h (−ρ10,ρ10)

)
, (28)

Φ : AF → M : , EM
h (ρ10,ρ20) = EA

h (ρ10,ρ20) +
1

2h+h̄ − 2

(
EA

h (−ρ20,ρ20) + (−1)nEA
h (−ρ10,ρ10)

)
.

These relations are clearly non local and have been obtained by noting that

EM
h (−ρ,ρ) = 2h+h̄

(
1

ρ

)h(
1

ρ∗

)h̄

, EA
h (−ρ,ρ) = (2h+h̄ − 2)

(
1

ρ

)h(
1

ρ∗

)h̄

. (29)

For the case of even conformal spins (n) the second transformation can be written in a simple
local form on observing that

1

2h+h̄ − 2

(
EA

h (−ρ20,ρ20) + (−1)nEA
h (−ρ10,ρ10)

)
= −

1

2

(
EA

h (ρ10,ρ10) + (−1)nEA
h (ρ20,ρ20)

)

(30)
while for odd conformal spin such a simple transformation is not possible since EA

h (ρ, ρ) = 0.
It is related to the fact, that in the last case both functions EM

h (ρ10, ρ20) and EA
h (ρ10, ρ20)

satisfy the colour transparancy property EM,A
h (ρ, ρ) = 0, but only EM

h (ρ10, ρ20) has the simple
conformal properties.

It can be easily checked that

ΦΦ−1 ≡ IM , Φ−1Φ ≡ IAF (31)

so that Φ is a 1-1 mapping with inverse really given by Φ−1.
The Green’s function for the evolution in the rapidity y based on the deformed analytic

spectral basis was also written above (see (27)). In the next section we shall show that
with this prescription one is recovering the correct relation compatible with the bootstrap
requirement for the gluon reggeization in LLA.
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Since the spectrum in both representations is the same it is natural to expect that the
BFKL kernel satisfying the bootstrap relation is conformal invariant, in the new deformed
analytic Feynman basis obtained by a similarity transformation given by the operator Φ.
Namely, the well known generators of the Möbius group ~Mr could be extended to this basis
as follows

~MAF
r = Φ−1 ~MrΦ . (32)

Let us summarize the result. If one considers the impact factors derived from Feynman
diagrams calculations, they are the functions belonging to the AF-space and not to the
M-space. We remind that we have two different completeness relations based on the two
spectral basis EAF

h and EM
h and in these two spaces there are different definitions for scalar

products and normalizations of wave functions. Nevertheless the cardinality of the two basis
is the same. The two spaces are related by the 1-1 mapping Φ : AF-space → M-space as
previously discussed (see also Fig. 1) and one space is shifted with respect to the other.
Moreover any operator OAF in the AF-space which can be decomposed on the spectral basis
can be defined on the M-space as OM = ΦOAFΦ−1 and viceversa OAF = Φ−1OMΦ. This can
be seen as an isometry between the Möbius space and the analytical Feynman space with
the different scalar products in these spaces.

Figure 1: There is a 1-1 mapping between the AF-space and the M-space.

The next interesting question is therefore if it is possible to construct explicitely the new
representation defined in eq. (32). We shall study this problem in the section 5, starting from
analyzing the Fourier transform of the Möbius algebra in the M-space and later on moving
to the AF-space. In the next section we will show that with the meromorphic prescription
we indeed recover the bootstrap properties of the BFKL kernel.

4 AF representation and the bootstrap relation

For the sake of using a compact notation, let us introduce for some functions of transverse
gluon momenta the corresponding wave functions for a color singlet state. These are the
power |Pλ〉, the unity |U〉 and the log |L〉 states (modulus the propagators), defined by their

9



representations in the momentum space:

〈k|Pλ〉 ≡
1

k2
1k

2
2

(
q4

k2
1k

2
2

)λ

,

〈k|U〉 ≡
1

k2
1k

2
2

= (〈k|Pλ〉)λ=0 ,

〈k|L〉 ≡
1

k2
1k

2
2

log

(
q4

k2
1k

2
2

)
=

d

dλ
(〈k|Pλ〉)λ=0 . (33)

Since, as previoulsy discussed, one has for the Möbius-invariant wave function h the equality
〈h|U〉 = 0 we obtain

