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Abstract: We construct gauge theories in two extra dimensions compactified on the chiral

square, which is a simple compactification that leads to chiral fermions in four dimensions.

Stationarity of the action on the boundary specifies the boundary conditions for gauge

fields. Any six-dimensional gauge field decomposed in Kaluza-Klein modes includes a tower

of heavy spin-1 particles whose longitudinal polarizations are linear combinations of the

extra-dimensional components, and a tower of heavy spin-0 particles corresponding to the

orthogonal combinations. These linear combinations depend on the Kaluza-Klein numbers,

and are independent of the gauge fixing. If the gauge symmetry is broken by the vacuum

expectation value of a six-dimensional scalar, at each Kaluza-Klein level three spinless fields

in the adjoint representation mix to provide the longitudinal polarization of the spin-1

mode, leaving the orthogonal states as two spin-0 particles. We derive the interactions of

the Kaluza-Klein modes for generic gauge theories, laying the groundwork for the Standard

Model in two universal extra dimensions, and more generally for future model building and

phenomenological studies.
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1. Introduction

Six-dimensional (6D) gauge theories have intriguing properties that make them potentially

relevant for extensions of the standard model of particle physics [1]. For example, the global

SU(2)W gauge anomaly cancels only in the case where the number of quark and lepton

generations is a multiple of three [2]. Furthermore, simple compactifications of two dimensions

preserve a discrete symmetry which is a subgroup of the 6D Lorentz group, such that the

neutrino masses are forced to be of the Dirac type and proton decay is adequately suppressed

even when baryon number is maximally violated at the TeV scale [3].

As with any theory that has fermions in more than four dimensions, a major constraint

imposed by the observed properties of quarks and leptons is that the compactification al-

lows the existence of chiral fermions in the effective 4D theory obtained by integration over

the extra-dimensional coordinates. The simplest compactification of two extra dimensions,

namely on a torus, does not satisfy this constraint. A toroidal compactification, which can be

viewed as a parallelogram with the opposite sides being identified, leads to 4D fermions that

are vector-like with respect to any gauge symmetry. The next simplest compactification, a
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Figure 1: The chiral square: the sides marked by thick lines are identified, and the sides marked by

a double line are also identified.

parallelogram with the adjacent sides being identified, automatically leaves at most a single

4D fermion of definite chirality as the zero mode of any chiral 6D fermion [4]. Identifying

adjacent sides requires these to have the same length L, so that the parallelogram has to be a

rhombus in this case. For simplicity, we consider the most symmetric compactification of this

type: a square. As pointed out in [5], this configuration is naturally preferred by radion and

moduli stabilization mechanisms, a simple example of which is the stabilization by quantum,

Casimir-like effects. We refer to this compactification as the “chiral square”.

In this paper we study 6D gauge theories compactified on the chiral square. There are

various questions that we address: what are the boundary conditions for gauge fields on

the chiral square? what kind of gauge fixing conditions may be imposed in the 6D theory?

what is the spectrum of Kaluza-Klein (KK) modes for gauge fields? how does the Higgs

mechanism work if the heavy KK gauge fields acquire masses both from compactification and

from spontaneous breaking via a vacuum expectation value (VEV)? what are the interactions

of the KK modes? Related studies of gauge theories in six dimensions have appeared in

[6, 7, 8].

Before tackling gauge fields, let us recapitulate some properties of the chiral square derived

in Ref. [4]. Figure 1 shows a chiral square, with adjacent sides identified. This space has the

topology of a sphere, but has a flat metric except for conical singularities at (0, 0) and (L,L)

(deficit angle of 3π/2 each) and a third one at the identified points (0, L) ∼ (L, 0) (deficit angle

of π). From this point of view there is nothing special going on at the sides that are being

glued together. It is nevertheless useful to formulate this compactification by considering the

above square region on the x4 − x5 plane, together with boundary conditions on the edges of

the square that encode the identification of adjacent sides. In particular, field values should be

equal at identified points, modulo possible symmetries of the theory. The physics at identified

points is identical if the Lagrangians take the same values for any field configuration:

L(xµ, y, 0) = L(xµ, 0, y) ,
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L(xµ, y, L) = L(xµ, L, y) , (1.1)

for any y ∈ [0, L]. For a free field Φ, this requirement is consistent with

Φ(xµ, y, 0) = eiθΦ(xµ, 0, y) , (1.2)

for an arbitrary phase θ, provided one requires a “smoothness” condition on the derivatives

normal to the “edges” of the square

∂5Φ|(x4,x5)=(y,0) = −eiθ ∂4Φ|(x4,x5)=(0,y) . (1.3)

Similar relations should be imposed at (L, y) ∼ (y, L). However, it was found in [4] that this

system admits nontrivial solutions only when θ takes one of the four discrete values nπ/2,

for n = 0, 1, 2, 3. Only those fields that satisfy boundary conditions corresponding to n = 0

admit a zero-mode. Furthermore, when considering 6D Weyl fermions, one finds that their

4D left- and right-handed chiralities obey boundary conditions corresponding to integers that

differ by one: nL − nR = ±1, where the sign depends on the 6D chirality. Hence, fermions

propagating on this space lead necessarily to a chiral low-energy theory: at most one of the

left- or right-handed chiralities has a zero mode. This compactification is equivalent to the

T 2/Z4 orbifold [4].

The chiral square possesses a discrete Z8 symmetry that acts on the right- and left-handed

components of 6D Weyl spinors as

Ψ±R(x
µ, x4, x5) 7→ e−i(n±

R
±1/2)π/2Ψ±R(x

µ, x4, x5) ,

Ψ±L(x
µ, x4, x5) 7→ e−i(n±

L
∓1/2)π/2Ψ±L(x

µ, x4, x5) , (1.4)

where + or − label the 6D chirality, and n±
L , n

±
R label the boundary conditions satisfied by

Ψ±L and Ψ±R, respectively. Note that each KK tower transforms as a single entity under the

Z8, i.e. the symmetry commutes with KK number. This Z8 symmetry is at the heart of the

Dirac nature of neutrinos and the suppression of baryon number violation.

A KK-parity can also be naturally imposed on these scenarios and ensures that the lightest

KK particle (LKP) is a viable dark matter candidate [9]. This Z2 symmetry distinguishes

among KK modes and acts as

Φ(j,k)(xµ) 7→ (−1)j+k Φ(j,k)(xµ) , (1.5)

where Φ stands for a field of any spin, and j, k are integers labeling the KK level. The KK-

parity has a geometrical interpretation as a rotation by π about the center of the chiral square.

In particular, KK-parity requires that localized operators at (0, 0) and (L,L) be identical.

Localized operators at (0, L) ∼ (L, 0) have coefficients that are, in general, unrelated to those

on the previous two conical singularities.

In section 2 we give the appropriate boundary conditions for gauge fields propagating on

the chiral square. We concentrate on those boundary conditions that preserve a zero mode,
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i.e. we do not study the breaking of gauge symmetries by boundary conditions. Next we

turn to deriving the self-interactions of the KK modes in the mass eigenstate basis for non-

Abelian gauge fields (section 3), gauge interactions of fermions (section 4) and scalars (section

5). In section 6 we analyze spontaneously broken 6D gauge symmetries. We also address in

detail the gauge fixing procedure, with and without breaking by nonzero VEV’s, discuss the

associated ghost action and corresponding KK decomposition, isolate the linear combinations

of scalars that provide the longitudinal polarizations for massive gauge fields, and identify

the additional scalars coming from the extra dimensional components of the gauge fields. We

summarize and conclude in section 7.

