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Motivated by string constructions, we consider a variant on the Type II see-saw mechanism
involving the exchange of triplet representations of SU(2)L in which this group arises from a diagonal
embedding into SU(2)A ×SU(2)B . A natural assignment of Standard Model lepton doublets to the
two underlying gauge groups results in a bimaximal pattern of neutrino mixings and an inverted
hierarchy in masses. Simple perturbations around this leading-order structure can accommodate
the observed pattern of neutrino masses and mixings.
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Introduction

Observations by a variety of experimental collabora-
tions have now firmly established the hypothesis that
neutrino oscillations occur and that they are the re-
sult of non-vanishing neutrino masses and mixing an-
gles [1, 2, 3]. While our knowledge of neutrino mass-
differences and mixings has continued to improve over
recent years, there continues to be as yet no consensus
on the correct mechanism for generating the quite small
neutrino masses implied by the experimental data. In
some respects this is similar to the case of quark masses
and mixings: despite having access to even more of the
relevant experimental data for an even longer period of
time, no compelling model of the hierarchies of masses
and mixings in the quark sector has emerged either. But
most theoretical effort in the area of neutrinos goes be-
yond the simple Dirac-mass Yukawa operator by intro-
ducing new structures in the superpotential to account
for neutrino masses, such as the see-saw mechanism (in
one of its various forms, to be defined more precisely be-
low).1 Thus neutrinos are likely to be very special in the
Standard Model – and its supersymmetric extensions –
and may thereby provide a unique window into high-scale
theories that the quark sector fails to illuminate.

It has thus far been mostly in vain that we might look
to string theory for some guidance in how to approach
the issue of flavor. In part this is because of the vast
number of possible vacua in any particular construction,
each with its own set of fields and superpotential cou-
plings between them. On the other hand the problem
of generating small neutrino masses may be one of the
most powerful discriminants in finding realistic construc-
tions. This was one of the conclusions of a recently com-
pleted survey [9] of a large class of explicit orbifold com-
pactifications of the heterotic string for the standard (or
“Type I”) see-saw in its minimal form. The fact that
no such viable mechanism was found may suggest that
often-neglected alternatives to the standard see-saw may

1 For some recent reviews of theoretical models of neutrino masses
and mixings, see [4, 5, 6, 7, 8] and references therein.

have more theoretical motivation than considerations of
simplicity, elegance, or GUT structure would otherwise
indicate.
In this work we study the properties of a new construc-

tion of see-saw mechanisms that is motivated by known
string constructions. The mechanism is an example of the
Higgs triplet or “Type II” seesaw [10, 11, 12, 13, 14, 15],
but the stringy origin has important implications for the
mixings and mass hierarchy that distinguish it from con-
ventional “bottom-up” versions of the triplet model. Af-
ter outlining the model in a general way below we will
motivate its plausibility in string theory by considering
a particular Z3 × Z3 orbifold of the heterotic string [16],
where several of the properties needed for a fully realistic
model are manifest.

I. GENERAL FEATURES OF SU(2) TRIPLET

MODELS

Let us briefly review the form of the effective neutrino
mass matrix to establish our notation and to allow the
contrast between models involving triplets of SU(2)L and
those involving singlets to be more apparent. While mod-
els of neutrino masses can certainly be considered with-
out low-energy supersymmetry, our interest in effective
Lagrangians deriving from string theories which preserve
N = 1 supersymmetry leads us to couch our discussion
in a supersymmetric framework. Then the effective mass
operator involving only the light (left-handed) neutrinos
has mass dimension five. Once the Higgs fields acquire
vacuum expectation values (vevs) the effective neutrino
masses are given by

(mν)ij = (λν)ij
v22
M
, (1)

where v2 is the vev of the Higgs doublet H2 with hyper-
charge Y = +1/2. The 3 × 3 matrix of couplings λν is
necessarily symmetric in its generation indices i and j.
Such an operator can be induced through the exchange

of heavy singlet (right-handed) neutrinos NR – as in the
standard or “Type I” see-saw approach [17, 18, 19] –
or through the exchange of heavy triplet states T [10,
11, 12, 13, 14, 15], or both. In either case, the mass
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scale M is given by the scale at which lepton number
is broken (presumably the mass scale of the heavy state
being exchanged). In the presence of both contributions
to the light neutrino masses we have the general mass
matrix

