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Abstract
We analyse the possible role of new interactions of neutrino in the forthcoming tritium beta

decay experiment KATRIN aimed at detecting the neutrino mass with the sensitivity of 0.3 - 0.2

eV.

It is shown that under certain circumstances the standard procedure of data analysis would

have to be modified by the introduction of an extra parameter describing the strength of the new

interactions.

Our model simulations show that the modified procedure may improve the quality of the fit

compared with the standard case. Ignoring the possibility of new interactions may lead to a

systematic error in the neutrino mass determination.
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I. INTRODUCTION

The compelling evidence for non-zero neutrino mass has been a recent triumph of modern

science. Neutrino oscillation experiments give us information on squared mass differences

between different types of neutrinos. However, the absolute values of neutrino masses remain

unknown. One way to find the absolute mass is to study the electron spectrum in beta decay.

As suggested by Fermi in the late thirties, the deviation of the linearised spectrum (the Curie

plot) from a straight line near the end point is a signal of non-zero neutrino mass.

This idea has been implemented in a number of recent experiments [1, 2] with all results

consistent with zero mass and thus providing an upper limit on the neutrino mass. The

work on the next generation tritium beta decay experiment, KATRIN, is in progress [3, 4].

Theoretically, the existence of neutrino mass and the existence of new neutrino interac-

tions are closely related. This is because the neutrino interactions described by the Standard

Model cannot generate the neutrino mass while the additional interactions can. Thus a ques-

tion arises: what is the potential effect of new interactions in beta decay and how is the

neutrino mass measurement is influenced?

This question has a long history starting from the time before V-A theory was established.

Obviously there was a need to analyse all possible types of neutrino interactions in order

to choose the one that was consistent with experiment. More recently, the interest in this

problem was revived in [5, 6, 7] motivated, in particular, by an unexpected experimental

finding that the best fit for the squared neutrino mass turned out to be negative.

It was shown that the account of possible new neutrino interactions, such as right-handed

(vector and scalar) currents can significantly affect the measured value of neutrino mass. In

particular, the new interactions can drive negative the value ofm2 extracted from experiment

whereas the physical value m2 must be positive.

In this paper we extend the analysis of [5, 6, 7] by using the fact that, from the point of

view of tritirm beta decay experiments, the neutrino spectrum can be considered degenerate.

This leads to the appearance in the electron spectrum of only one extra parameter describing

the strength of the new interactions. The modified electron spectrum can be computed

analytically.

Thus, we are able to simulate the observed spectrum assuming that new interaction are

present and have strength allowed by the existing constraints. We then can fit the simulated

data by the usual spectral function (i.e. as if there were no new interactions). In such a

procedure, the difference between the input and output values of the neutrino mass will

describe the effect of new interactions on the neutrino mass measurement.
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II. TRITIUM BETA DECAY SPECTRUM IN THE PRESENCE OF NEW INTER-

ACTIONS

As was shown in [6], the integral spectrum for tritium beta decay near the end point is

given by the following expression (the meaning of the effective neutrino mass m has recently

been discussed in [8]):

N(E) = K

{

1

3
(E2 −m2)3/2 + xm

[

E
√
E2 −m2 −m2 ln

(

E +
√
E2 −m2

m

)]}

. (2.1)

Here, E is the maximum neutrino energy, x is the dimensionless parameter describing the

strength of the new interactions (for consistency with previous works our notations follow

that of [6, 7]) :

x = xR + xSR (2.2)

xR = −2ρR
me

〈E〉
∑

i

cos θi cos θiR (2.3)

xSR = −2ρSR(
G2

V

G2
V + 3G2

A

)
∑

i

cos θi cos θiSR (2.4)

Here, xR and xSR describe the strengths of right-handed and scalar right-handed inter-

actions, respectively; they are expressed in terms of other two convenient parameters with

the same physical meaning, ρR and ρSR:

ρR =
g2R
g2

M2

W

M2

R

(ME)R (2.5)

ρSR =
g2SR
g2

M2

W

M2

SR

(ME)SR, (2.6)

where the three sets (g,MW ); (gR,MR), and (gSR,MSR) refer to the coupling con-

stants/boson mass values for the standard, right-handed, and the scalar right-handed inter-

actions, correspondingly.

The factors (ME)R and (ME)SR account for the ratio of the hadronic matrix elements

of the currents involved in tritium beta decay relative to those of the Standard Model. Each

factor includes the elements of the quark CKM-type matrix generated by the appropriate

non-standard interaction.

Further, there are 3 sets of angles in the above formulas: θi, θiR, and θiSR where index

i running over 1,2,3 refers to the neutrino mass eigenstates. The angles θi belong to the

Standard Model and arise because the standard weak interaction eigenstates are different

from mass eigenstates. Similarly, if a new interaction is introduced, a new set of angles

arises for the same reason. Although in general these new sets would be different from the

Standard Model set (and from each other) it is usually assumed for simplicity that they are

the same, i.e.

θiR = θiSR = θi. (2.7)
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Under this assumption the existing experimental constraints [9] on ρR and ρSR are 1

ρR ≤ 0.07 ρSR ≤ 0.1. (2.8)

Finally, plugging these into formulas for x (and assuming that me/〈E〉 ∼ 1) we obtain:

|xR| ≤ 0.14 |xSR| ≤ 0.035. (2.9)

III. MODEL SIMULATIONS

In the context of the KATRIN experiment we have conducted a study of possible role of

the new interactions by carrying out a number of simulations using Mathematica [11] as our

tool.