2. Abelian gauge fields

Let us first study a 6D Abelian gauge field, Aα(xβ) with α, β = 0, 1, ...5, whose propagation

in the x4, x5 plane is restricted to a square of size L (xν , ν = 0, 1, 2, 3 are the Minkowski

spacetime coordinates). The action has the usual quadratic form in the gauge field strength,

Fαβ ,

S =

∫

d4x

∫ L

0
dx4

∫ L

0
dx5

(

−1

4
FαβF

αβ + LGF

)

, (2.1)

and includes a gauge fixing term, LGF , which we choose such that the mixings of Aµ, µ =

0, 1, 2, 3, with A4 and A5 vanish:

LGF = − 1

2ξ

[

∂µA
µ − ξ (∂4A4 + ∂5A5)

]2
, (2.2)

where ξ is the gauge fixing parameter.

The action may also include localized kinetic terms at the fixed points (0, 0), (L,L)

and (0, L) ∼ (L, 0). Such terms are generated radiatively, as was explicitly shown in the

cases of 5D theories [10] and of 6D theories compactified on the T 2/Z2 orbifold [11], and

are phenomenologically important [12, 13]. In this work we assume that they are sufficiently

small that they can be taken into account perturbatively. Therefore, Eq. (2.1) is our starting

point for the KK decomposition. We defer a detailed study of localized terms for future work

[14].

2.1 Boundary conditions

Integrating by parts, the action (2.1) can be written as

S =

∫

d4x

∫ L

0
dx4

∫ L

0
dx5

{

−1

4
FµνF

µν − 1

2ξ
(∂µA

µ)2 +
1

2

[

(∂4Aµ)
2 + (∂5Aµ)

2
]

+
1

2

[

(∂µA4)
2 + (∂µA5)

2 − ξ(∂4A4 + ∂5A5)
2 − (∂4A5 − ∂5A4)

2
]

+ ∂4 [A4∂µA
µ] + ∂5 [A5∂µA

µ]

}

. (2.3)
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The last two terms are surface terms that are important in determining the possible boundary

conditions.

The variation of S with respect to Aα must vanish everywhere in the bulk, leading to the

following field equations:

∂µFµν +
1

ξ
∂µ∂νA

µ =
(

∂2
4 + ∂2

5

)

Aν ,

(

∂µ∂
µ − ξ∂2

4 − ∂2
5

)

A4 = (ξ − 1)∂4∂5A5 , (2.4)

(

∂µ∂
µ − ∂2

4 − ξ∂2
5

)

A5 = (ξ − 1)∂4∂5A4 .

Furthermore, we require the surface terms in δS to vanish everywhere on the boundary:

∫

d4x

{
∫ L

0
dx4

[

F5µδA
µ + F45δA4 + (∂µA

µ − ξ∂4A4 − ξ∂5A5) δA5

]
∣

∣

∣

x5=L

x5=0

+

∫ L

0
dx5

[

F4µδA
µ − F45δA5 + (∂µA

µ − ξ∂4A4 − ξ∂5A5) δA4

]
∣

∣

∣

x4=L

x4=0

}

= 0 . (2.5)

This leads to boundary conditions that guarantee a well-defined, self-adjoint problem, which

in turn ensures that the differential operators in Eqs. (2.4) possess a complete set of orthogonal

eigenfunctions. Possible localized terms in the original action would give additional contribu-

tions to Eq. (2.5), and thus would correspond to a modification of the boundary conditions.

Requiring that the boundary contributions to δS vanish also guarantees that there is no flow

of charges, such as energy or momentum, across the boundary, or that any flow is explicitly

associated with localized terms that act as sources for the corresponding charges. As already

mentioned, we do not consider localized terms in what follows.

As discussed in Section 1, we consider the case where the points (y, 0) and (0, y) are

identified in the sense that the Lagrangians at these points are equal, and likewise (y, L) and

(L, y) are identified, for any 0 ≤ y ≤ L. Given that any matter field Φ satisfies the boundary

conditions (1.2) and (1.3), and analogous relations at the boundaries x4 = L and x5 = L, the

requirement that the boundary conditions are compatible with the gauge symmetry implies

DµΦ|(x4,x5)=(y,0) = eiθ DµΦ|(x4,x5)=(0,y) ,

D4Φ|(x4,x5)=(y,0) = eiθ D5Φ|(x4,x5)=(0,y) ,

D5Φ|(x4,x5)=(y,0) = −eiθ D4Φ|(x4,x5)=(0,y) . (2.6)

The first and second equations are derived by differentiating Eq. (1.2) with respect to xµ and

y, respectively, and then replacing partial derivatives by covariant ones,

Dα = ∂α − ig6Aα , (2.7)

where the 6D gauge coupling, g6, has mass dimension −1. The last equation in (2.6) is

obtained directly from Eq. (1.3).
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Eq. (2.6) implies that the boundary conditions are invariant under 6D gauge transforma-

tions only if Aµ, A4 and A5 satisfy the “folding” identifications

Aµ(y, 0) = Aµ(0, y) ,

A4(y, 0) = A5(0, y) , (2.8)

A5(y, 0) = −A4(0, y) ,

and the same relations between fields at (y, L) and (L, y). These boundary conditions have

also been derived in [8].

Alternatively, one can understand the sign in the last equation of (2.8) by recalling that

the folding boundary condition (1.2) is closely related to rotations by π/2 about the origin of

the larger square −L < x4, x5 < L. Under (x4, x5) 7→ (−x5, x4), the gauge field satisfies the

covariant transformation law (A4, A5) 7→ (A5,−A4), and identifying boundary points that

differ by such a rotation leads to Eq. (2.8).

In the presence of the folding identifications (2.8), Eq. (2.5) implies that either the gauge

field values are fixed on the boundary (δAα = 0), or else

Fµ5(y, 0) = −Fµ4(0, y) ,

F45(y, 0) = F45(0, y) , (2.9)

[

∂µA
µ − ξ (∂4A4 + ∂5A5)

]

(x4,x5)=(y,0)
=
[

∂µA
µ − ξ (∂4A4 + ∂5A5)

]

(x4,x5)=(0,y)
.

In the latter case, differentiating Eqs. (2.8) with respect to y and combining with Eq. (2.9)

we find some constraints on the x4 and x5 derivatives of Aα on adjacent sides of the square.

