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Gaps between Jets: Matching two Approaches
A. Kyrieleis

University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
email: kyrieleis@hep.man.ac.uk

Abstract. We calculate the parton level cross section for the production of two jets that are far apart
in rapidity, subject to a limitation on the total transversemomentumQ0 in the interjet region. We
specifically address the question of how to combine the approach which sums all leading logarithms
in Q/Q0 (whereQ is the jet transverse momentum) with the BFKL approach, in which leading
logarithms of the scattering energy are summed. Using an “all orders” matching, we obtain results
for the cross section which correctly reproduce the two approaches in the appropriate limits.
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INTRODUCTION

Final states with high-pT jets separated by large rapidity gaps at hadron colliders offer
the possibility to better understand QCD in the high energy limit and also to under-
stand QCD radiation in “gap” events. There are two major approaches to the production
of two gap-separated jets. In the BFKL [1] approach, parton-parton elastic scattering
with a QCD colour singlet exchange is regarded as providing the leading contribution
to the cross-section. The leading-Y terms (Y is the rapidity interval between the jets)
are summed i.e. terms∼ αn

s Y n [2, 3]. The observable calculated in this approach does
not consider any radiation into the interjet region. Experiments though, impose an upper
bound on this radiation by necessity. In the second approachsoft radiation with trans-
verse energy belowQ0 is allowed in the interjet region. This gives rise to logarithms
of Q/Q0 whereQ is the transverse momentum of the jets. The global leading loga-
rithms of Q/Q0 (LLQ0) have been summed for various jet definitions [4, 5] i.e terms
∼ αn

s Y mLn (m ≤ n) whereL = lnQ2/Q2
0 . Non-global effects have been considered in

[5, 6]. In order to get a better understanding of the gaps-between-jets processes at col-
liders it is desirable to combine the two approaches. This isthe main issue in this con-
tribution, for details see [7]

SUMMING LOGARITHMS IN Q0

As the first step we recalculate the cross section for two-jetproduction in the high-energy
(i.e. high rapidity separation) limit, with limited total scalar transverse momentum in the
interjet region. We require this transverse momentum to be below Q0 and consider the
regionQ2

0 ≪ Q2 ≪ ŝ = eY Q2. Since we are not sensitive to collinear emission, we work

at the parton level and calculate the all-orders gap cross section σ ≡ dσ(ŝ,Q0,Y )
dQ2 for the

process qq′ → qq′. σ (n) denotes the cross section atO(αn
s ). Our approximation implies
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the eikonal (soft gluon) approximation. To generate the leading logs inQ0, we make the
approximation of strongly-ordered transverse momenta forreal and virtual gluons.

As the basis for the calculation to all orders we employ the following theorem. Let

us denote byA (n)
1 (Q0)C1 (A

(n)
8 (Q0)C8) the singlet (octet) component of theO(αn

s )
qq′ → qq′ amplitude in the approximation defined above, with the phasespace for the
gluons constrained to the gap region in rapidity and with transverse momentum aboveQ0
(C1,8 are the colour factors). WithB(Q0) denoting the production amplitude (including
colour factor) for more than 2 particles, the theorem reads

σ (k) = |A1(0)|
2C2

1+ |A8(0)|
2C2

8+ |B(Q0)|
2 = |A1(Q0)|

2C2
1+ |A8(Q0)|

2C2
8 (1)

where the squares are to be read symbolically representing the sums overA (n)∗A (m)

(andB(Q0) , respectively). This is clearly a major simplification, since it means that we
never have to calculate any real emission or triple-gluon-vertex diagrams. This theorem
provides the basis for the matching with BFKL. We calculateA (Q0)1,8 and henceσ to
all orders. Besides the double-leading-logarithmic (DLL) terms we include those terms
sub-leading inY that arise from the imaginary parts of the loop integrals.

MATCHING WITH BFKL

To combine the gap cross section with the BFKL approach order-by-order we need to
prevent double counting and make sure the divergences arising from the BFKL approach
(at each order inαs) cancel in the jet cross section. To this end we calculate theleading-Y

approximation of the singlet componentA
(n)

1 (Q0):

A
(n)

1,S (Q0)≡ A
(n)

1 (Q0)
∣

∣

∣

LY
. (2)

A
(n)

1,S (0) is divergent at each order and it is this contribution toσ that is also included in
the BFKL result.

Fixed order matching. We denote byA (n)
BFKLC1 theO(αn

s ) elastic quark scattering
amplitude with colour singlet exchange in the leading-Y approximation. We wantσ to
includeA

(n)
BFKL. However,A (n)

1 (0) also includes terms sub-leading inY which we have
to keep; they are given by(A1(0)−A1,S(0))(n). We therefore define the following fixed
order gap cross section (again omitting the sum over indicesin the first line).