To generate out simulated data we used the theoretical formula (2.1) plus the “random

error” term normally distributed around zero with the dispersion s. The value of s was

determined by a self-consistency requirement imposed by the KATRIN conditions: at the

input value of neutrino mass m = 0.35 eV the 1σ statistical error in the mass determination

should be 0.07 eV 2 [4]. Typically, we used as input values x = ±0.14 and m = 0.35 eV .

Regarding the energy, we assumed that E can take 20 values starting from E = 1 eV

through to E = 20 eV with a step of 1 eV. We have tried several methods of extracting the

neutrino mass from our simulated data.

In Method A we generated data according to Eq.(2.1) with non-zero x and m = 0.35

eV , and then did an analysis assuming x = 0 and finding the best fit for m or m2 based on

Eq.(2.1) with x = 0.

In Method B the data were generated in the same way as in Method A, but as our fitting

formula we used Eq. (2.1) with 2 parameters (m and x) to be fitted.

In Method C the data generation method was again the same as above, but for the fitting

purposes the parameters m and x were treated “asymmetrically”: the neutrino mass was

considered as a fitting parameter while x took on different but fixed values.

Method A for x = −0.14 yields m = 1 eV (with negligible dispersion), i.e. it leads to

a large (about 0.7 eV) systematic error in neutrino mass determination. The very small

dispersion in m values is related to the fact that in our procedure values of m larger than 1

eV are not allowed because for E = 1 eV they lead to negative values under the square roots

in Eq. (2.1). Thus values we can investigate are squashed against this limit. In addition,

the quality of the fit turns out to be bad (χ2/d.o.f. ≃ 6). For x = +0.14 the method yields

negative m2 values: m2 = −1.39 ± 0.08, with χ2/d.o.f. ≃ 2.7.

Method B was used only for x = −0.14. For x = +0.14, based on results of Method

A, one would expect that the best fit can yield negative m2 values, but the fitting formula,

1 In deriving these constraints the general approach (see e.g. [10]) is followed and it is not assumed that

the right-handed quark mixing angles are equal to the left-handed ones.
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FIG. 1: Contours of equal χ2 in the plane (m, horizontal axis, vs. x, vertical axis). The χ2 values

on the contours, moving out of the minimum valley, are χ2/dof = 1.9, 2.9, 3.9. The value of m

ranges between 0.2 and 0.4. The dot without error bars is the input value.

Eq. (2.1), contains not only m2, but also m. Therefore it cannot be used in the case of

negative m2 without modifications.

Method B gives much better χ2/d.o.f. values than method A (χ2/d.o.f. ≃ 0.9) . We ran

10 simulations, with the results plotted in figure 1. These results give the average output

values m = 0.65± 0.11 eV and x = −0.06± 0.017. It is disappointing that the mean values

for our simulation are more than 3 standard deviations away from the input values. This

can be related to the fact that the contours of equal χ2 in the plane (x, m) do not enclose

a small region as can be seen in Fig. 1. Indeed, there seems to be a very long valley in the

vicinity of the minimum.

Finally, Method C (see Table 1) seems to better reproduce the value of m; its unpleasant

feature is that without additional information we do not know in advance the value of the x

parameter that should be plugged in before the fitting starts. Because of that, one can start

with the largest (by modulus) value of x allowed by the modern data and then gradually

lower this value and see if the quality of the fit (χ2) has improved. However, from Table 1 we

see that a good fit can be obtained for a range of x values, and the outstanding problem is

how to narrow this range down. The challenge will be to obtain independent measurements

of, or limits on, x. Note also, that for the same reason as in Method B, only negative values
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TABLE I: Method C with input values x = −0.14, m = 0.35 eV .

Trial value of x Output value of m, eV χ2/d.o.f.

0 1 6

-0.10 0.46 ± 0.02 0.9

-0.15 0.33 ± 0.01 0.9

-0.20 0.25 ± 0.01 0.9

of x were used.

Therefore, if the standard procedure of KATRIN data analysis produces a fit that is not

good enough and/or the best fit for the neutrino mass turns out to be unphysical then the

hypothesis of new interactions should be tested as described above. We have performed

additional simulations with the same input values of m and x, but with smaller dispersions

s. We find that, with a dispersion corresponding to a 1σ statistical error in the mass

determination of 0.015 eV 2, reliable values of x and m can be extracted.

IV. CONCLUSIONS

We have analysed the possible role of new interactions of neutrinos in the forthcoming

tritium beta decay experiment KATRIN aimed at detecting the neutrino mass with the

sensitivity of 0.3 - 0.2 eV.

It is shown that under certain circumstances the standard procedure of data analysis

would have to be modified by the introduction of an extra parameter describing the strength

of the new interactions.

Our model simulations show that the modified procedure may improve the quality of the

fit compared with the standard case. We find that it is possible for the new interactions,

if present, to lead to a systematic error in the mass determination from an analysis which

ignores this presence. However when new interactions are included in the analysis the mass

determination may still be unreliable unless

(i) the strength of the new interaction can be determined by independent experiments

and used as an input parameter in the analysis of the experiment, or

(ii) the statistical (and systematic) errors in the experiment can be reduced to 0.015 eV 2

in the mass at 1 σ.

We recognise that our simulations do not include all of the details necessary for a full

simulation of these effects in the KATRIN experiment. But our results indicate that such a

simulation could usefully be undertaken.
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