For Aµ, the full set of boundary conditions reads

Aµ(y, 0) = Aµ(0, y) ,

∂4Aµ|(x4,x5)=(y,0) = ∂5Aµ|(x4,x5)=(0,y) , (2.10)

∂5Aµ|(x4,x5)=(y,0) = −∂4Aµ|(x4,x5)=(0,y) ,

and analogous relations at (y, L) and (L, y). The conditions on the A4 and A5 components

of the gauge field are more conveniently expressed in terms of the fields A± = A4 ± iA5:

A±(y, 0) = ∓ iA±(0, y) ,

∂4A±|(x4,x5)=(y,0) = ∓ i ∂5A±|(x4,x5)=(0,y) , (2.11)

∂5A±|(x4,x5)=(y,0) = ± i ∂4A±|(x4,x5)=(0,y) .
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2.2 Kaluza-Klein decomposition

Without loss of generality, we may expand the fields Aµ, A± in terms of complete sets of

functions satisfying the boundary conditions (2.10) and (2.11). Using the complete sets of

functions satisfying these boundary conditions found in [4], we may write

Aµ(x
ν , x4, x5) =

1

L



A(0,0)
µ (xν) +

∑

j≥1

∑

k≥0

f
(j,k)
0 (x4, x5)A(j,k)

µ (xν)



 ,

A+(x
ν , x4, x5) = − 1

L

∑

j≥1

∑

k≥0

f
(j,k)
3 (x4, x5)A

(j,k)
+ (xν) ,

A−(x
ν , x4, x5) =

1

L

∑

j≥1

∑

k≥0

f
(j,k)
1 (x4, x5)A

(j,k)
− (xν) , (2.12)

where j and k are integers, A
(j,k)
µ and A

(j,k)
± are canonically normalized KK modes, and the

KK functions fn with n = 0, 1, 2, 3 are:

f
(j,k)
0,2 (x4, x5) =

1

1 + δj,0

[

cos

(

jx4 + kx5

R

)

± cos

(

kx4 − jx5

R

)]

,

f
(j,k)
1,3 (x4, x5) = i sin

(

jx4 + kx5

R

)

∓ sin

(

kx4 − jx5

R

)

. (2.13)

These satisfy the two-dimensional Klein-Gordon equation,

(

∂2
4 + ∂2

5 +M2
j,k

)

f (j,k)
n (x4, x5) = 0 , (2.14)

where

M2
j,k ≡ j2 + k2

R2
, (2.15)

with R = L/π, and are normalized so that

1

L2

∫ L

0
dx4

∫ L

0
dx5

[

f (j,k)
n (x4, x5)

]∗

f (j′,k′)
n (x4, x5) = δj,j′ δk,k′ . (2.16)

Note that f
(j,k)
1 = −f

(j,k)∗
3 , so that the explicit minus sign in the expansion of A+ shown in

Eq. (2.12) leads to A
(j,k)
− = A

(j,k)∗
+ . Derivatives along x4 or x5 acting on the KK functions

satisfy

∂±f
(j,k)
n (x4, x5) = irj,±kMj,kf

(j,k)
n∓1 (x

4, x5) , (2.17)

where

∂± = ∂4 ± i∂5 (2.18)

and rj,k are complex phases that depend only on the KK-numbers:

rj,k ≡ j + ik
√

j2 + k2
. (2.19)
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Before inserting the KK expansions (2.12) into the action (2.3), note that

∂4A5 − ∂5A4 =
1

L

∑

j≥1

∑

k≥0

Mj,k A
(j,k)
H (xν)f

(j,k)
0 (x4, x5) ,

∂4A4 + ∂5A5 =
1

L

∑

j≥1

∑

k≥0

Mj,k A
(j,k)
G (xν)f

(j,k)
0 (x4, x5) , (2.20)

where we defined at each KK level two real scalar fields, A
(j,k)
H and A

(j,k)
G , by

A
(j,k)
± = rj,±k

(

A
(j,k)
H ∓ iA

(j,k)
G

)

. (2.21)

The explicit factors of Mj,k in Eqs. (2.20) ensure that the scalars A
(j,k)
H and A

(j,k)
G are canon-

ically normalized. It is clear that A
(j,k)
H correspond to excitations which are invariant under

6D gauge transformations: Aα → Aα + ∂αχ/g6, where χ is a gauge parameter that, like Aµ

in Eq. (2.12), has an expansion in terms of f
(j,k)
0 . The orthogonal excitations, A

(j,k)
G , shift

under such a gauge transformation and correspond to the Nambu-Goldstone modes eaten by

the massive 4D fields, A
(j,k)
µ .

After integrating over x4 and x5, we find the 4D Lagrangian for the KK modes (one can

check that the last two terms in Eq. (2.3) give no contribution). The gauge boson of level

(0, 0) remains massless, while the gauge bosons of level (j, k) with j ≥ 1 appear as massive

vector particles in an Rξ gauge, with a Lagrangian

−1

4
F (j,k)
µν F (j,k)µν +

1

2
M2

j,k

(

A(j,k)
µ

)2
− 1

2ξ

(

∂µA(j,k)
µ

)2
, (2.22)

where F
(j,k)
µν = ∂µA

(j,k)
ν −∂νA

(j,k)
µ is the 4D field strength of level (j, k), and for the zero-mode

one just sets M0,0 = 0. At each (j, k) level with j ≥ 1 one finds that A
(j,k)
H and A

(j,k)
G , as

defined in Eqs. (2.20) and (2.21), are mass eigenstates in the gauge defined by Eq. (2.2), and

are described by the following terms in the 4D Lagrangian:

1

2

[

(

∂µA
(j,k)
H

)2
−M2

j,k

(

A
(j,k)
H

)2
+
(

∂µA
(j,k)
G

)2
− ξM2

j,k

(

A
(j,k)
G

)2
]

. (2.23)

One can explicitly check that the field equations (2.4), when expressed in terms of A
(j,k)
H

and A
(j,k)
G , are satisfied. In the unitary gauge, ξ → ∞, only the A

(j,k)
H (x) scalars propagate

with masses Mj,k, whereas the fields A
(j,k)
G (x) are the Nambu-Goldstone bosons eaten by the

A
(j,k)
µ (x) KK gauge bosons.

3. Non-Abelian gauge fields

The boundary conditions, KK decomposition, and identification of the physical states in the

case of non-Abelian gauge fields are analogous to the ones discussed in Section 2 for Abelian

fields. In this section we present the self-interactions of the KK modes associated with non-

Abelian gauge fields, and then we study the ghost fields required by gauge fixing.
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3.1 Self-Interactions

The kinetic term of a 6D non-Abelian gauge field, Aa
α, where a labels the generators of the

adjoint representation, is given by

−1

4
F a
αβF

aαβ = −1

4

(

F a
µνF

aµν − 2F a
+µF

aµ
−

)

+
1

8

(

F a
+−

)2
. (3.1)

The gauge field strengths introduced here are defined by

F a
µν = ∂µA

a
ν − ∂νA

a
µ + g6f

abcAb
µA

c
ν ,

F a
±µ = ∂±A

a
µ − ∂µA

a
± + g6f

abcAb
±A

c
µ = F a

4µ ± iF a
5µ ,

F a
+− = ∂+A

a
− − ∂−A

a
+ + g6f

abcAb
+A

c
− = −2iF a

45 , (3.2)

where fabc are the group structure constants.

The trilinear terms included in Eq. (3.1) are given by

−g6
4
fabc

{

4Aa µAb
ν ∂µA

c ν +
[

Aa
−A

b
+ ∂+A

c
− + 2Aa

−A
b µ
(

∂µA
c
+ − ∂+A

c
µ

)

+H.c.
]}

. (3.3)

Upon KK decomposition and integration over the x4 and x5 coordinates, these give rise in the

4D Lagrangian to trilinear interactions (proportional to the 4D gauge coupling, g4 = g6/L)

among spin-1 modes,

− g4f
abcδ

(j1k1)(j2k2)(j3k3)
0,0,0 A(j1,k1) a

µ A(j2,k2) b
ν ∂µA(j3,k3) c ν , (3.4)

as well as trilinear interactions involving one, two or three scalar gauge fields:

g4
2
fabcδ

(j1k1)(j2k2)(j3k3)
1,3,0 A

(j1,k1) a
−

[

−irj2,k2Mj2,k2A
(j2,k2) b
µ A(j3,k3) c µ −

(

∂µA
(j2,k2) b
+

)

A(j3,k3) c
µ

+
i

2
rj3,k3Mj3,k3A

(j2,k2) b
+ A

(j3,k3) c
−

]

+H.c. (3.5)

Here we used Eq. (2.17) to express the ∂± derivatives in terms of the KK masses.