σ (k)
gap ≡ |ABFKL +A1(0)−A1,S(0)|

2C2
1+ |A8(0)|

2C2
8+ |B(Q0)|

2 (3)

= σ (k)+ ∑
m+n=k

[

2IImA
(m)

1 (0) · (−iδ (n))+δ (m)δ (n)∗
]

C2
1 (4)

with δ (n) = A
(n)

BFKL −A
(n)

1,S (0) (5)

where, in the last line we have invoked the theorem (1). This cross section combines the
two approaches without double counting. However, not surprisingly, the strong ordering



approximation cannot cancel the divergence in the BFKL amplitude at any order. The

second term in (4) and henceσ (k)
gap is divergent fork ≥ 6. Via (4) we can therefore

combine the all-orders cross sectionσ with the BFKL result up toO(α5
s ).

The theorem (1) holds beyond the high energy approximation,the matching with
BFKL can therefore be extended to full (global)LLQ0 accuracy in a straightforward
way [7].

All orders matching. Although the order-by-order combination of theLLQ0 and the
BFKL result can only work for the first few orders it is possible to construct an all-orders
cross section that does smoothly interpolate theLLQ0 and BFKL results, agreeing with
each in its region of validity and avoiding any double-counting. Central to this are the

following two observations. First, the amplitudeA
(n)

1,S (Q0) summed to all orders reads:

A1,S(Q0) =−i
N2

c −1
2N3

c

π
Y

A
(1)

8 ·

[

1−exp

(

−
Ncαs

2π
Y L

)]

. (6)

The exponential vanishes asQ0 → 0. In contrast to the fixed order result,A1,S(0) is
therefore finite. Secondly, we find the following relation between the (finite) all-orders
results for the BFKL 2→ 2 cross sectionσBFKL [3] and the gap cross sectionσ :

σBFKL|Y→0 = σ |Y→∞ = σS ≡ |A1,S(0)|
2C2

1 = σ (2) N2
c −1
N4

c

π2

Y 2 (7)

which impliesABFKL|Y→0 = A1,S(0). Using these two remarkable results we construct
three different matched cross sections (δ is given by (5) summed to all orders).

Simple matching: σgap = σ +N2
c |δ |2

Cross section matching: σgap = σ +σBFKL −σS

Amplitude matching: σgap =
1
4(N

2
c −1)|A8(Q0)|

2+N2
c |A1(Q0)+δ |2

In the first scheme we have replaced all expressions in (4) with the (finite) all-orders
results and exploited the fact thatA1(0) is zero. In all three cases we subtract from the
sum of theLLQ0 andBFKL amplitudes (cross sections) the double-counted termA1,S(0)
(σs). In all schemesσgap → σ for Y → 0 sinceδ → 0 (σBFKL −σS → 0), see (7). As
Y → ∞ we haveσ ,σS → 0 andA1,8(Q0),A1,S(0) → 0 (i.e. δ → ABFKL) and hence
σgap → σBFKL. Each scheme therefore achieves our goal of having a smooth matching
of the two all-orders cross sections, in that for small and largeY it agrees with theLLQ0
and BFKL cross sections respectively avoiding any double-counting.

As a measure of the uncertainty inherent in the matching procedure fig. 1 shows
numerical results of all three schemes. Indeed, they all match the two cross sections
in the small and largeY limits and the differences are not large in between.

CONCLUSION

Working in the high energy limit we have calculated the (partonic) cross section for the
production of two jets distant in rapidity and with limited transverse energy flow into the
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FIGURE 1. The gap cross section in the three matching schemes forL = 2 and 6 (αs = 0.2) compared
to σBFKL (dots) andσ (double-dots)

region between the jets. Besides theDLL terms, we have summed terms sub-leading inY
stemming from the imaginary parts of the loop integrals. This allowed us to consistently
combine the terms of theLLQ0 series and the BFKL series toO(α5

s ) accuracy without
double counting. In theLLQ0A, the inclusion of higher orders of the BFKL cross section
in this way is not possible since it implies a divergent crosssection.

We have also studied several “all order” matching schemes that effectively interpolate
between theLLQ0 and BFKL results. Although they all yield similar results, the differ-
ences between them cannot be resolved without further work,specifically understanding
the role of real-emission contributions in the high energy limit. We have made a first step
towards the unification of the two main approaches to the “jet–gap–jet” process.
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