L =
1

2

(
νL N

c

L

)(
mT mD

m
T
D mS

)(
νcR
NR

)
+ h.c. . (2)

Each of the four quantities in (2) are understood to be
3 × 3 matrices in flavor space. That is, we imagine a
model with one species of lepton doublet L (with three
generations) and, if present, one species of right-handed
neutrino field (with three generations).
We will use the name “triplet models” to refer to any

model which uses electroweak triplet states alone to gen-
erate neutrino masses. That is, such a model dispenses
with right-handed neutrinos altogether, and the effective
neutrino mass in (1) is then simply identified with the
entry mT in (2). A supersymmetric extension of the
MSSM capable of giving small effective masses to left-
handed neutrinos would involve two new sets of fields Ti
and T i which transform as triplets under SU(2)L and
have hypercharge assignments YT = +1 and YT = −1,
respectively [14, 15]. For the time being we will consider
just one pair of such fields, which couple to the Standard
Model through the superpotential

Wν = (λT )ijLiTLj + λ1H1TH1 + λ2H2TH2

+MTTT + µH1H2, (3)

where the SU(2) indices on the doublets and triplet have
been suppressed. Strictly speaking, the coupling λ1 is
not necessary to generate the required neutrino masses,
but given the Standard Model charge assignments of the
fields T and T there is no a priori reason to exclude this
coupling. The mass scale M in (1) is to be identified
with MT in this case, and the matrix λT is symmetric in
its generation indices. From the Lagrangian determined
by (3), it is clear that should the auxiliary fields of the
chiral supermultiplets for the triplets vanish in the vac-

uum
〈
FT

〉
=

〈
FT

〉
= 0, and we assume no vevs for the

left-handed sneutrino fields, then there is a simple solu-
tion for the vevs of the neutral components of the triplet
fields

〈T 〉 = −λ2 〈H2〉2
MT

;
〈
T
〉
= −λ1 〈H1〉2

MT

, (4)

implying mν = λT 〈T 〉.
Recent models of the Type II variety [4, 5, 6, 7, 8]

would typically retain the right-handed neutrinos and
utilize all the components in the mass matrix of (2) to
explain the neutrino masses and mixings. These exam-
ples are often inspired by SO(10) GUT considerations or
are couched in terms of left-right symmetry more gener-
ally. The latter commonly employ additional Higgs fields
transforming as (1,3) under SU(2)L × SU(2)R, which

acquire vevs to break the gauge group to the Standard
Model.
Instead we imagine a process by which the SU(2) of

the Standard Model emerges as the result of a breaking
to a diagonal subgroup SU(2)A × SU(2)B → SU(2)L
at a very high energy scale. Furthermore, while we will
employ two conjugate triplet representations which form
a vector-like pair under the Standard Model gauge group
with Y = ±1, we do not seek to embed this structure
into a left-right symmetric model.

II. DIAGONAL EMBEDDING OF SU(2)L

In attempting to embed the framework of the previ-
ous section in a model of the weakly coupled heterotic
string we immediately encounter an obstacle: the sim-
plest string constructions contain in their massless spec-
tra only chiral superfields which transform as funda-
mentals or (anti-fundamentals) of the non-Abelian gauge
groups of the low-energy theory. Scalars transforming as
triplets of SU(2) simply do not exist for such affine level
one constructions [20, 21]. Indeed, scalars transforming
in the adjoint representation appear only at affine level
two, while representations such as the 120 and 210 of
SO(10) appear only at affine level four - and the 126 of
SO(10), which contains triplets of the Standard Model
SU(2)L, has been shown to never appear in free-field het-
erotic string constructions [22].
Directly constructing four-dimensional string compact-