We have introduced the following notation:

δ(j1,k1)...(jr,kr)n1,...,nr
≡ 1

L2

∫ L

0
dx4

∫ L

0
dx5 f (j1,k1)

n1
...f (jr,kr)

nr
. (3.6)

This integral was computed for r = 3 in Ref. [4], and the result in the particular cases relevant

for trilinear interactions read

δ
(j1,k1)(j2,k2)(j3,k3)
n,n,0 =

1

2 (1 + δj1,0) (1 + δj2,0) (1 + δj3,0)

[

7δj1,0δj2,0δj3,0 + δj1,j3−j2δk1,k3−k2

+ in (δj1,j3+k2δk1,k3−j2 + δj1,k2−k3δk1,j3−j2) + (−i)n (δj1,j3−k2δk1,j2+k3 + δj1,k3−k2δk1,j2−j3)

+ (−1)n (δj1,j2+j3δk1,k2+k3 + δj1,j2−j3δk1,k2−k3 + δj1,j2−k3δk1,j3+k2 + δj1,j2+k3δk1,k2−j3)
]

,

(3.7)
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where n ≡ −n mod 4, and we have used the fact that j = 0 implies k = 0.

The quartic terms included in Eq. (3.1),

−g26
4
fabcfade

(

Ab
µA

c
νA

dµAe ν − 2Ab
µA

c
+A

d µAe
− − 1

2
Ab

+A
c
−A

d
+A

e
−

)

, (3.8)

lead to the following quartic interactions of the KK modes:

− g24
4
fabcfade

[

δ
(j1,k1)···(j4,k4)
0,0,0,0 A(j1,k1) b

µ A(j2,k2) c
ν A(j3,k3) dµA(j4,k4) e ν

+2δ
(j1,k1)···(j4,k4)
3,1,0,0 A

(j1,k1) c
+ A

(j2,k2) e
− A(j3,k3) b

µ A(j4,k4) dµ

− 1

2
δ
(j1,k1)···(j4,k4)
3,1,3,1 A

(j1,k1) b
+ A

(j2,k2) c
− A

(j3,k3) d
+ A

(j4,k4) e
−

]

. (3.9)

Of particular interest for phenomenolgy are vertices involving at least a zero mode, and for

those one can use Eq. (3.7) because

δ
(j1,k1)(j2,k2)(j3,k3)(0,0)
n,n,0,0 = δ

(j1,k1)(j2,k2)(j3,k3)
n,n,0 . (3.10)

In order to extract the interactions of the physical states, the A
(j,k) a
± complex scalars

have to be replaced in Eqs. (3.5) and (3.9) by the two real scalar fields, A
(j,k)a
H and A

(j,k)a
G ,

as prescribed by Eq. (2.21). These heavy 4D scalars are in the adjoint representation of the

non-Abelian gauge group, so we will refer to them as “spinless adjoints”.

3.2 Ghost fields

For completeness we now turn to determining the ghost action associated with the gauge

fixing term given by the obvious adaptation of Eq. (2.2) to non-Abelian fields. This arises

from inserting in the path integral a factor

∫

Dχδ[G(A)]det

(

δG(Aχ)

δχ

)

= 1 , (3.11)

where χ is the gauge transformation parameter, Aχ is the transformed gauge field, and the

gauge fixing condition is

G(Aa) = ∂µAa
µ − ξ (∂4A

a
4 + ∂5A

a
5)− ωa , (3.12)

for arbitrary functions ωa. After integrating with a Gaussian weight over ωa one recovers

Eq. (2.2). Since

(Aa
α)

χ = Aa
α +

1

g6
Dαχ

a , (3.13)

with Dα the covariant derivative in the adjoint representation, we find

δG(Aχ)

δχ
=

1

g6
[∂µD

µ − ξ (∂4D4 + ∂5D5)] . (3.14)
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These terms in the Lagrangian may be taken into account by including a ghost term in the

6D action, given by

−c̄a [∂µD
µ − ξ (∂4D4 + ∂5D5)] c

a , (3.15)

where ca is an anti-commuting 6D scalar in the adjoint representation of the gauge group.

The above procedure did not take into account the compactification of the two extra

dimensions and the associated boundary conditions. The free part of the 6D ghost Lagrangian

(3.15) is

−c̄a
[

∂µ∂
µ − ξ

(

∂2
4 + ∂2

5

)]

ca , (3.16)

which up to the factor ξ is the same as for a scalar. It follows that the KK expansion for the

ghost fields can be written as

ca(xµ, x4, x5) =
1

L

∑

(j,k)

c(j,k) a(xµ)f (j,k)
nc

(x4, x5) , (3.17)

where the f
(j,k)
nc

belong to one of the sets of KK functions defined in Eqs. (2.13). The KK

modes c(j,k)a(xµ) have mass
√
ξMj,k. It would appear that nc can take any of the integral

values 0, 1, 2, 3. However, for nc = 1, 2, 3, the ghost fields lack the zero modes necessary

to ensure the gauge invariance of amplitudes involving the zero-mode gauge fields. More

generally, since Aµ(x
µ, x4, x5) satisfies boundary conditions with n = 0, the necessary relations

between the couplings involving only gauge fields and those involving ghosts and gauge fields

can be satisfied only if the ghosts satisfy the same boundary conditions as Aµ. Therefore,

only the value nc = 0 is allowed. The zero mode c(0,0) is the ghost required by 4D gauge

invariance.

After integrating by parts Eq. (3.15), the interactions between gauge bosons and ghost

fields are given by

g6f
abc(∂µc̄a)Ab

µc
c − 1

2
ξ g6f

abc
[

(∂+c̄
a)Ab

− + (∂−c̄
a)Ab

+

]

cc , (3.18)

where A± were defined before Eq. (2.11) and ∂± were defined in (2.18). It is worth pointing

out that the boundary conditions for ca given in Eq. (3.17), together with the boundary

conditions for A4, A5 discussed in section 2, ensure that one can freely integrate by parts

Eq. (3.18) without generating surface terms.