〈hA|U〉 = −〈hδ|U〉 . (34)

Let us recall the completeness relation and the BFKL kernel written as

1̂L =
∑

h

Ñh |h
A〉 〈hA| ,

ˆ̄K
(1)
12 =

∑

h

Ñh |h
A〉χh 〈h

A| . (35)

On using the previous relations we write the bootstrap relation in the form of eq. (7) as

ᾱs

∑

h

Ñh |h
A〉 ǫh 〈h

A|U〉 =
ᾱs

2

∑

h

Ñh |h
A〉 〈hA|L〉 , (36)

where eq. (14) was used. In order to show that our definitions (35) are correct, we should
prove that the coefficients of the conformal basis |hA〉 on both the l.h.s. and the r.h.s. do
coincide, i.e.

ǫh 〈h
A|U〉 =

1

2
〈hA|L〉 . (37)

It is therefore enough to calculate the integral given by 〈hA|Pλ〉. Verifying that this expression
is finite it is sufficient also to calculate the first two terms of the Taylor expansion in λ to
verify the eq. (37), thanks to eq. (33).

We also note that the left hand side of eq. (37) can be calculated easily in an independent
way using the relations in eq. (34) and (17), which give:

〈hA|U〉 = −δn,even
in

2π
2h+h̄ Γ(h)

Γ(1− h̄)
q∗−hq−h̄ , (38)

where δn,even = [1 + (−1)n]/2 has support (and value 1) for any even integer number.
Let us now find explicitely 〈hA|Pλ〉. It is convenient to perform the calculations in the

momentum space where we have defined the analytic element |hA〉 of the conformal basis.
Taking for it the expression given in eq. (21) we write:

〈hA|Pλ〉 =

∫
d2k1d

2k2 δ
(2)(q − k1 − k2)Ẽ

A ∗

hh̄ (k1,k2)

(
q4

k2
1k

2
2

)λ

= C∗

l |q|
4λ

∫
d2k

∫
d2p p−h̄(q − p)−h̄(k − p)h̄ k−1−λ(q − k)−1−λ × (h.c.) . (39)

10



Using new integration variables induced by the change x = p/q and y = q/k with analogous
relations for the complex conjugated ones, we obtains

〈hA|Pλ〉 = C∗

l q
−h̄q∗−hIλ(1) , (40)

where

Iλ(z) =

∫
d2x d2y x−h̄(1− x)−h̄y2λ−h̄(1− y)−1−λ(1− xyz)h̄ × (h.c.) . (41)

It is convenient to define the function Iλ(z) because one can find an explicit expression for it
in terms of the generalized hypergeometric functions 3F2. We illustrate some details of the
calculation in appendix A.

It is sufficient to represent the result of the integration in power series of λ for the point
z = 1:

Iλ(1) =
∑

m

1

m!
I
(m)
λ (1)|λ=0 λ

m . (42)

Recalling the first two terms in the expansion (see eq. (104) in appendix A) one can
see, on using the definitions of eq. (33) and (40), which imply 〈hA|U〉 = (〈hA|Pλ〉)λ=0 and
〈hA|L〉 = (d〈hA|Pλ〉/dλ)λ=0, that the relation in eq. (37) is verified and therefore also the
bootstrap relation. As a check one may evaluate explicitely the quantity

(〈hA|Pλ〉)λ=0 = C∗

l q
−h̄q∗−h 2π2

(1− h)(1− h̄)
δn,even , (43)

using the eq. (22). It is easy to show that it coincides with the expression of eq. (38),
computed in a completely different way.
In order to give an alternative check of the representation proposed, we have also calculated

explicitly the third term of the expansion of the BFKL Green’s function G
(1)
12 (y) = eyK̄

(1)
12 ⊗ 1

(the first term is trivial and the second corresponds to the bootstrap relation), which contains
the double iteration of the kernel acting on the unity (momentum space). The details are in
the appendix B.

Using the spectral representation one can compute an arbitrary number of iterations of
the BFKL kernel or the action of the BFKL Green’s function on the impact factor of a quark
or gluon line.

5 The deformed representation of the Möbius (confor-

mal) algebra

In this section we will examine the representation of the sl(2,C) algebra in the AF space
of funtions. To this end we start from the familiar Möbius algebra in the M space and
transform it into momentum space. We then switch to the AF space: in order to retain the
correct structure of the algebra we have to construct a new representation of the generator
M−.