ifications yielding higher affine-level gauge groups has
proven to be a difficult task. But a group factor G can be
effectively realized at affine level k = n by simply requir-
ing it to be the result of a breaking of G1×G2×· · ·×Gn to
the overall diagonal subgroup. In fact, these two ways of
understanding higher affine levels – picking a particular
set of GSO projections in the underlying string construc-
tion and the low energy field theory picture of breaking
to a diagonal subgroup – are equivalent pictures [22].
With this as motivation, let us consider an appropriate
variation on the superpotential of (3). The breaking of
the gauge group SU(2)A × SU(2)B to the diagonal sub-
group, which we identify as SU(2)L, can occur through
the vacuum expectation value of a field in the bifunda-
mental representation of the underlying product group
via an appropriately arranged scalar potential. For the
purposes of our discussion here we will need only assume
that this breaking takes place at a sufficiently high scale,
say just below the string compactification scale. As such
ideas for product group breaking have been considered in
the past [23], we will not concern ourselves further with
this step.
Any additional bifundamental representations will de-

compose into triplet and singlet representations under
the surviving SU(2)L. Gauge invariance of the under-
lying SU(2)A × SU(2)B theory then requires that the
neutrino-mass generating superpotential coupling involv-
ing lepton doublets and our SU(2) triplet now be given
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by

Wν = (λT )ijLiTL
′
j, (5)

where the field T is the SU(2)L triplet representation and
L and L′ are two different species of doublets under the
SU(2)L subgroup. That is, we denote by L fields which
have representation (2, 1) and by L′ fields which have rep-
resentation (1,2) under the original SU(2)A × SU(2)B
gauge theory. These two sets of lepton doublets, each
of which may carry a generation index as determined
by the string construction, arise from different sectors of
the string Hilbert space. Once the gauge group is bro-
ken to the diagonal subgroup this distinction between the
species is lost except for the pattern of couplings repre-

sented by the matrix λT . The indices i and j carried by
the lepton doublets represent internal degeneracies aris-
ing from the specific construction. It is natural to identify
these indices with the flavor of the charged lepton (up to
mixing effects, which we assume to be small).
In a minimal model, with only three lepton dou-

blets charged under the Standard Model SU(2)L, we are
obliged to separate the generations, with two arising from
one sector of the theory and one from the other. The
precise form of the effective neutrino mass matrix will
depend on this model-dependent identification, but one
property is immediately clear: the effective neutrino mass

matrix will necessarily be off-diagonal in the charged lep-

ton flavor-basis.

We will restrict our study to the case of one triplet state
with supersymmetric mass MT as in (3). If we separate
the doublet containing the electron from the other two,
by defining Li = Le = (2, 1) and L′

j = Lµ, Lτ = (1,2)
under SU(2)A × SU(2)B, then the matrix of couplings
λT is (to leading order)

λT = λ0




0 a b
a 0 0
b 0 0


 . (6)

It is natural to assume that the overall coefficient λ0
in (6) is of order unity. In fact if we now return to a
string theory context, particularly that of the heterotic
string with orbifold compactification, then the fact that
the two generations of L′

j in (5) arise from the same sector
of the string Hilbert space (i.e., the same fixed point lo-
cation under the orbifold action) suggests that we should
identify the coupling strengths: a = b.
Neutrino mass matrices based on the texture in (6)

with a = b are not new to this work, but were in fact
considered not long ago as a starting point for the bimax-
imal mixing scenario [24, 25, 26, 27]. In fact, the form
of (6) can be derived from a bottom-up point of view by
first postulating a new symmetry based on the modified
lepton number combination Le−Lµ−Lτ [28, 29]. Indeed,
the operator in (5) with the identification of L = Le and
L′ = Lµ, Lτ does indeed conserve this quantum num-
ber. However, in the string-theory motivated (top down)
approach this conserved quantity arises as an accidental

symmetry pertaining to the underlying geometry of the
string compactification. It reflects the different geometri-
cal location of the fields (in terms of orbifold fixed points)
of the electron doublet from the muon and tau doublets.
To make contact with data it is necessary to consider

the Yukawa interactions of the charged leptons as well.
To that end, our string-inspired model should have a su-
perpotential of the form

W = λTLTL
′ + λ1H1TH

′
1 + λ2H2TH

′
2

+λ3S3TT + λ4S4H1H2 + λ5S5H
′
1H

′
2

+λ̂4Ŝ4H1H
′
2 + λ̂5Ŝ5H

′
1H2

+λ6S6LH1 + λ7S7L
′H ′

1

+λ̂6Ŝ6LH
′
1 + λ̂7Ŝ7L

′H1, (7)

where generation indices have been suppressed. The
terms proportional to the couplings λ1 and λ2 in (3)
must now be modified to reflect the fact that the Higgs
doublets must also come from two different species.
These are denoted in the same manner as the lepton
doublets: H1,2 for (2, 1) representations and H ′