Using the KK expansions (3.17), as well as Eq. (2.20), Eq. (3.18) leads to KK interactions

between ghosts and gauge fields:

g4f
abcδ

(j1,k1)(j2,k2)(j3,k3)
0,0,0

(

∂µc̄(j1,k1) a
)

A(j2,k2) b
µ c(j3,k3) c , (3.19)

and between ghosts and the “spinless adjoints”:

− i

2
g4f

abcξrj1,k1Mj1,k1δ
(j1,k1)(j2,k2)(j3,k3)
3,1,0 c̄(j1,k1) aA

(j2,k2) b
− c(j3,k3) c +H.c. , (3.20)

where we used Eq. (2.17) to simplify the derivative, and A
(j,k)
± are given in terms of the mass

eigenstates A
(j,k)
H and A

(j,k)
G by Eq. (2.21).
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4. Gauge interactions of fermions

The 6D chiral fermions have four degrees of freedom, and the Dirac equation can be written

using a set of six anti-commuting matrices, Γα. We use here the following 8×8 representation:

Γµ = γµ ⊗ σ0 , Γ4,5 = iγ5 ⊗ σ1,2 (4.1)

where γµ, are the 4D γ-matrices, γ5 = iγ0γ1γ2γ3, σ0 is the 2 × 2 unit matrix and σi are

the Pauli matrices. The 6D fermions have + or − chirality, defined by the eigenvalue of

the Γ = −γ5 ⊗ σ3 chirality operator: ΓΨ± = ±Ψ±. A 6D chiral fermion includes both 4D

chiralities: γ5 ⊗ σ0Ψ±L
= −Ψ±L

and γ5 ⊗ σ0Ψ±R
= Ψ±R

.

It is useful to define

Γ± =
1

2

(

Γ4 ± iΓ5
)

, (4.2)

and to observe that

Γ4PLP± = ∓iΓ5PLP± ,

Γ4PRP± = ±iΓ5PRP± , (4.3)

where PL,R, P± project on the respective 4D and 6D chiralities, from which it follows that

Γ+Ψ+L
= Γ−Ψ+R

= Γ−Ψ−L
= Γ+Ψ−R

= 0 . (4.4)

The fermion kinetic term can then be written in terms of 4D chiral components as follows:

iΨ±Γ
αDαΨ± = i

(

Ψ±L
ΓµDµΨ±L

+Ψ±R
ΓµDµΨ±R

+Ψ±L
Γ±D∓Ψ±R

+Ψ±R
Γ∓D±Ψ±L

)

.

(4.5)

Here D± = D4 ± iD5 and Dα is the covariant derivative defined in Eq. (2.7) with either Aα

being an Abelian gauge field, or Aα = T aAa
α where Aa

α is a non-Abelian gauge field and T a

are the gauge group generators corresponding to the representation of Ψ±.

The KK expansions of a 6D fermion of + chirality with a left-handed zero mode compo-

nent are [4],

Ψ+L
=

1

L



Ψ
(0,0)
+L

(xν) +
∑

j≥1

∑

k≥0

f
(j,k)
0 (x4, x5)Ψ

(j,k)
+L

(xν)



⊗
(

1

0

)

,

Ψ+R
= − i

L

∑

j≥1

∑

k≥0

rj,k f
(j,k)
3 (x4, x5)Ψ

(j,k)
+R

(xν)⊗
(

0

1

)

, (4.6)

while those containing a right-handed zero mode are,

Ψ+L
=

i

L

∑

j≥1

∑

k≥0

r∗j,k f
(j,k)
1 (x4, x5)Ψ

(j,k)
+L

(xν)⊗
(

1

0

)

,

Ψ+R
=

1

L



Ψ
(0,0)
+R

(xν) +
∑

j≥1

∑

k≥0

f
(j,k)
0 (x4, x5)Ψ

(j,k)
+R

(xν)



 ⊗
(

0

1

)

. (4.7)
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The phases of the KK functions for left- and right-handed fermions are correlated, but one

can choose an overall phase such that the functions fn(x
4, x5) with n = 0, 1, 3 are given in

Eq. (2.13). For a fermion of − chirality, the same equations are valid except for an interchange

of the L and R indices.

After integrating the 6D fermion kinetic term shown in Eq. (4.5) over x4 and x5, the

4D Lagrangian includes the usual kinetic terms for all KK modes, mass terms of the type

Mj,kΨ
(j,k)
±L

Ψ
(j,k)
±R

+ H.c., and interactions among KK modes. The latter ones, in the case of

a fermion with + chirality having a left-handed zero mode, include interactions of the Ψ
(j,k)
+L

fermions with a spin-1 KK mode,

g4 δ
(j1,k1)(j2,k2)(j3,k3)
0,0,0 Ψ

(j1,k1)
+L A(j2,k2)

µ γµΨ
(j3,k3)
+L , (4.8)

interactions of the Ψ
(j,k)
+R fermions with a spin-1 KK mode,

− g4 δ
(j1,k1)(j2,k2)(j3,k3)
1,0,3 r∗j1,k1rj3,k3Ψ

(j1,k1)
+R A(j2,k2)

µ γµΨ
(j3,k3)
+R , (4.9)

and gauge interactions of the fermions with the spinless adjoints,

− ig4 δ
(j1,k1)(j2,k2)(j3,k3)
0,1,3 r∗j2,k2rj3,k3 Ψ

(j1,k1)
+L

(

A
(j2,k2)
H + iA

(j2,k2)
G

)

Ψ
(j3,k3)
+R +H.c. (4.10)

The δ
(j1k1)(j2,k2)(j3k3)
n,n,0 coefficients with n+ n = 0 are given in Eq. (3.7), the complex numbers

rj,k are given in Eq. (2.19), and g4 = g6/L is the 4D gauge coupling.

In the case of a fermion with + chirality having a right-handed zero mode, the spin-1 KK

modes have interactions with Ψ
(j,k)
+R given by

g4 δ
(j1,k1)(j2,k2)(j3,k3)
0,0,0 Ψ

(j1,k1)
+R A(j2,k2)

µ γµΨ
(j3,k3)
+R , (4.11)

and interactions with Ψ
(j,k)
+L given by

− g4δ
(j1,k1)(j2,k2)(j3,k3)
3,0,1 rj1,k1r

∗
j3,k3Ψ

(j1,k1)
+L A(j2,k2)

µ γµΨ
(j3,k3)
+L , (4.12)

while the gauge interactions of the spinless adjoints with the fermions are given by

− ig4 δ
(j1,k1)(j2,k2)(j3,k3)
0,3,1 rj2,k2r

∗
j3,k3 Ψ

(j1,k1)
+R

(

A
(j2,k2)
H − iA

(j2,k2)
G

)

Ψ
(j3,k3)
+L +H.c. (4.13)

A 6D fermion of − chirality has the same gauge interactions as Ψ+ except for an in-

terchange of the 4D chiralities. More explicitly, if Ψ−R has a zero mode, then the gauge

interactions of Ψ−R and Ψ−L are as in Eqs. (4.8)-(4.10) with an interchange of the L and

R indices. If Ψ−L has a zero mode, then Ψ−R and Ψ−L have gauge interactions given by

Eqs. (4.11)-(4.13) with L and R interchanged.
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5. Gauge interactions of scalars

Consider now a 6D scalar field Φ transforming under a certain nontrivial representation of a

gauge symmetry, with an action given by

SΦ =

∫

d4x

∫ L

0
dx4

∫ L

0
dx5

[

(DαΦ)
†DαΦ−M2

ΦΦ
†Φ− λ6

2

(

Φ†Φ
)2
]

, (5.1)

where λ6 is a parameter of mass dimension −2, and Dα is the covariant derivative associated

with a gauge field Aa
α, as in Eq. (2.7). As in the previous section, we use the short-hand nota-

tion Aα = T aAa
α where T a are the gauge group generators corresponding to the representation

of Φ.

The KK decomposition of the scalar has been derived in [4]:

Φ(xµ, x4, x5) =
1

L

∑

(j,k)

Φ(j,k)(xµ)f (j,k)
n (x4, x5) , (5.2)

with n = 0, 1, 2, or 3. The scalar KK modes Φ(j,k) have masses

M
(j,k)
Φ =

√

M2
Φ +M2

j,k , (5.3)

where Mj,k are the KK masses given in Eq. (2.15).