11



Let us reconsider the generators of the conformal Möbius group in 2 dimensions in co-
ordinate space given in eq. (11) and the corresponding Casimir operator (12). We will be
interested in writing similar relations in momentum space. We start from the conformal
eigenfunctions (13) which from now on will carry the superscript ’M ’, and we define their
Fourier transforms:

EM
hh̄(ρ0;ρ1,ρ2) =

(
ρ12
ρ10ρ20

)h(
ρ∗12
ρ∗10ρ

∗

20

)h̄

, (44)

EM
hh̄(q;k1,k2) = F [EM

hh̄](q;k1,k2) =

∫
dµ e−iq·ρ0+ik1·ρ1+ik2·ρ2EM

hh̄(ρ0;ρ1,ρ2) =

= (2π)2δ(2)(q − k1 − k2)Ẽ
M
hh̄(k1,k2) , (45)

ẼM
hh̄(ρ0;k1,k2) = F̃ [EM

hh̄](ρ0;k1,k2) =

∫
dµ̃ eik1·ρ1+ik2·ρ2EM

hh̄(ρ0;ρ1,ρ2) =

= ei(k1+k2)·ρ0ẼM
hh̄(k1,k2) , (46)

ẼM
hh̄(k1,k2) = F̃ [EM

hh̄](ρ0 = 0;k1,k2) =

∫
dµ̃ eik1·ρ1+ik2·ρ2EM

hh̄(0;ρ1,ρ2) , (47)

where dµ = d2ρ0d
2ρ1d

2ρ2, dµ̃ = d2ρ1d
2ρ2 and F , F̃ are the Fourier transform operators in

three and two variables respectively. In coordinate space the action of the generators on the
eigenfunctions EM

hh̄
(ρ10,ρ20) is:

M+EM
hh̄(ρ0;ρ1,ρ2) = −∂0E

M
hh̄(ρ0;ρ1,ρ2) , (48)

M3EM
hh̄(ρ0;ρ1,ρ2) = (−h− ρ0∂0)E

M
hh̄(ρ0;ρ1,ρ2) , (49)

M−EM
hh̄(ρ0;ρ1,ρ2) = (2hρ0 + ρ20∂0)E

M
hh̄(ρ0;ρ1,ρ2) . (50)

Note, that the functions EM
hh̄
(ρ0;ρ1,ρ2) can be considered as the Clebsch-Gordon coefficients

in the expansion of the product of the Reggeon wave functions ϕ(ρr) in the sum of the
irreducible representations

ϕ(ρ1)ϕ(ρ2) =

∫
∞

−∞

dν

∞∑

n=−∞

aνn

∫
d2ρ0E

M
hh̄(ρ0;ρ1,ρ2)Ohh̄(ρ0) , (51)

where the conformal weights for the principal series of unitary representations are

h =
1

2
+ iν +

n

2
, h̄ =

1

2
+ iν −

n

2
(52)

and the coefficients aνn are fixed with the use of the normalization conditions for the wave
functions ϕ(ρr) and Ohh̄(ρ0). In the irreducible representations Ohh̄(ρ0) the Möbius group
generators are given below

M+Ohh̄(ρ0) = ∂0Ohh̄(ρ0) , (53)

M3Ohh̄(ρ0) = (1− h+ ρ0∂0)Ohh̄(ρ0) , (54)

M−Ohh̄(ρ0) = (−2(1− h)ρ0 − ρ20∂0)Ohh̄(ρ0) . (55)
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The generators of the Möbius group can be translated into the momentum space, using the
relation ρ · k = (ρ∗k + ρk∗)/2:

M+ẼM
hh̄(ρ0;k1,k2) = ei(k1+k2)·ρ0M̃+(k) ẼM

hh̄(k1,k2) , (56)

M3ẼM
hh̄(ρ0;k1,k2) = ei(k1+k2)·ρ0

(
M̃3(k) + ρ0M̃

+(k)
)
ẼM

hh̄(k1,k2) , (57)

M−ẼM
hh̄(ρ0;k1,k2) = ei(k1+k2)·ρ0

(
M̃−(k)− 2ρ0M̃

3(k)− ρ20M̃
+(k)

