
ar
X

iv
:h

ep
-p

h/
05

07
08

0v
1

 7
 J

ul
 2

00
5

Package for Calculations and Simplifications

of Expressions with Dirac Matrixes

(MatrixExp)

V. A. Poghosyan1

Yerevan Physics Institute, 2 Alikhanyan Br., 375036 Yerevan, Armenia,

Abstract

This paper describes a package for calculations of expressions with
Dirac matrixes. Advantages to existing similar packages are described.
MatrixExp package is intended for simplification of complex expres-
sions involving γ-matrixes, providing such tools as automatic Feyn-
man parameterization, integration in d-dimensional space, sorting and
grouping of results in a given order. Also, in comparison with existing
similar package Tracer, presented package MatrixExp has more en-
hanced input possibility. User-available functions of MatrixExp pack-
age are described in detail. Also an example of calculation of Feynman
diagram for process b → sγg with application of functions of Matrix-
Exp package is presented.

PACS: 13.10.+q, 13.90.+i, 07.05.Bx, 14.40.Nd

1email: vpoghos@server.physdep.r.am
The package is available at http://www.yerphi.am/matrixexp.html

1

http://arxiv.org/abs/hep-ph/0507080v1
http://www.yerphi.am/matrixexp.html

PROGRAM SUMMARY

Keywords: Computer algebra, Particle Physics, Computing, Quantum Field The-
ory, High energy physics, Calculation, Gamma-algebra,Dimensional Regularization
Classification: 11.1 General, High Energy Physics and Computing, 4.4 Feynman
diagrams
Nature of problem:

Feynman diagram calculation, simplification of expressions with γ-matrixes
Restrictions:

MatrixExp package works only with single line of expressions (G[l1,...]), in con-
trary with Tracer package which works with multiple lines, i.e. the following is
possible in Tracer, but not in MatrixExp : G[l1,...]**G[l2,...]**G[l3,...]..., which
will return the result of G[l1,...]**G[l1,...]**G[l1,...]...
Running time:

Seconds for expressions with several different γ-matrixes on Pentium IV 1.8GHz
and of the order of a minute on Pentium II 233MHz. Calculation times rise with
the number of matrixes.

2

LONG WRITE-UP

1 Introduction

Modern calculations of radiative corrections in Relativistic Quantum Field
Theory, in particular within the limits of Standard Model, lead to calculations
of one-, two- and higher-loop Feynman diagrams. Considering, that calcula-
tions of two-loop and furthermore multi-loop diagrams are labor-consuming
enough and volumetric, and also that the number of possible diagrams to be
evaluated is great, now are widely applied various packages of symbolic ma-
nipulations. In particular, Tracer package [1] working in MATHEMATICA
[2] environment is known, allowing to operate with expressions of γ-matrixes
in d-dimensional space. Following the developers of Tracer package we chose
MATHEMATICA environment for the MatrixExp package, since MATHE-
MATICA is widely used by researchers and is easily programmable, and also,
which is more important, unlike similar package MAPLE [3], MATHEMAT-
ICA allows to program in “rule-based” style: a special style of programming
convenient for implementation (application) of mathematical knowledge into
the program (package). From the technical point of view, during calculations
of radiative corrections it is necessary to get rid from arising intermediate
singularities, inherent to quantum corrections, usually by the method of di-
mensional regularization; hence, it is necessary to perform the calculations
in d-dimensional space. The MatrixExp package uses the so-called Naive Di-
mensional Regularization scheme (NDR). As it is known, the given scheme
leads to some algebraic inconsistencies in d-dimensional space [4, 5]. How-
ever, as it has been shown in Ref. [6], in many calculations which don’t
involve traces with γ5 matrix, NDR scheme gives correct result. A problem
connected with definition of γ5 matrix in d-dimensional space is solved in the
t’Hooft-Veltman regularization scheme [7, 8]. In future, this scheme will also
be included in the MatrixExp package.

