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Abstract. Noting that the number of gluons in the hadron wave funct®uliscrete, and their
formation in the chain of smalt evolution occurs over discrete rapidity intervals/of ~ 1/as,
we formulate the discrete version of the Balitsky—Kovchegeolution equation and show that its
solution behaves chaotically in the phenomenologicatigrizsting kinematic region.
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EVOLUTION AS A DISCRETE PROCESS

The color field of an ultra—relativistic hadron is a quasisdical non-Abelian
Weizsacker-Williams fieldl[1]12]. It emerges when the ocdigra number of the
bremsstrahlung gluons emitted at a given impact paramgterees unity and eventu-
ally saturates at- 1/as. It has been argued that in a big nucleus, suchaat/3 > 1,
and not very high energies the mean-field treatment is a maaé® approximation to
the evolution equations.

As a result of broken scale symmetry of QCD there exist theedsional scalé\
which is the infrared cutoff on the gluon’s momenta. An iolwotion of an infrared
cutoff A on the momentum of the emitted gluons amounts to imposindptumdary
condition. This is equivalent to the quantization of theagiumodes in a box of side~
A1, inwhich case the spectrum of the emitted gluons and themtan become discrete.
The formation of a gluon occurs over a rapidity interval&f ~ 1/as. Therefore,
the evolution in rapidity can be considered as a discretatgua process, where each
subsequent step occurs whisyaas ~ 1 [3].

Assuming thatdyas is a certain number for all steps in evolution process néglec
a stochastic nature of quantum evolution. Full treatmerthefdiscrete BK equation
requires taking these effects into account. However, tuhately BK equation is known
to resist all attempts of analytical solution, and our hopg@rasent is to develop a
meaningful approximation. Thus, we suggest an approxanati which the gluons are
emitted over a fixed “time" defined lysAy = C with C = 1. To justify this assumption,
let us note that BFKL takes into account only fast gluons,these withC ~ 1. It is
beyond the leading logarithmic (LL) approximation to takéoi account slow gluons.
Moreover, it is known that an account of NLL corrections effeely leads to imposing
a rapidity veto [[4] on the emission of gluons with close raed, which restricts
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FIGURE 1. Discrete BK equation atv = 2.8. Different lines from left to right correspond to=
1,4,7,10 (black, red, green, blue).

production of gluons with smalC (this is due to an effective repulsion between the
emitted gluons induced at the NLL level). Theref@ds bounded from below by a
number close to one. On the other hand the probability thagluaen is emitted whe@
becomes larger than one is very small if we choose the highkienitial condition,
such as the one given by the McLerran-Venugopalan modeli¢refore,C takes
random values around 1, but the effective dispersion caxected quite small.

DISCRETE EVOLUTION EQUATION

Equation which describes the gluon evolution in the highgadensity regime of QCD

is the Balitsky-Kovchegov equation [5, 6]. This equatiofiasnulated for the forward
scattering amplitude of a color dipole of transverse monnahktand rapidityy to scatter

of a big nucleus at impact parameterAssumption that the dispersion of the dipole
transverse momenta withis a slow process one can develop a diffusion approximation
to the BK equation. This approximation is meaningful in tlausation region. The
discrete version of BK equation takes the form (see also [7])

Nnr1(ky) = (1+ x(w)) Nn(k,y) — Na(k,y), (1)

where we introduced the discrete variabléo enumerate emitted gluons agdyo) =
4In2= w— 1. Itis convenient to re-scale the scattering amplitgage: x (yo)Nn so that
the corresponding continuous amplitude is normalizedid, y) < 1:

thit = Oh — (0 — 1)¢f. 2)

Numerical solution to the discrete BK equation is shown gureILEY.

Let us now consider how does the evolution proceeds for varalues otv. In Fig.[
the case of kX w < 3 is shown. In that case, for akythere is one stable fixed point at
@ = 1 and one unstable fixed point@t = 0. The fixed points are determined from the
condition@h.1 = ¢h.

In Fig.[@ we consider the case<3 w < 3.442.... The point@, = 1 ceases to be
unstable. Instead two new stable points appear. These catetbemined from the
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FIGURE 2. Discrete BK equation atv = 3.1. Different lines from left to right correspond to=
1,4,7,10 (black, red, green, blue).
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FIGURE 3. Discrete BK equation ato = 3.495. Different lines from left to right correspond to
n=14710 (black, red, green, blue).

condition@.2 = ¢@h. The described multiplication of stable points is calledyéneral
bifurcation. In our particular case it is referred to as tbeeiod doubling scenario.

When 3442... < w < 3.56... there are four new fixed points, see Hg. 3. It is
important to emphasize thatmat o the value ofg, settles to a given set of fixed points
(specified by the value ofv) independently of the initial condition. In other words,
at very high energies the scattering amplitude in the situraegimekr < Qs(n) is
independent of the initial condition.

ONSET OF CHAQOS

The period doubling proceeds at increasingly smaller mers ofcw until the accu-
mulation point wr = 3.569... known also as th&eingenbaun’'s number. At this point
there is no more universal limiting behavior at largénstead small change in the initial
condition leads to large change in the final state. The orfgbiochaotic behavior can
be observed in Figl4. Note now that at firagrk. = 1+4In2=3.77 > @ and at
second,werkL is the absolute minimum of the functiordlx(y). Thus, we conclude
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FIGURE 4. Discrete BK equation ato = 3.77. Different lines from left to right correspond to=
1,4,7,10 (black, red, green, blue).

that the evolution of the scattering amplitude at high eiesrgn the saturation region
may be chaotic. At the same time, it is evident from Fig$l hat the highkt tail of
the scattering amplitude which describes the perturbagigene is not affected by the
peculiar behavior of the discrete equation.

By averaging over all events one can define the mean value sttttering amplitude.
However, this procedure hides a lot of interesting physit® most obvious example
of this is diffraction, which measures the strength of flations in the inelastic cross
section. Figsld134 imply that diffraction is a significanttpaf the total inelastic cross
section at very high energies, and is universal (independethe properties of the
target).

The model used in this letter is admittedly oversimplifie@: meglected the diffusion
in transverse momentum, stochasticity of gluon emissiartie dynamical fluctuations
beyond the mean field approximation. Nevertheless, we hugtteat least some of the
features of discrete quantum evolution at smaliill survive a more realistic treatment.
The chaotic features of smalevolution open a new intriguing prospective on the studies
of hadron and nuclear interactions at high energies.
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