)
ẼM

hh̄(k1,k2) ,(58)

where

M̃+(k) = −
i

2
(k∗1 + k∗2) , (59)

M̃3(k) = −(∂k∗1k
∗

1 + ∂k∗2k
∗

2) , (60)

M̃−(k) = −2i(∂2k∗1k
∗

1 + ∂2k∗2k
∗

2) . (61)

One can calculate also the action of some bilinear combinations of the generators in the
momentum representation

M+M−ẼM
hh̄(ρ0;k1,k2) = ei(k1+k2)·ρ0M̃+(k)

(
M̃−(k)− 2ρ0M̃

3(k)− ρ20M̃
+(k)

)
ẼM

hh̄(k1,k2) ,

(
M3(M3 + 1) +M+M−

)
ẼM

hh̄(ρ0;k1,k2) = ei(k1+k2)·ρ0M̃2 ẼM
hh̄(k1,k2) ,

where the Casimir operator in the ”short” momentum representation is

M̃2 = M̃3(k)
(
M̃3(k) + 1

)
+ M̃+(k) M̃−(k) = −(∂k∗1 − ∂k∗2 )

2k∗1k
∗

2 . (62)

Note that in our notations M̃3 is a generator while M̃2 is the Casimir operator. The algebra
of these generators in momentum space is the same as in coordinate space:

[M̃+
r , M̃

3
r ] = M̃+

r , [M̃+
r , M̃

−

r ] = −2M̃3
r , [M̃−

r , M̃
3
r ] = −M̃−

r .

While the action of the generator M̃+ does not need special comments, it is interesting
to look at others. One finds

M̃3ẼM
h (k1,k2) = −h ẼM

h (k1,k2) , (63)

M̃−ẼM
h (k1,k2) = 0 . (64)

The last relation follows from the action of the Casimir operator

M̃2ẼM
h = h(h− 1)ẼM

h (65)

and from relation (63). In particular, given that

M̃2 =
1

2

[
M̃+M̃− + M̃−M̃+

]
+
(
M̃3
)2

= M̃+M̃− + M̃3
(
M̃3 + 1

)
, (66)
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where the commutation relation [M̃+, M̃−] = −2M̃3 has been used, one can see that indeed
the relation (64 ) is satisfied.

These relations mean that in the M-space in momentum representation the Möbius alge-
bra is projected to

[M̃+, M̃3]ẼM = M̃+ẼM , M̃−M̃+ẼM = 2M̃3ẼM , 0 ẼM = 0 ẼM . (67)

Let us now move to the AF space. We start, in coordinate space, from the definition

EA
h = EM

h −Eδ
h , (68)

where, according to eq. (28),

Eδ
h(ρ10,ρ20) = 21−h−h̄PEM

h (ρ10,ρ20) =

(
1

ρ20

)h(
1

ρ∗20

)h̄

+

(
1

−ρ10

)h(
1

(−ρ10)∗

)h̄

(69)

and P is a projector (P 2 = P ) defined by its action

Pf(x1, x2) =
1

2
(f(x1,−x1) + f(−x2, x2)) . (70)

In order to compute the action of the Möbius generators on the analytic part, EA
h , of the

conformal eigenfunction we first examine the singular piece, Eδ
h.

First of all let us observe that the Casimir operator acting on Eδ
h gives zero, as it is

trivially checked in the coordinate representation. This means that h in such a case can be
obtained with the action of a function of the Casimir (solving the eq. (65) for h) only before
applying the projector P . After the application of P one needs to define a new operator to
extract the scaling parameter h. It is related to the fact, that EA

h is not an eigenfunction
of the usual Casimir operator. We should construct a new Casimir operator M̃2

AF for this
representation.