1,2 for
(1,2) representations. The second line in (7) are the
dynamically-generated supersymmetric mass terms, with
λ3 〈S3〉 ≡ MT . The fields S3, S4 and S5 are singlets un-

der SU(2)A×SU(2)B with hypercharge Y = 0, while Ŝ4

and Ŝ5 are SU(2)L singlets with Y = 0 transforming as
(2,2) under SU(2)A × SU(2)B. We anticipate a large

vev for S3. The fields S4, S5, Ŝ4, and Ŝ5 may acquire
TeV scale vevs from supersymmetry breaking, leading to
generalized µ terms2, or some could have vevs near the
string scale (or at an intermediate scale), projecting some
of the Higgs states out of the low energy theory. From
the point of view of both SU(2)L as well as the underly-
ing SU(2)A × SU(2)B it is not necessary that S4 and S5

be distinct fields; there may be string selection rules for-
bidding their identification in an explicit construction,

however. Similar statements apply to Ŝ4 and Ŝ5. Of
course, some of these fields could be absent.
The final line of (7) represents the Dirac mass couplings

of the left-handed leptons with their right-handed coun-
terparts. Again, the fields S6 and S7, both singlets under
SU(2)A × SU(2)B, carrying only hypercharge Y = +1,
may or may not be identified depending on the construc-

tion, while Ŝ6 and Ŝ7, which may or may not be dis-
tinct, transform as (2,2). Some of these fields may be

absent. We assume that S6, S7, Ŝ6, and Ŝ7 do not ac-
quire vevs. Charged lepton masses are then determined

by some combination of the coupling matrices λ6, λ7, λ̂6
and λ̂7 (and possibly higher-order terms that connect the
two sectors) as well as appropriate choices of Higgs vevs
for the neutral components of the four Higgs species.

2 The µ parameters of the Higgs scalar potential could also arise as
effective parameters only after SUSY breaking via the Giudice-
Masiero mechanism [30].
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III. MAKING CONTACT WITH

EXPERIMENTAL DATA

Having laid out the framework for our string-based
model, we now wish to ask how well such a structure
can accommodate the measurements of neutrino mixing
angles and mass differences that have been made, and
what sort of predictions (if any) might this framework
make in terms of future experimental observations. We
use a convention in which the solar mixing data defines
the mass difference between m2 and m1 with m2 > m1.
Then the eigenvaluem3 relevant for the atmospheric data
is the “isolated” eigenvalue.
The current experimental picture is summarized by the

recent three neutrino global analysis in [3]. For the solar
neutrino sector we take

∆m2
12 = 7.92(1± 0.09) × 10−5eV2 (8)

sin2 θ12 = 0.314(1+0.18
−0.15), (9)

where all measurements are ±2σ (95% C.L.). The last
measurement implies a value for the mixing angle θ12
itself of θ12 ≃ 0.595+0.060

−0.052, well below the maximal mixing
value θmax

12 = π/4. We take the upper bound on θ13 to
be

sin2 θ13 = 0.9+2.3
−0.9 × 10−2 ⇒ |θ13| < 0.18 (10)

at the 2σ level. For the atmospheric oscillations

|∆m2
23| = 2.4(1+0.21

−0.26)× 10−3eV2 (11)

sin2 θ23 = 0.44(1+0.41
−0.22), (12)

consistent with maximal mixing (sin2 θmax
23 = 0.5).