2 Tracer package

Tracer package is written basically in “rule-based” style which is presented
in [1]. We shall briefly describe this style since our developed program also
is written in this style. Unlike the procedural style of programming, where

3

the program is executed consistently from the first command up to the fi-
nal, realizing the algorithm for solving the task in view, “rule-based” style
is setting up a collection of transformation rules which just represent math-
ematical rules of transformations and properties of the given objects. The
decision of a task in view in “rule-based” style is reduced to the following:

1. Setting up of transformation rules (which are applied when expression
matches the pattern on the left-hand side (lhs) of the rule, and return
the right-hand side (rhs) of the rule)

2. Use of basic rules built-in in MATHEMATICA

3. Consecutive application of corresponding rules (automatically carried
out by MATHEMATICA)

4. Last received expression which does not match to any pattern is the
received result.

Schematically the solution of a problem in “rule-based” style is presented
on Fig. 1.

The solution of a problem in this style greatly simplifies the programming
and does clearer the program code since allows to not supervise all stream of
the information during the solution of a problem (at calculation of diagrams
very bulky and complex expressions arise), but by means of setting up of all
transformation rules (which are the initial mathematical rules, i.e. are clear
and natural to the user) directly solves the problem in view (in our case - will
transform initial expression to a convenient form, carrying out all necessary
transformations). To illustrate the above mentioned, codes for differentiation
in procedural style and in “rule-based” style are presented in Table 1.

Note, that if we try to define differentiation for all2 other functions as
well, then the code in procedural style would get very complicated, including
special recursive codes for mixed functions, code for parsing expression of
functions etc., and in the case of “rule-based” programming, one has just
to add all the definitions, rules for differentiation of a sum and product of
functions and rules for differentiation of f(g(x)).

Tracer package realizes γ-algebra in “rule-based” style and calculates a
trace of strings of γ-matrixes [1]. Tracer accepts following types of data in a
corresponding format:

2e.g. for 5 or 10 more functons

4

Transformation rules, specified by

the programmer

Basic transformation rules (implemented in

MATHEMATICA)

all transformation rules

expression to calculate (input)

matches any pattern on

lhs of transformation rules

expr?

expression=rhs

result =expression

No

Yes

Figure 1: Scheme of problem solution in a “rule-based” style.

5

a. Procedural style
diff[y , x] :=

Block[{n},
If[TrueQ[Length[y]==2 && y[[0]]==Power && y[[1]]==x],

n=y[[2]]; n*xˆ (n-1),
If[TrueQ[y==x], 1,

If[TrueQ[Length[y==1] && y[[0]]==Log && y[[1]]==x], 1/x]]];

b. “rule-based” style
diff[x ˆ n , x] := n*xˆ (n-1);
diff[Log[x], x]:= 1/x;

Table 1: Codes for derivative calculation (cases of power function and loga-
rithmic function) in procedural (a) and “rule-based” (b) styles.

1. a momentum or a sum of momenta p, p − q, (p + k1 − k2), which
correspond to p̂, p̂− q̂ and p̂+ k̂1 − k̂2

2. an open index of a gamma matrix, which is denoted by a symbol in
curly brackets {alpha} corresponding to γα

3. a linear combination of the unit matrix in the gamma algebra U and
the matrix γ5 denoted by G5, with scalar coefficients

4. a linear combination of a momentum p and a mass term mU .

For convenience, we use the same input-format for MatrixExp package3,
for users already familiarized using Tracer package. Also, this way one may
directly use results achieved by Tracer as input for MatrixExp and vice versa.

3except points (3) and (4). There are special symbols for (1±γ5)/2 defined as R and L
correspondingly. γ5 also may be used in the same way, i.e. G5. For point (4) see sections
3 and 4.

6

3 MatrixExp Package

When calculating diagrams, usually so-called Feynman parameterization [9]
is applied, therefore, in initial expression instead of momenta p arises their
linear combinations, for example p+ u1 ∗ k+ u2 ∗ r... and so the direct appli-
cation of Tracer package is already impossible, i.e. it is necessary to segment
(partition) the initial expression to parts, not containing such combinations
of momenta (p, k, r...) and scalars (u1, u2...).

Developed new package MatrixExp presented in this paper, allows enter-
ing data without additional transformations.

Input data for calculation by Tracer and MatrixExp packages correspond-
ingly (b) and (c), is presented on Table 2.