In coordinate representation we can deduce the following relations for generators

M+Eδ
h(ρ10,ρ20) = −∂0E

δ
h(ρ10,ρ20) , (71)

M3Eδ
h(ρ10,ρ20) = (−h− ρ0∂0)E

δ
h(ρ10,ρ20) , (72)

which coincides with their action for EM
h while the action of M− is different. According to

this fact the action of Möbius generators on EA
h can be written as

M+EA
h (ρ10,ρ20) = −∂0E

A
h (ρ10,ρ20) , (73)

M3EA
h (ρ10,ρ20) = (−h− ρ0∂0)E

A
h (ρ10,ρ20) (74)

and

M−EA
h (ρ10,ρ20) = (ρ20∂0 + 2hρ0)E

A
h (ρ10,ρ20)−

[
hρ10E

M
h (ρ10,−ρ10) + hρ20E

M
h (−ρ20,ρ20)

]
2−h−h̄ .(75)

Therefore only the last generator M−, needs to be redefined in the AF space.
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Let us consider now again the momentum space for these functions. First we analyze the
action of the M̃3 generator on ẼA

h (k1,k2), which we have written in terms of hypergeometric
functions. One can immediately see that

M̃3ẼA
h (k1,k2) = −h ẼA

h (k1,k2) (76)

for any k1 + k2. This means again that we are not forced to use a non local operator ĥ
(solving an equation with the corresponding Casimir M̃2

AF ) to extract the dimension h of an
eigenstate, as we had to do in the coordinate representation.

The Eδ
h function is instead very peculiar since we know that the Casimir gives zero. This

fact is also verified directly in momentum space, due to the deltas present in Ẽδ
h. Later we

will show it explicitely. Instead we note that the action of the M̃3 operator is good. Indeed,
from the explicit form given in Eq. (17), we obtain

M̃3Eδ
h(k1,k2) = −hEδ

h(k1,k2) . (77)

This is compatible with the fact that the M̃3 operator has the same action on the ẼM
h (k1,k2)

and ẼA
h (k1,k2) functions.

The fact that we may choose to extract the dimension h in momentum space using the
M̃3 operator may be useful to simplify the construction of the mappings Φ and Φ−1. On
defining

F = 21−ĥ−ˆ̄h (78)

one may write the mapping introduced in eq. (28) as

Φ−1 :M → AF, Φ−1 = 1− F δP = 1− PFM , (79)

Φ : AF →M, Φ = 1 +
F δ

1− F δ
P = 1 + P

FAF

1− FAF
, (80)

where in general PFP = FP and which imply ΦΦ−1 = Φ−1Φ = 1 and we have denoted
F δ = F (ĥ(M̃3)), FM = F (ĥ(M̃2)) and similarly FAF = F (ĥ(M̃2

AF )). Clearly in the relation
for the mappings one can use different forms for the operator F depending on which space
it acts.

In momentum space ĥ = −M̃3 then one can write [P, F ] = 0 (with some abuse of
notation) and things are further simplified.

Proceeding along this line one can give a deformed representation M̃−

AF which lives on
the AF-space. In order to do this, let us first study

M̃−ẼA
h = M̃−(ẼM

h − Ẽδ
h) = −M̃−Ẽδ

h (81)

and

M̃−Ẽδ
h = −2i(∂2k∗1k

∗

1 + ∂2k∗2k
∗

2)
[
δ(2)(k1) + (−1)nδ(2)(k2)

]
ch(k1 + k2)

h̄−1(k∗1 + k∗2)
h−1

= 2ih(h− 1)
1

k∗1 + k∗2
Ẽδ

h = −h(h− 1)
(
M̃+

)
−1

Ẽδ
h

= −
(
M̃+

)
−1

h(h− 1)
F

1− F
PẼA

h . (82)
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Note that M̃+ has the same form on any of the spaces of functions we consider. The
resulting action of M̃− on ẼA

h has to be studied in order to see if it is possible to define a
new representation for M̃− on AF-space which satisfies the conformal algebra. But before
let us note that from the previous relation we have

M̃+M̃−Ẽδ
h = −h(h− 1)Ẽδ

h ,

M̃−M̃+Ẽδ
h = −h(h + 1)Ẽδ

h , (83)

so that we reobtain, recalling eq. (66),

M̃2Ẽδ
h = 0 . (84)

In general we have defined the Möbius generators on the AF space (spanned by the Basis
functions ẼA

h ) using the isometry with the M-space:

M̃AF = Φ−1M̃Φ . (85)

Let us look at each of the three generators. From the previous discussion, also in the
coordinate representation, we observe that

M̃+
AF = M̃+ , M̃3

AF = M̃3 , (86)

which means that in momentum space the actions of these two operators is the same in both
M-space and AF-space.