With this in mind, let us consider the general off-
diagonal Majorana mass matrix

mν =




0 a b
a 0 ǫ
b ǫ 0


 = mT

ν (13)

with detmν = −2abǫ, and where we imagine the entry
ǫ to be a small perturbation around the basic structure
of (6), which can arise from higher-order terms in W .
Without loss of generality we can redefine the phases of
the lepton doublets Li and L

′
i such that the entries a, b

and ǫ are real and mν = m†
ν . This implies

U †
νmνUν = diag(m1,m2,m3) ≡ mdiag. (14)

We also have Tr mdiag = m1 + m2 + m3 = Tr mν =
0, where the various eigenvalues mi are real but can be
negative.
If we begin by first ignoring the solar mass difference,

and take the atmospheric mass difference to be given
by (11), then there is no way to accommodate the “nor-
mal” hierarchy while maintaining the requirement that
ǫ ≪ a, b. For the inverted hierarchy (in the same ap-
proximation of vanishing solar mass difference) we would

require m2 = −m1 = 0.049 eV with m3 = 0. This could
derive from (13) if

√
a2 + b2 = m2 and ǫ = 0. In this

case
∑

i |mi| = 0.098 eV. This is clearly in line with the
form of (5) and implies a triplet mass of order

MT = 2.0× λ2λT

(
v2v

′
2

(100 GeV)2

)
× 1014 GeV (15)

where we have defined v2 =
〈
(h2)

0
〉
and v′2 =

〈
(h′2)

0
〉
.

The solar mass difference (8) can be restored in this case
by taking ǫ ≃ 1

43
in the mass matrix given by

mν =

√
|∆m2

23|
2




0 −1 −1
−1 0 ǫ
−1 ǫ 0


 . (16)

This value is particularly encouraging for theories mo-
tivated by the weakly coupled heterotic string compacti-
fied on orbifolds. Such theories generally give rise to an
Abelian gauge factor with non-vanishing trace anomaly.
This anomaly is cancelled by the Green-Schwarz mech-
anism, which involves a Fayet-Iliopoulos (FI) term ξFI
in the 4D Lagrangian [31, 32, 33]. In general, at least
one field X of the massless spectrum, charged under this
anomalous U(1) factor, will receive a vev X ≃

√
ξFI so as

to ensure 〈DX〉 = 0 below the scale ξFI. Explicit orbifold

constructions suggest that 0.09 ≤ rFI =
√
|ξFI|/Mpl ≤

0.14 for g2 ≃ 1/2 [34]. Thus the perturbation ǫ could be
the result of non-renormalizable operators in the super-
potential of relative low-degree – perhaps involving only
one or two powers of such a field vev, depending on the
size of the dimensionless Yukawa couplings involved.
Considering the underlying SU(2)A × SU(2)B theory,

fields bifundamental under both SU(2) factors will de-
compose into a triplet and a singlet under the breaking
to the diagonal subgroup. Let us denote this singlet rep-
resentation as ψ. Then terms at dimension four in the
superpotential that can populate the vanishing entries
in (6) include

∆W =
λ11
Mpl

L1(2, 1)T (2,2)ψ(2,2)L1(2, 1)

+
λij
Mpl

L′
i(1,2)T (2,2)ψ(2,2)L

′
j(1,2), (17)

where i, j = 2, 3 and we denote the representations under
SU(2)A × SU(2)B for convenience. The singlet field ψ
must have vanishing hypercharge, so it cannot be the
singlet component of the same bifundamental that led to
T and T , though it may be the singlet component of some
bifundamental representation that served to generate the
breaking to the diagonal subgroup in the first place, or

could be identified with Ŝ4 or Ŝ5 of (7). To the extent
that string models seldom give self-couplings at such a
low order in the superpotential, we might expect λ11 =
λ22 = λ33 = 0, thereby generating (16) at roughly the
correct order of magnitude.
Now let us consider the leptonic (PMNS) mixing ma-

trix defined by UPMNS = U †
eUν , where Uν is the matrix
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in (14) and Ue is the analogous matrix for the charged
leptons. Most of the earlier studies [5, 6, 7, 8, 24, 25, 26,
27, 28, 29] of the texture in (6) assumed that this form
holds in the basis for which Ue = 1. In that case, one has
an inverted hierarchy and UPMNS = Uν is bimaximal for
a = b, i.e., θ12 = θ23 = π/4, while θ13 = 0. For |a| 6= |b|
the solar mixing remains maximal while the atmospheric
mixing angle is | tan θ23| = |b|/|a|. It is now well estab-
lished, however, that the solar mixing is not maximal,
i.e., π/4 − θ12 = 0.19+0.05