Thus, MatrixExp package allows working with complex expressions, and
there is no need for additional manual transformations of initial input expres-
sion. Besides, since it is very often applied Feynman parameterization, with
the subsequent d-dimensional integration, this opportunity is also included
in the MatrixExp package, i.e. it is possible to set both automatic Feynman
parameterization, and automatic integration. The package is intended not
only for calculation of traces of matrixes, but also for calculations and sim-
plifications (sorting and grouping) of complex expressions received as a result
of previous calculations or as output from other packages. During calcula-
tions MatrixExp package operates with scalar products (additional conditions
imposed on scalar products can be set via appropriate user-function of Ma-
trixExp (see next section)), combines and recombines momenta according to
p̂ = γαpα for performing calculations, integrations and grouping results (for
example, pαq̂kβ(u1rα + γα)γβ... → q̂(u1(p.r) + p̂)k̂..., etc.).

MatrixExp package includes such enhancements as definition of scalars,
automatic sorting by the given mask (order), automatic Feynman param-
eterization (using previously declared scalar symbols), grouping of sorted
results, automatic d-dimensional integration over specified momenta, auto-
matic rearrangement of ”edge”-momenta (pb and ps) and their replacement
by corresponding masses according to Dirac equation (〈s|ps = ms〈s| and
pb|b〉 = mb|b〉), operations with scalar products, etc.

7

(a) Expression to be calculated
〈s|p̂s, γα, r̂, p̂−mb, k̂ + r̂, γα|b〉, r̂ → r̂ − u1p̂+ u2p̂s

(b) Input for Tracer package
a11 = G[l1, ps, {alpha}, r, p-U mb, k+r, {alpha}];
a12 = -u1*G[l1, ps, {alpha}, k, p-U mb, k+r, {alpha}];
a13 = u2*G[l1, ps, {alpha}, ps, p-U mb, k+r, {alpha}];
a21 = -u1*G[l1, ps, {alpha}, r, p-U mb, k-p, {alpha}];
a22 = u1ˆ 2*G[l1, ps, {alpha}, k, p-U mb, k-p, {alpha}];
a23 = -u1*u2*G[l1, ps, {alpha}, ps, p-U mb, k-p, {alpha}];
a31 = u2*G[l1, ps, {alpha}, r, p-U mb, k+ps, {alpha}];
a32 = -u2*u1*G[l1, ps, {alpha}, k, p-U mb, k+ps, {alpha}];
a33 = u2ˆ 2*G[l1, ps, {alpha}, ps, p-U mb, k+ps, {alpha}];
result = a11+a12+a13+a21+a22+a23+a31+a32+a33;

(c) Input for MatrixExp package
Vsetscalars[u1, u2, mb];
a = G[l1, ps, {alpha}, r-u1*p+u2*ps, p-mb, k+r-u1*p+u2*ps, {alpha}];
result = Vcalc[a];

Table 2: Calculation of expression (a) using Tracer package (b) (as we see,
one needs to segment the initial expression into parts, and if the expression
is more complex, then the calculation becomes very complicated) and using
MatrixExp package (c) (Function Vsetscalars[] declares u1, u2 and mb as
scalars and then function Vcalc automatically performs all corresponding
operations).

4 User functions of MatrixExp package

The detailed description of MatrixExp functions and their syntax is included
in the package and is accessible via standard method in MATHEMATICA,
i.e. ‘ ?function name ′. Call ‘ Vhelp[] ′ to receive the list of all functions
defined in the package.

Here we present basic functions and their purpose.
Vsetscalars[u1,u2...] - declares symbols u1,u2... as scalars. By default

the package declares as scalars the following symbols: u1...u9 since they
are necessary to perform Feynman parameterization. It is possible to rede-

8

fine scalars calling function Vsetscalars[...], or to add other scalars calling
function Vaddscalars[...].

Vsetintvar[r] - declares the symbol r as integration variable over which
Feynman parameterization and automatic d-dimensional integration will be
performed.

Vsetsortlist[p1, {mu1}, {mu2},p2,p3...] - sorts momenta (p1,p2,p3...)
and γ-matrixes ({mu1}, {mu2}...) in the designated sequence.