We therefore define for the AF-space a new generator in momentum representation such
that

M̃−

AF Ẽ
A
h = 0 , (87)

which puts into relation, as before, the action of the Casimir operator such that

M̃2
AF Ẽ

A
h = h(h− 1)ẼA

h , (88)

together with the piece of the Möbius algebra [M̃+
AF , M̃

−

AF ] = −2M̃3
AF and the action of M̃3

AF .
According to the previous result (see eqs. (81) and (82)), by construction the choice is

M̃−

AF = M̃− −
(
M̃+

)
−1

h(h− 1)
F

1− F
P = M̃− −

(
M̃+

)
−1

P G(M̃2
AF ) , (89)

where, in the last form, G is a non local operator such that

GẼA
h = h(h− 1)

F (h)

1− F (h)
ẼA

h . (90)

Let us finally verify that, with this new representation of M̃−

AF , the algebra of the Möbius
generators is correct. It is easy to see that

[M̃−

AF , M̃
3
AF ] = −M̃−

AF , (91)
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which is a relation that is projected to zero when applied to the function ẼA
h . In order to

check that the Möbius algebra is closed we need to examine the relation

[M̃−

AF , M̃
+
AF ] = +2M̃3

AF (92)

understood to act on ẼA
h . One then has to verify that

M̃−

AF M̃
+
AF Ẽ

A
h = −2hẼA

h . (93)

Using eq. (83) we derive also

M̃−M̃+ẼA
h =

(
M̃+M̃− + 2M̃3

)(
ẼM

h − Ẽδ
h

)
= −2hẼA

h + h(h− 1)Ẽδ
h (94)

and making the difference between eqs. (93) and (94) we therefore obtain
(
M̃−

AF − M̃−

)
M̃+ẼA

h = −h(h− 1)Ẽδ
h . (95)

If M̃+ commutes with (M̃−

AF − M̃−) this is equivalent to

(
M̃−

AF − M̃−

)
ẼA

h = −h(h− 1)
(
M̃+

)
−1

Ẽδ
h = −

(
M̃+

)
−1

P G(M̃2
AF )Ẽ

A
h , (96)

which coincides with the starting definition of the generator. The commutation relation
is fullfilled since the operator M̃+ is just a multiplicative operator associated to the total
momentum and therefore commutes with the action of the projector P and moreover it
commutes with the function of the Casimir G(M̃2

AF ).
Finally let us look at the relation between the two Casimir operators in M-space and

AF-space: using M̃2
AF = 1

2

[
M̃+

AF M̃
−

AF + M̃−

AFM̃
+
AF

]
+
(
M̃3

AF

)2
we find from the previous

relations
M̃2

AF + P G(M̃2
AF ) = M̃2 . (97)

This last relation, applied to ẼA
h , gives

h(h− 1)ẼA
h + h(h− 1)Ẽδ

h = M̃2ẼA
h , (98)

which indeed is compatible with M̃2ẼM
h = h(h− 1)ẼM

h .

6 Conclusions

Among the properties of the LL BFKL kernel the bootstrap relation connected to the gluon
reggeization is a fundamental consistency condition. This bootstrap property leads to an
important feature of the BFKL kernel also in the color singlet state: this can be demonstrated
most easily in momentum space where the BFKL kernel is meromorphic. Many previous
investigations, exploiting the conformal symmetry of the kernel, have been carried out in the
space of Möbius functions (M). In this space of functions, however, the bootstrap relation
for the BFKL kernel is not satisfied.
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In this paper we have defined a modified space of functions (AF ), in which the bootstrap
property is valid. In particular, we have derived a spectral representation of the kernel
which is also useful in evaluating the coupling of the BFKL Green’s function to colored
impact factors, and we have verified explicitly that the bootstrap relation is fulfilled. We
also have derived the corresponding represention of the Möbius algebra; in order to act in
this modified space of functions, one of the Möbius generators has to be deformed.