Using the KK decomposition of gauge fields given in Eq. (2.12), and integrating over the

extra dimensional coordinates, we find that the 4D Lagrangian includes interactions of two

KK scalars with one spin-1 KK field,

ig4δ
(j1,k1)(j2,k2)(j3,k3)
n,0,n Φ(j1,k1)†A(j2,k2)

µ ∂µΦ(j3,k3) +H.c. , (5.4)

as well as interactions of two KK scalars with two spin-1 KK fields,

g24δ
(j1,k1)...(j4,k4)
n,0,0,n Φ(j1,k1)†A(j2,k2)

µ A(j3,k3)µΦ(j4,k4) . (5.5)

In particular, the interactions of the A
(0,0)
µ fields are dictated by 4D gauge invariance.

The 4D Lagrangian also includes interactions of two Φ(j,k) scalars with one of the A
(j,k)
H

and A
(j,k)
G spinless adjoints,

g4
2
Mj3,k3Φ

(j1,k1)†

[

(

δ
(j1,k1)(j2,k2)(j3,k3)
n,1,n−1 r∗j2,k2 rj3,k3 − δ

(j1,k1)(j2,k2)(j3,k3)
n,3,n+1 rj2,k2 r

∗
j3,k3

)

A
(j2,k2)
H (5.6)

+ i
(

δ
(j1,k1)(j2,k2)(j3,k3)
n,3,n+1 rj2,k2 r

∗
j3,k3 + δ

(j1,k1)(j2,k2)(j3,k3)
n,1,n−1 r∗j2,k2 rj3,k3

)

A
(j2,k2)
G

]

Φ(j3,k3) +H.c. ,

[here we replaced the derivatives using Eq. (2.17)], interactions of two Φ(j,k) scalars with two

of the spinless adjoints,

g24rj2,k2r
∗
j3,k3δ

(j1,k1)···(j4,k4)
n,3,1,n Φ(j1,k1)†

(

A
(j2,k2)
H − iA

(j2,k2)
G

)(

A
(j3,k3)
H + iA

(j3,k3)
G

)

Φ(j4,k4) , (5.7)

and, finally, self-interactions of the Φ(j,k) scalars

−λ4

2
δ
(j1,k1)...(j4,k4)
n,n,n,n Φ(j1,k1)†Φ(j2,k2)Φ(j3,k3)†Φ(j4,k4) , (5.8)

where λ4 = λ6/L
2 is the 4D quartic coupling.
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6. Spontaneous symmetry breaking

We now discuss the case where the gauge symmetry is broken by the VEV of a 6D scalar Φ.

The action is given in Eq. (5.1), with M2
Φ < 0. By adding an irrelevant constant, the terms

in the 6D Lagrangian that include Φ can be rewritten as

LΦ = |DαΦ|2 −
λ6

2

(

Φ†Φ− 1

2
v26

)2

, (6.1)

where v6 > 0 is the 6D VEV, which has mass dimension two and is defined by the relation

−M2
Φ =

1

2
λ6v

2
6 . (6.2)

Let us focus on the case where the gauge group is SU(N) and the scalar Φ is in the

fundamental representation of the gauge group. The formulae we derive below also apply

(with trivial modifications) to SO(N) or U(1) gauge groups. In order to analyze the spectrum

and interactions in the presence of the 6D VEV, we parameterize Φ as

Φ =
1√
2
(v6 + h)UηΦ̂0 , (6.3)

where Φ̂0 = (0, . . . , 0, 1) defines the direction of the VEV, h is the single 6D real scalar that

is orthogonal to the Nambu-Goldstone modes, and Uη is an unitary matrix that depends on

the 6D Nambu-Goldstone bosons, ηa:

Uη = eiη/v6 , (6.4)

where η = ηaXa, with Xa the broken generators. The sum over a includes the 2N − 1

generators of the coset SU(N)/SU(N −1). In terms of h and η, the Lagrangian (6.1) is given

by

LΦ =
1

2
(∂αh)

2 − λ6

8
h2 (2v6 + h)2 +

1

2
(v6 + h)2 Φ̂†

0

∣

∣

∣
U †
η∂αUη − ig6U

†
ηAαUη

∣

∣

∣

2
Φ̂0 . (6.5)

where Aα = Aa
αT

a, with a running over all group generators T a.

6.1 Physical states

Expanding Uη in powers of η, we find the terms in LΦ that are quadratic in η or Aα:

1

2
v26 Φ̂

†
0

(

1

v6
∂αη − g6Aα

)2

Φ̂0 . (6.6)

After integration by parts, these become

1

2
Φ̂†
0

[

(∂αη)
2 + g6v6 {η, ∂αAα}+ g26v

2
6AαA

α
]

Φ̂0 , (6.7)
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where {..., ...} is the anticommutator. We see that ηa mixes with the broken components of

both Aa
µ and ∂4A

a
4 + ∂5A

a
5, where the latter includes the KK modes A

(j,k) a
G that are eaten by

the spin-1 modes in the limit of zero VEV [see Eq. (2.20)]. In order to make the physics more

transparent, we modify the gauge fixing term (2.2) to

Lv
GF = − 1

2ξ

[

∂µA
µa − ξ (∂4A

a
4 + ∂5A

a
5) + ξg6v6η

a
]2

, (6.8)

where it is understood that ηa is non-vanishing only along the direction of the broken gen-

erators. The terms involving the unbroken components of Aa
µ remain as in Eq. (2.2). Since

Φ̂†
0 {η, ∂αAα} Φ̂0 = 2ηa∂αA

αa, where a runs over the broken generators, the crossed terms in

Eq. (6.8) involving ηa and Aa
µ cancel the corresponding terms in (6.7). The remaining terms

in Eqs. (6.7) and (6.8), involving η, A4 and A5, are then

1

2
Φ̂†
0

[

(∂αη)
2 − g26v

2
6A+A− − ξ g26v

2
6η

2 + g6v6(ξ − 1){η, ∂4A4 + ∂5A5}
]

Φ̂0 , (6.9)

together with the second line in Eq. (2.3). Here we used Aa
αA

αa = Aa
µA

µ a − Aa
+A

a
−, where

Aa
± = A4 ± iA5.

We turn next to the KK decomposition. This is achieved by using the KK expansions

for Aa
µ and Aa

±, Eqs. (2.12), supplemented by

h(xµ, x4, x5) =
1

L

∑

(j,k)

h(j,k)(xµ)f
(j,k)
0 (x4, x5) ,

ηa(xµ, x4, x5) =
1

L

∑

(j,k)

η(j,k)a(xµ)f
(j,k)
0 (x4, x5) . (6.10)

In assuming a constant VEV for Φ we have implicitly imposed that it satisfy boundary

conditions with n = 0, a fact we used in Eqs. (6.10).