Vcalc[exp, options] - carries out calculations on expression exp and
groups (sorts) result. The following may be specified as control parameters
(options): integration - On/Off (by default it is switched off), a symbol of
integration (integrating → True/False, integrating → r) (the latter also
implies integration → True), Feynman parameterization On/Off (by de-
fault it is switched off) (dofeynman → True/False), sorting On/Off, sort-
ing order (sorting → True/False, sorting → {p, {mu},k, {nu}, {sigma}})
(the latter also implies sorting → True), rearrangement of ”edge”-momenta
On/Off (by default it is switched off) (pps → True/False), calculation of a
trace On/Off. (by default it is switched off) (spur → True/False)...., etc.

Vfeynman[x] - performs Feynman parameterization of expression x.
Prior to calling of this function it is necessary to define the variable of integra-
tion by calling Vsetintvar[r], with respect to which function Vfeynman[x]
should make parameterization. Gives the output in the following form: {K,
scalari11 scalar

i2
2 ...scalar

in
n , int var 0, power, delta, N}, where K - is the fac-

tor arising in a result of parameterization, scalari11 , scalar
i2
2 , scalarinn - are

additional multipliers, if any arise, int var 0 - is the displacement of the in-
tegration variable, i.e. in initial expression the integration variable (let it be
X for example) should be replaced by X − int var 0, power - is the power
of the resulting denominator after parameterization, delta - is the parame-
ter of integration, N - is not factored part, i.e. multipliers and factors not
dependent on the integration variable, which have not been parameterizated
[9]:

1

D1D2D3D4ε
= KN

∫

du1du2...dun u1i1...uninδ(1− u1− ...− un)

[(int var− int var 0)2 + delta]power
(1)

When specifying Feynman parameterization option in function Vcalc, all
steps and substitutions are carried out automatically (see expressions (7, 8)).

Vsetrules[{p1,p2, c1}, {p1, c2}...] - defines rules of scalar product, cor-
responding to - ((p1, p2) = c1, (p1, p1) = p12 = c2).

9

5 Calculation of an expression by means of

MatrixExp package

Below we present an example of calculation with use of MatrixExp package.
It is calculated a Feynman diagram for process b → sγg [10] in case of local
operators O1, O2, having the following form: O1 = (s̄LγµT

acL)(c̄Lγ
µT abL),

O2 = (s̄LγµcL)(c̄Lγ
µbL). On Fig. 2 we present the two Feynman diagrams

sum of which in [10] is denoted as Jαβ. Here q designates photon momentum,
r - gluon momentum.

b s

c

a)

C1O1, C2O2

r q

g γ*

β α

b s

c

b)

C1O1, C2O2

q r

γ* g

α β

Figure 2: Bremsstrahlung diagrams induced by O1 and O2.

M1 ∼ s̄L
γµ, k̂ + q̂ +mc, γα, k̂ +mc, γβ, k̂ − r̂ +mc, γµ

[(k̂ + q̂)2 −m2
c][(k̂ − r̂)2 −m2

c][k
2 −m2

c]
bL, (2)

M2 ∼ s̄L
γµ, k̂ + r̂ +mc, γβ, k̂ +mc, γα, k̂ − q̂ +mc, γµ

[(k̂ + r̂)2 −m2
c][(k̂ − q̂)2 −m2

c][k
2 −m2

c]
bL, (3)

Jαβ = M1 +M2. (4)

On start-up MatrixExp package by default defines some parameters, in par-
ticular variables u1...u9 are defined as scalars, automatic sorting is switched
On, automatic integration is switched Off.