Our discussion has been limited to the the case of two-gluon Green’s functions. Since in
both spaces, M and AF , the eigenvalues of the Casimir operator, M̃2 and M̃2

AF , resp., are
the same, and since the hamiltonian for the pairwise interaction of two reggeized gluons can
be expressed in terms of this Casimir operator, one can expect that, for states consisting of
more than two gluons all remarkable properties of the multi-colour BFKL dynamics derived
in the Möbius picture can be generalized to the AF picture. This includes, in particular, the
holomorphic separability and integrability [6]. We are going to return to these interesting
problems in future publications.
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Appendix A

The calculation of the integral in eq. (41) is carried on noting that one can find a third order
differential operator in z and another in z∗, related to the 3F2 functions, which, when applied
to the integrand, gives a total derivative in an integration variable so that, on applying the
Stokes theorem, one finds that Iλ(z) satisfies the related differential equation in both the
holomorphic and antiholomorphic sectors. This allows to write it as a sum of products of the
linearly independent solutions of the two differential equations and on imposing the single
valueness and the correct normalization (at some convenient point) the full expression is
found [15]. In particular this has the following, so called, conformal block structure

Iλ(z) =
2∑

i=0

λi ui(z)ūi(z
∗) , (99)

where ui and ūi are three independent solutions of the generalized hypergeometric differential
equations in z and z∗. The coefficients λi depend through Γ functions on the conformal
weights. The general form of Iλ(z) is pretty complicated but it simplifies considerably for
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z = 1 using the relations [16]

3F2

(
a, b, c

a+b+1
2

, 2c

∣∣∣∣1
)

= π1/2 Γ
(
c+ 1

2

)
Γ
(
1+a+b

2

)
Γ
(
c+ 1−a−b

2

)

Γ
(
1+a
2

)
Γ
(
1+b
2

)
Γ
(
c+ 1−a

2

)
Γ
(
c+ 1−b

2

) ,

3F2

(
a, 1− a, c

f, 2c+ 1− f

∣∣∣∣1
)

= π
Γ (f) Γ (2c+ 1− f) 21−2c

Γ
(
a+f
2

)
Γ
(
1−a+f

2

)
Γ
(
c + 1+a−f

2

)
Γ
(
1 + c− a+f

2

) . (100)

On using the above relation, after algebraic simplifications, we find

Iλ(1) = I(0) + I(1) + I(2) (101)

with

I(0) =
2−3+4λΓ

(
1− h

2

)
Γ
(
1− h̄

2

)
Γ2 (1− λ) Γ2 (−λ) Γ

(
1−h
2

+ λ
)
Γ
(

1−h̄
2

+ λ
)

Γ
(
3−h
2

)
Γ
(

3−h̄
2

)
Γ
(
1− h

2
− λ
)
Γ
(
1− h̄

2
− λ
) ×

×
sin π(h̄− 2λ) sin πλ tan πh̄

sin π(h̄− λ)
,

I(1) = −
2−3+4λΓ

(
h−1
2

)
Γ
(

h̄−1
2

)
Γ2 (1− λ) Γ2 (−λ) Γ

(
h
2
+ λ
)
Γ
(

h̄
2
+ λ
)

Γ
(
h
2

)
Γ
(

h̄
2

)
Γ
(
1+h
2

− λ
)
Γ
(

1+h̄
2

− λ
) ×

×
sin π(h̄+ 2λ) sin πλ tanπh̄

sin π(h̄+ λ)
,

I(2) =
24λπ6 Γ2 (1− λ)

Γ
(
3−h
2

)
Γ
(
h
2

)
Γ
(

3−h̄
2

)
Γ
(

h̄
2

)
Γ
(
1+h
2

− λ
)
Γ
(

1+h̄
2

− λ
) ×

×
1

Γ
(
1− h

2
− λ
)
Γ
(
1− h̄

2
− λ
)
Γ2 (1 + λ)

1

sin π(h̄− λ) sin π(h̄+ λ)
. (102)

The expressions of I(0) and I(1) have a simple pole at λ = 0 and opposite residues for this pole,
while I(2) is holomorphic at λ = 0, therefore the full function in eq. (101) is not singular at
λ = 0. Using the transformation properties of the Gamma function, each of three terms can
be reduced to a common multiplicative factor and expressions involving only trigonometric
functions. These terms are combined together to give the following compact form for Iλ(1)

Iλ(1) =
2

(1− h)(1− h̄)
δn,even ×

Γ
(
h
2
+ λ
)
Γ
(

h̄
2
+ λ
)
Γ
(
1−h
2

+ λ
)
Γ
(

1−h̄
2

+ λ
)