Using Eqs. (2.20) as well as the orthogonality of the KK functions f
(j,k)
n , it is now straight-

forward to obtain the new terms in the KK action. One finds new mass contributions propor-

tional to the VEV for the broken components of A
(j,k)a
µ and A

(j,k)a
H modes, where the latter

ones are defined in Eq. (2.21):

−1

2
g24v

2
4 Φ̂

†
0

(

A(j,k)
µ A(j,k)µ +A

(j,k)
H A

(j,k)
H

)

Φ̂0 . (6.11)

These, together with the mass contributions due to momentum in extra dimensions, shown

in Eqs. (2.22) and (2.23), lead to masses for these modes given by

M
(j,k)
A =

√

M2
j,k + g24v

2
4 , (6.12)

with Mj,k defined by Eq. (2.15). We chose to express these results in terms of the 4D gauge

coupling, g4 = g6/L, and the 4D VEV, v4 = v6L, with mass dimension one. Also, from

Eq. (6.5), the masses of the h(j,k) real scalars are given by

M
(j,k)
h =

√

M2
j,k + λ4v24 , (6.13)
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where λ4 = λ6/L
2 is the 4D quartic coupling.

Finally, the mass terms involving η(j,k) and A
(j,k)
G [see Eqs. (6.9) and (2.23)] mix these

modes, such that, for the components along the broken generators, the physical states are

given by the linear combinations

Ã
(j,k) a
G =

1

M
(j,k)
A

(

Mj,kA
(j,k)a
G + g4v4 η

(j,k) a
)

,

η̃(j,k) a =
1

M
(j,k)
A

(

Mj,kη
(j,k)a − g4v4A

(j,k) a
G

)

, (6.14)

for j > 0 and k ≥ 0, while for j = k = 0 we define

Ã
(0,0) a
G = η(0,0) a . (6.15)

This latter mode is eaten by the would-be zero-mode of the gauge KK tower. The free

Lagrangian terms for these states are

1

2
Φ̂†
0

[

(

∂µη̃
(j,k)

)2
−
(

M
(j,k)
A η̃(j,k)

)2
+
(

∂µÃ
(j,k)
G

)2
− ξM2

(j,k)

(

Ã
(j,k)
G

)2
]

Φ̂0 , (6.16)

while for the unbroken components it is given by

1

2

[

(

∂µA
(j,k)a
G

)2
− ξM2

j,k

(

A
(j,k) a
G

)2
]

. (6.17)

Note that under an infinitesimal 6D gauge transformation

Aa
α 7→ Aa

α +
1

g6
∂αχ

a + · · · , ηa 7→ ηa + v6χ
a + · · · , (6.18)

one has ∂4A
a
4 + ∂5A

a
5 7→ ∂4A

a
4 + ∂5A

a
5 + (∂2

4 + ∂2
5)χ

a/g6 + · · ·, which after KK expansion,

Eq. (2.20), translates at the linear level into

A
(j,k)
G 7→ A

(j,k)
G +

1

g4
Mj,kχ

(j,k) + · · · , η(j,k) 7→ η(j,k) + v4χ
(j,k) + · · · . (6.19)

In the above, the dimensionless gauge transformation parameter, χ, has an expansion

χ(xµ, x4, x5) =
∑

(j,k)

χ(j,k)(xµ)f
(j,k)
0 (x4, x5) , (6.20)

and the . . . stand for higher order terms that, in general, mix the KK levels. It is then

clear that the inhomogeneus piece of the gauge transformation drops from η̃(j,k)a, while

the orthogonal combination, Ã
(j,k)a
G , shifts under the gauge transformation. Ã

(j,k)
G is the

generalization of the would-be Nambu-Goldstone boson of sections 2 and 3 to the case where

the gauge symmetry is broken by a constant scalar VEV. Note that in the unitary gauge,

ξ → ∞, each KK level gauge boson eats a linear combination of A4, A5 and η.
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As a result of the modification arising from v6 in the gauge fixing term, Eq. (6.8), the

ghost Lagrangian, Eq. (3.15), receives a new contribution

−ξg26v
2
6 c̄

aca , (6.21)

where a runs over the broken components only. Hence, in the presence of the Higgs VEV, the

KK masses associated with the broken components of the ghost fields are
√
ξM

(j,k)
A , where

M
(j,k)
A was defined in Eq. (6.12), while those associated with the unbroken ones remain at√
ξMj,k.

6.2 Trilinear and quartic couplings

The interactions among KK modes follow from the nonlinear terms in Eq. (6.5). These can

be derived by expanding Uη in a power series:

U †
η∂αUη = i∂αη̂ −

1

2
[∂αη̂, η̂]−

i

3!
[[∂αη̂, η̂] , η̂] + · · · ,

U †
ηAαUη = Aα + i [Aα, η̂]−

1

2
[[Aα, η̂] , η̂]−

i

3!
[[[Aα, η̂] , η̂] , η̂] + · · · , (6.22)

where [..., ...] is the commutator and η̂ = η/v6.

The interaction terms up to quadratic order in η and Aα that appear in the Lagrangian

LΦ are

−λ6

8

(

4v6h
3 + h4

)

+
1

2

(

2v6h+ h2
)

Φ̂†
0 (∂αη̂ − g6Aα)

2 Φ̂0 . (6.23)

Higher order terms in η and Aα include additional trilinear and quartic interactions involving

the h scalar,

i

2
v6 (v6 + 2h) Φ̂†

0

{

1

2
{∂αη̂, [∂αη̂, η̂]}+ g6 [η̂ (∂αη̂)A

α − (∂αη̂)A
αη̂]

}

Φ̂0 , (6.24)

interactions of three η fields with an Aα,

g6
2
v26 Φ̂

†
0

[

(∂αη̂) [A
α, η̂] η̂ − η̂ [Aα, η̂] ∂αη̂ + η̂(∂αη̂) [η̂, A

α]− [η̂, Aα] (∂αη̂) η̂

]

Φ̂0 , (6.25)

quartic interactions among the η fields,

−1

2
v26 Φ̂

†
0

{

1

3!

(

(∂αη̂) [[∂αη̂, η̂] , η̂] + H.c.
)

+
1

4
[∂αη̂, η̂]

2

}

Φ̂0 , (6.26)

and interactions involving five or more fields.

Replacing the KK expansions, Eq. (6.23) leads to trilinear interactions involving the

spin-1 modes

v4 δ
(j1,k1)(j2,k2)(j3,k3)
0,0,0 h(j1,k1)Φ̂†

0

(

1

v4
∂µη

(j2,k2) − g4A
(j2,k2)
µ

)(

1

v4
∂µη(j3,k3) − g4A

(j3,k3)µ

)

Φ̂0 .

(6.27)
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Additional trilinear couplings of a spin-1 mode, coming from Eq. (6.24), are given by

i

2
g4 δ

(j1,k1)(j2,k2)(j3,k3)
0,0,0 Φ̂†

0

[

η(j1,k1)
(

∂µη(j2,k2)
)

A(j3,k3)
µ −

(

∂µη(j1,k1)
)

A(j2,k2)
µ η(j3,k3)

]

Φ̂0 ,

(6.28)

In the above two equations, one should express η(j,k) in terms of the mass eigenstates η̃(j,k)

and Ã
(j,k)
G by inverting Eqs. (6.14):

η(j,k) a =
1

M
(j,k)
A

(

Mj,kη̃
(j,k)a + g4v4Ã

(j,k)a
G

)

, (6.29)

except for the zero-mode, which is given by Eq. (6.15). There are also trilinear interactions

among scalars which include at least one h(j,k) field and no derivatives:

v4 h
(j1,k1)

{

− 1

2
λ4 δ

(j1,k1)(j2,k2)(j3,k3)
0,0,0 h(j2,k2)h(j3,k3) + rj2,k2r

∗
j3,k3δ

(j1,k1)(j2,k2)(j3,k3)
0,3,1

× Φ̂†
0

(

g4A
(j2,k2)
H + iωj2,k2 η̃

(j2,k2)
)(

g4A
(j3,k3)
H − iωj3,k3 η̃

(j3,k3)
)

Φ̂0

}

, (6.30)

where we defined the KK-number-dependent, dimensionless ratios

ωj,k =
M

(j,k)
A

v4
. (6.31)

The remaining trilinear couplings involve only η̃(j,k), A
(j,k)
H and A

(j,k)
G scalars, and can be

derived from Eq. (6.24).