−0.06 [3], where the quoted errors
are 2σ. It is well-known that reasonable perturbations
on this texture (still with Ue = 1) have difficulty yielding
a realistic solar mixing and mass splitting. To see this,
let us add a perturbation δ to the 13-entry of (16) and
perturbations ǫii to the diagonal entries. To leading or-
der, δ only shifts the atmospheric mixing from maximal
(to θ12 ∼ π/4 − δ/2). ǫ22 and ǫ33 large enough to af-
fect the Solar mixing tend to give too large contributions
to |θ13|, so we will ignore them (their inclusion would
merely lead to additional fine-tuned parameter ranges).
One then finds

π

4
− θ12 ≃ 0.19 ≃ 1

4
(ǫ − ǫ11), (18)

whereas the solar mass difference is

∆m2
12√

2|∆m2
atm|

≃ 1

43
≃ (ǫ + ǫ11). (19)

Satisfying these constraints would require a moderate
tuning of ǫ and ǫ11. Moreover, they would each have
to be of order 0.4 in magnitude, somewhat large to be
considered perturbations.
On the other hand, a simple and realistic pattern

emerges when we instead allow for small departures from
Ue ∝ 1 [35, 36, 37, 38, 39, 40], and for the general super-
potential in (7) there is no reason for such mixings to be
absent.3 For example, starting from (16) a Cabibbo-sized
12-entry in the charged lepton mixing matrix

U †
e ∼




1 − sin θe12 0
sin θe12 1 0

0 0 1


 , (20)

leads to

π

4
− θ12 ≃ sin θe12√

2
, (21)

which is satisfied for sin θe12 ≃ 0.27+0.07
−0.08. This mixing

also leads to the prediction of a large

sin2 θ13 ≃ sin2 θe12
2

≃ (0.017− 0.059) (22)

3 The relatively large value required for sin θe
12

compared to√
me/mµ ∼ 0.07 suggests an asymmetric charged lepton mass

matrix, but this would not be unexpected.

(the range is ±2σ), close to the current experimental up-
per limit of 0.032. Finally, this model implies

mββ ≃ m2(cos
2 θ12 − sin2 θ12) ≃ 0.018 eV (23)

for the effective mass relevant to neutrinoless double beta
decay. This is the standard result for the inverted hierar-
chy, with the minus sign due to the opposite signs of m1

and m2. Such a value should be observable in planned
experiments [5, 6, 7, 8].

IV. REALIZATION IN HETEROTIC STRING

MODELS

Having outlined in a broad manner the elementary re-
quirements for phenomenological viability of any triplet-
based model with a structure dictated by the superpo-
tential in (7), we might now wish to ask whether such
a set of fields and couplings really does arise in explicit
string constructions as we have been assuming. Rather
than build all possible constructions of a certain type for
a dedicated scan – an undertaking that would undoubt-
edly produce interesting results in many areas, but which
we reserve for a future study – we will here choose one
particular example as a case study. The Z3 × Z3 orb-
ifold construction of Font et al. [16] begins with a non-
standard embedding that utilizes two shift vectors and
one Wilson line in the first complex plane. This Wil-
son line breaks the observable sector gauge group from
SO(10) to SU(3)×SU(2)A×SU(2)B. The massless spec-
trum of this model contains 75 species of fields. Those
from the untwisted sectors have a multiplicity of one,
while twisted sectors have a multiplicity of three or nine,
depending on the representation. It is natural to consider
this multiplicity factor as a generation index.
There are three species of fields which are bifunda-

mental under the observable sector SU(2)A × SU(2)B
(one in the untwisted sector and two in various twisted
sectors), five doublets under SU(2)A and eight doublets
under SU(2)B. There were also 17 species that were sin-
glets under all non-Abelian groups. So the minimal set
of fields needed to generate the superpotential of (7) are
present, as well as an additional bifundamental represen-
tation that may be used to break the product group to the
diagonal subgroup and/or generate the needed higher-
order corrections in (17). We note that there are addi-
tional species that have non-trivial representations under
the non-Abelian groups of both the observable and hidden
sectors. In order to avoid potential complications should
any of these hidden sector groups undergo confinement
we have not considered these in what follows.
From the selection rules given in [16] it is possible to

construct all possible dimension three (renormalizable)
and dimension four (non-renormalizable) superpotential
couplings consistent with gauge invariance. Consider-
ing only the 33 relevant fields mentioned in the previous
paragraph, the selection rules and gauge invariance un-
der the observable and hidden sector non-Abelian groups
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allow 32 and 135 terms at dimension three and four, re-
spectively. Requiring in addition gauge invariance under
the six U(1) factors (one of which being anomalous) re-
duces these numbers to a tractable 15 and 8, respectively.