Γ
(
h
2

)
Γ
(

h̄
2

)
Γ
(
1−h
2

)
Γ
(

1−h̄
2

) ×

16λ



1 + in
sin 2πλ

sin π
(

h+h̄
2

)



 Γ2 (1− λ) Γ2 (−λ) sin2 πλ. (103)
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Now the first few derivatives with respect to λ can be easily calculated. In particular we
obtain, after some manipulations,

c0 ≡ Iλ(1)|λ=0 =
2π2

(1− h)(1− h̄)
δn,even ,

I ′λ(1)|λ=0 = 2 ǫh c0 ,

I ′′λ(1)|λ=0 =

[
(2 ǫh)

2 − (−1)h−h̄ 4π2 csc2
h+ h̄

2
+

ψ′

(
h

2

)
+ ψ′

(
h̄

2

)
+ ψ′

(
1− h

2

)
+ ψ′

(
1− h̄

2

)]
c0 . (104)

Appendix B

We recompute here the double iteration of the BFKL kernel in momentum space acting on
a constant function [17] and compare it with the expressions obtained with the use of the
above spectral representation of the kernel (and therefore of the Green’s function). Let us
write before the result of the direct integration in momentum space:

(K̄
(1)
12 )

2 ⊗ 1 =
1

2
ᾱs K̄

(1)
12 ⊗ log

(
q4

k2
1k

2
2

)
=

=

(
1

2
ᾱs

)2 [
log2

(
q2

k2
1

)
+ log2

(
q2

k2
2

)]
. (105)

Before giving some details of the computation let us consider what we obtain from the
spectral approach. On using the spectral representation for the kernel, the relation (105)
can be written as

〈k|
(
ˆ̄K
(1)
12

)2
|U〉 = (ᾱs)

2
∑

h

Ñh 〈k|h
A〉 ǫ2h 〈h

A|U〉 , (106)

a relation which we have checked numerically. This check has been also performed in the
case of the single iteration (bootstrap relation). The argument of the integration over ν
oscillates with a very slow decay for fixed conformal spin, but summing over some tens of n
gives a good suppression of the tails and the integral can be computed.

Finally we sketch the derivation of eq. (105). There are three kinds of integral involved;
they can be calculated with the dimensional regularization and the Feynman parameteriza-
tion, in the case k1,2 6= 0,k1 6= k2.
The needed integrals are:

ω(k1) =

∫
ddk′

k2
1

(k′) 2(k1 − k′)2
,

J1(k1,k2) =

∫
ddk′

k2
1

(k′) 2(k1 − k′)2
log

q2

(k′) 2
, (107)

J2(k1,k2) =

∫
ddk′

k2
1

(k′) 2(k1 − k′)2
log

q2

(q − k′) 2
,
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where d = 2 + 2 ǫ, q = k1 + k2 and ω(k1) is the gluon trajectory (2) rescaled by −Nc/2c.
The first two integral can be easily calculated exactly, giving:

ω(k1) = π1+ǫΓ(1− ǫ)Γ2(ǫ)

Γ(2ǫ)
(k2

1)
ǫ =

= π1+ǫΓ(1− ǫ)(q2)ǫ
[
2

ǫ
− 2 log

q2

k2
1

+O(ǫ)

]
,

J1(k1,k2) = π1+ǫΓ(1− ǫ)Γ2(ǫ)

Γ(2ǫ)

[
π cot πǫ+ log

q2

k2
1

+ ψ(2ǫ)− ψ(1)

]
(k2

1)
ǫ =

= π1+ǫΓ(1− ǫ)(q2)ǫ
[
1

ǫ2
+

1

ǫ
log

q2

k2
1

−
π2

6
−

3

2
log2

q2

k2
1

+O(ǫ)

]
. (108)

The third integral is calculated to the order O(ǫ):

J2(k1,k2) = π1+ǫΓ(1− ǫ)(q2)ǫ
[
1

ǫ
log

q2

k2
2

−
1

2
log

q2

k2
2

− log
q2

k2
1

log
q2

k2
2

+O(ǫ)

]
. (109)

Putting together all the pieces to construct the complete action of the kernel, all the singu-
latities cancel and the result, which is finite in the limit ǫ→ 0, correspond to the expression
given in eq. (105).
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