The quartic interactions include terms involving h(j,k) and the spin-1 fields,

1

2
δ
(j1,k1)···(j4,k4)
0,0,0,0 h(j1,k1)h(j2,k2)Φ̂†

0

(

1

v4
∂µη

(j3,k3) − g4A
(j3,k3)
µ

)(

1

v4
∂µη(j4,k4) − g4A

(j4,k4)µ

)

Φ̂0 ,

(6.32)

as well as the spinless fields h(j,k), A
(j,k)
H and η̃(j,k):

h(j1,k1)h(j2,k2)
{

− 1

8
λ4 δ

(j1,k1)···(j4,k4)
0,0,0,0 h(j3,k3)h(j4,k4) + rj3,k3r

∗
j4,k4δ

(j1,k1)···(j4,k4)
0,0,3,1

× Φ̂†
0

(

g4A
(j3,k3)
H + iωj3,k3 η̃

(j3,k3)
)(

g4A
(j4,k4)
H − iωj4,k4 η̃

(j4,k4)
)

Φ̂0

}

. (6.33)

The higher order terms in Eqs. (6.24), (6.25) and (6.26) lead to additional quartic couplings

among KK modes, which include at most a single 4D spin-1 field. These couplings are

straightforward to derive but have long expressions so that we do not display all of them

here.

We end this section by observing that the Abelian case can be recovered from the previous

formulae by setting Φ̂0 = 1, and considering a single gauge index a.
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7. Conclusions

Gauge theories in six dimensions may be relevant for physics beyond the Standard Model

provided the size of two dimensions is below 10−16 cm. Theories of this type have been

proposed in the past, with compactification scales ranging from the electroweak scale to the

GUT scale. This paper presents the first in-depth study of the gauge interactions among KK

modes. We have concentrated on the simplest compactification of two dimensions that leads

to zero mode fermions of definite 4D chirality, namely the “chiral square” defined in Ref. [4].

After identifying a gauge fixing procedure appropriate for this compactification, we have

determined a set of gauge invariant boundary conditions for gauge fields. The ensuing KK

decomposition of a 6D gauge field Aα, α = 0, 1, . . . , 5, includes a tower of spin-1 modes,

A
(j,k)
µ , that have a zero mode (j = k = 0), and two towers of spin-0 modes that have no zero

mode, A
(j,k)
4 and A

(j,k)
5 , where the pair of KK numbers (j, k) take the integer values j ≥ 1,

k ≥ 0. The spin-1 zero mode is associated with the unbroken 4D gauge invariance, while

the other spin-1 modes become heavy. Each nonzero spin-1 mode, A
(j,k)
µ , has a longitudinal

polarization given by a linear combination of A
(j,k)
4 and A

(j,k)
5 . The linear combination A

(j,k)
G

of spin-0 modes that play the role of Nambu-Goldstone boson eaten by the heavy spin-1

mode depends on the KK numbers, as shown in Eq. (2.21). The orthogonal combination,

A
(j,k)
H , is gauge invariant and remains as an additional physical degree of freedom. Therefore,

unlike the case of one extra dimension, where the extra components of the gauge field can

be gauged away, any gauge field in two extra dimensions implies the existence of a tower of

heavy spinless particles in the adjoint representation of the gauge group (“spinless adjoints”),

whose interactions depend on the KK numbers.

The self-interactions of 6D non-Abelian gauge fields induce the following terms in the

4D Lagrangian involving KK modes: trilinear couplings of spin-1 modes, given in Eq. (3.4);

couplings of two spin-1 modes and one spin-0 mode, and couplings of three spin-0 modes,

given in Eq. (3.5); quartic couplings of spin-1 modes, couplings of two spin-1 modes and

two spin-0 modes, and quartic couplings of spin-0 modes, given in Eq. (3.9); and finally,

couplings of one spin-1 mode, or one spinless adjoints, and two modes of the ghost field, given

in Eqs. (3.19) and (3.20), respectively.

The gauge interactions of a chiral 6D fermion induce couplings of a gauge field mode to

fermion modes of both 4D chiralities. These depend on the 4D chirality of the zero-mode

fermion. The spin-1 modes couple to fermion modes according to Eqs. (4.8), (4.9), (4.11), and

(4.12), while the Yukawa couplings of the spinless adjoints to the fermion modes are given in

Eqs. (4.10) and (4.13).

The gauge interactions of a 6D scalar field induce couplings of two scalar modes to one or

two spin-1 modes, given in Eq. (5.4) and (5.5), and also to one or two spinless adjoints, given

in Eqs. (5.6) and (5.7). A 6D quartic self-interaction of a scalar induces quartic couplings of

the scalar modes, as in Eq. (5.8).

We have also studied the case where the gauge symmetry is broken by a the VEV of a

6D scalar that has a zero mode. In this case, all gauge KK modes receive a contribution to
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their mass from the spontaneous breaking. The longitudinal polarizations of the heavy KK

modes are now given by a linear combination of A4, A5 and the scalar that acquires the VEV,

as shown in Eq. (6.14). The longitudinal polarization of the would-be zero-mode gauge field

is provided by the zero-mode of the additional spinless adjoint, as given in Eq. (6.15). We

showed how the longitudinal modes and additional scalars can be identified by studying the

transformation properties under 6D gauge transformations. We displayed the interactions of

these scalars with the spin-1 modes and among themselves in Eqs. (6.27)-(6.33).

All the couplings among various KK modes mentioned above are induced at tree level by

bulk interactions. Loop corrections generate operators localized at the three conical singu-

larities of the chiral square. Even though these preserve KK parity, they lead to additional

couplings among KK modes. These are perturbative corrections, but nevertheless may have

important phenomenological consequences as they give rise to mixing among all KK modes

belonging to the same tower. This effect is studied in a subsequent paper [14].

The detailed construction of 6D gauge theories with explicit boundary conditions pre-

sented here opens up various theoretical and model building avenues of research, including

issues pertaining to symmetry breaking by boundary conditions [15], relation to other com-

pactifications [16], the structure of gauge and gravitational anomalies on a compact space

[17], and latticized or deconstructed [18] versions of the chiral square compactification.

Given the constraints on the compactification scale of universal extra dimensions from

electroweak measurements [19], flavor-changing processes [20] or collider searches [11, 21], are

as low as a few hundred GeV, it would be particularly interesting to use the tools developed

here for analyzing the phenomenological implications of the Standard Model in two universal

extra dimensions compactified on the chiral square. That model is well motivated by the

natural happenstances of proton stability, constraint on the number of fermion generations,

and existence of a dark matter candidate. More generally, the spectra and interactions derived

here are relevant for any extensions of the Standard Model in the context of 6D theories.
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