To ascertain which of the terms in (7) can be identified
from the above it is necessary to choose a linear combi-
nation of the five non-anomalous U(1) factors to be iden-
tified as hypercharge, and then determine the resulting
hypercharges of the bifundamentals, doublets and sin-
glets under this assignment. Our algorithm was to begin
with the two bifundamentals of the twisted sector, as the
untwisted bifundamental had no couplings to SU(2) dou-
blets at dimension three or four. These two twisted sec-
tor fields had a selection-rule allowed coupling to a non-
Abelian group singlet at the leading (dimension three)
order, which could therefore play the role of S3 in (7).
Requiring these two fields to carry hypercharge Y = ±1
(and thus automatically ensuring that the candidate S3

have vanishing hypercharge) placed two constraints on
the allowed hypercharge embedding.

We then proceed to the coupling (5), or λT in (7) for
the Y = +1 species. Each bifundamental had several
couplings of this form to various pairs of SU(2) doublets,
at both dimension three and dimension four. By consid-
ering all possible pairs and requiring that the doublets
involved be assigned Y = −1/2 places two more con-
straints on the allowed hypercharge embedding. Finally,
we proceed to the equally critical λ2 coupling in (7) for
the oppositely charged Y = −1 species. Again by consid-
ering all possible pairs of doublets with this coupling, and
requiring that both have hypercharge Y = +1/2 we typi-
cally constrained the hypercharge embedding to a unique
embedding. The hypercharges of all the states in the
theory are then determined. Not all will have Standard
Model hypercharges, and thus most will have fractional
or non-standard electric charges and must be discarded
as “exotics.” From the set with Standard Model hyper-
charge assignments we can identify the surviving cou-
plings of (7). In all, this process resulted in 35 distinct
field assignment possibilities, each having as a minimum
the couplings λT , λ2 and λ3 – the minimum set to gen-
erate the triplet see-saw and the mass pattern of (6).
Though these couplings are not enough to generate the
perturbations on the bimaximal texture, nor do they in-
clude the couplings needed to generate charged lepton
masses or µ-terms to break electroweak symmetry, they
still represent a complete set of needed couplings to ex-
plain the smallness of neutrino masses generally – some-
thing that a more exhaustive search of a whole class for
the “standard” seesaw failed to achieve [9].

None of the 35 possibilities allowed for all of the cou-
plings of (7), and 12 had no other couplings than the
minimal set. This is yet another example of how selection
rules of the underlying conformal field theory often for-
bid operators that would otherwise be allowed by gauge
invariance in the 4D theory. Rather than present the var-
ious features of all of these assignments, we instead point
out a few particular cases. One successful hypercharge

assignment allows for a superpotential of the form

W = λTLTL
′ + λ2H2TH

′
2 + λ3S3TT

+λ5S5H
′
1H

′
2 + λ7ERL

′H ′
1, (24)

where in this case L, L′, H2 and H ′
2 all have multiplicity

three, H ′
1 has multiplicity one and there is no species with

the correct hypercharge to be identified as H1. In this
case, identifying L with the doublet containing the elec-
tron leaves the electron massless after electroweak sym-
metry breaking up to terms of dimension five in the su-
perpotential.
Alternatively, one can obtain candidates for all six

species of doublets, such as an example in which the al-
lowed superpotential is given by

W = λTLTL
′ + λ1H1TH

′
1 + λ2H2TH

′
2

+λ3S3TT + λ7ERL
′H ′

1. (25)

All doublets exceptH2 in this case arise from twisted sec-
tors, so have multiplicity three. It is interesting to note
that in several of the 35 cases the hypercharge embed-
ding assigned Y = 0 to the bifundamental representation
of the untwisted sector, suggesting it could play the role
of breaking the product group to the diagonal subgroup.
Couplings of the form of (17), however, were forbidden
by the string theoretic selection rules through dimension
four.
Of course none of these cases are truly realistic in the

sense of what is needed to explain the observed neutrino
data as outlined in the previous section, and it would
have been naive to have expected any to be in the first
place. The above examples are instead meant to demon-
strate the plausibility of this new realization of a triplet-
induced seesaw from a string-theory viewpoint by means
of a ready example from the literature. Having intro-
duced the concept, defined a basic structure as in (7)
and demonstrated that the structure may in fact be re-
alized in the context of tractable string constructions, it
becomes reasonable to propose a dedicated search over
a wide class of constructions for precisely this model –
a search that would necessarily be a separate research
project in its own right but which would complement
well the analysis already performed in [9].
The Z3×Z3 construction is often considered because it,

like its Z3 cousin, generates a three-fold redundancy for
most of the massless spectrum in a relatively straightfor-
ward way. But a minimal model would presumably pre-
fer to break away from the three-fold degeneracy on ev-
ery species, but not the requirement of three generations
globally. For example, it is possible to imagine a model in
which there are only three “lepton” doublets of SU(2)L
once we break to the diagonal subgroup. Since species in
orbifold models (and orientifold models of open strings
as well) are defined by fixed point locations (i.e., geo-
metrically) this is not unreasonable to imagine – in fact,
precisely such a separation of the three “generations” oc-
curs in the recent Z2 × Z3 construction of Kobayashi et
al. [41]. Nevertheless, there is no getting around the need
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for at least an extra pair of one, if not both, of the Higgs
doublets of the MSSM. As discussed following (7), it is
possible that the extra doublets are projected out near

the string scale (e.g., if some of the S4,5 and Ŝ4,5 are
associated with the Fayet-Iliopoulos terms) or at an in-
termediate scale. It is also possible that one or more
extra doublets survives to the TeV scale, in which case
there are potential implications for FCNC [42, 43] and
CP violation [44], as well as for the charged lepton mix-
ing generated from (7). A more detailed study of such
issues is beyond the scope of this paper.

Conclusions

We have presented a new construction of Type II see-
saw models utilizing triplets of SU(2)L in which that
group is realized as the diagonal subgroup of an SU(2)A×
SU(2)B product group. The triplets in this construction
begin as bifundamentals under the two original SU(2)
factors, and this identification immediately leads to a bi-
maximal mixing texture for the effective neutrino mass
matrix provided generations of lepton doublets are as-
signed to the two underlying SU(2) factors in the appro-
priate way. The observed atmospheric mass difference
can be accommodated if the triplets obtain a mass of
order 1014 GeV, and the solar mass difference can eas-
ily be incorporated by a simple perturbation arising at
dimension four or five in the superpotential. The ob-
served deviation of the Solar mixing from maximal can
be accommodated by a small (Cabibbo-like) mixing in
the charged lepton sector, leading to predictions for θ13
and neutrinoless double beta decay.
We were led to consider this construction by imagining

the simplest possible requirements for generating a triplet
of SU(2)L from string constructions – particularly the
weakly coupled heterotic string, though the model can be
realized in other constructions as well. Though inspired
by string theory, the model is not itself inherently stringy
and is interesting in its own right. Some of the properties
of this model are known to phenomenologists, who have
arrived at a similar mass matrix from other directions.
Interestingly, however, to the best of our knowledge the
particular texture has not emerged from other versions
of heavy triplet models, e.g., motivated by grand unifica-
tion or left-right symmetry. The simplest version of the
construction requires at least one additional pair of Higgs
doublets, which may or may not survive to the TeV scale.

Having laid out a concrete model as a plausible alter-
native to the standard Type I seesaw in string-based con-
structions, it is now possible to examine large classes of
explicit string models to search for both types of neutrino
mass patterns. Given the difficulty in finding a working
example of the minimal Type I seesaw in at least one
otherwise promising class of string construction, having
alternatives with clear “signatures” (in this case, at least
two SU(2) factors, with at least two fields bifundamen-
tal under both, capable of forming a hypercharge-neutral
mass term) is welcome.
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