First of all we add mc as scalar

Vaddscalars[mc] (5)

10

Next we define the rules for scalar products q2 = 0, r2 = 0

Vsetrules[{q, 0}, {r, 0}] (6)

Finally we call function Vcalc for calculation of M1 and M2 accordingly

M1 = Vcalc[
G[l1,R, {mu},k+ q +mc, {al},k+mc, {bet},k− r+mc, {mu},L]

((k− r)2 −mc2)((k+ q)2 −mc2)(k2 −mc2)
,

integrating → k,dofeynman → True, sorting → {{al}, {bet}, r,q}] (7)

M2 = Vcalc[
G[l1,R, {mu},k+ r+mc, {bet},k+mc, {al},k− q+mc, {mu},L]

((k+ r)2 −mc2)((k− q)2 −mc2)(k2 −mc2)
,

integrating → k,dofeynman → True, sorting → {{al}, {bet}, r,q}] (8)

where the option dofeynman → True turns On Feynman parameteriza-
tion, and the option integrating → k defines the integration variable (and
turns On integration). Received M1 and M2 are grouped in sorted re-
sulting matrix expressions (e.g. G[l1, {al}, {bet},q], G[l1, {al}, {bet}, r],
G[l1, {al}, {bet}], G[l1, {bet}, r,q]...) and include scalars u1, u2 and u3,
which arose due to Feynman parameterization. (actually one of the scalars
will be missing (in this case - u1) since during Feynman parameterization,
MatrixExp package automatically carries out integration (

∫

X · δ(1 − u1 −
u2− u3)du1), replacing u1 by 1− u2− u3). After that we consider the sum
Jαβ = M1 +M2

Jab = Vcalc[M1 +M2, sorting → {{al}, {bet}, r,q}] (9)

or, using the built in function of MATHEMATICA (since M1 and M2 are
already sorted in the identical order)

Jab = Simplify[M1 +M2] (10)

In the further we need to simplify expression (9, 10), using transversality
of photon and gluon, Ward identities, etc., and after representing through
E[α, β, r] we receive the form presented in [10].

Acknowledgements

The work was partially supported by the ANSEF-05-PS-hepth-813-100 pro-
gram.

11

References

[1] Matthias Jamin, Markus E. Lautenbacher, “Tracer version 1.1: A math-
ematica package for gamma algebra in arbitrary dimensions,” Comput.
Phys. Commun. 74: (1993) 265–288.

[2] S. Wolfram, Mathematica - A System for Doing Mathematics by Com-
puter, (Addison-Wesley Publishing Company Inc., 1988).

[3] http://www.maplesoft.com/; B. Char, O. Goddies, G. Gonnet,
B. Leong, M. Monagan, and S. Watt, Maple V Language Reference
Manual (Springer-Verlag, 1991).

[4] P. Breitenlohner and D. Maison, Comm. Math. Phys. 52 (1977) 11, 39,
55.

[5] G. Bonneau, “Consistency in dimensional regularization with γ5,”
Phys. Lett. B96 (1980) 147–150; “Preserving canonical Ward identi-
ties in dimensional regularization with a non-anticommuting γ5,” Nucl.
Phys. B177 (1981) 523–527.

[6] A.J. Buras and P.H. Weisz, “QCD nonleading corrections to weak de-
cays in dimensional regularization and ’t Hooft-Veltman schemes,” Nucl.
Phys. B333 (1990) 66–99.

[7] G. t’Hooft and M. Veltman, “Regularization and renormalization of
gauge fields,” Nucl. Phys. B44 (1972) 189–213.

[8] D.A. Akyeampong and R. Delbourgo, Nuovo Cim. 17A (1973) 578; 18A
(1973) 94; 19A (1974) 219.

[9] M.E. Peskin, D.V. Schroeder, Introduction to quantum field theory,
(Addison-Wesley Publishing Company).

[10] C. Greub, T. Hurth, and D. Wyler, “Virtual corrections to the decay
b → sγ,” Phys. Lett. B380 (1996) 385–392, Phys. Rev. D 54 (1996)
3350–3364.

12

http://www.maplesoft.com/

TEST RUN OUTPUT

In the package d = 4−2ε denotes the space-dimension, so avoid its usage
as momenta.4

In[361] := Vcalc[G[l1, a, {mu},b, {mu}, a]]

Out[361] = (−2 + d)G[l1, b] a.a− 2 (−2 + d)G[l1, a] a.b (11)

Timing := 0.05 seconds

To be able to use scalars in expressions we must declare scalars, otherwise
by default they will be treated as momenta

In[362] := Vaddscalars[ma,mb,mc]

Out[362] = {u1, u2, u3, u4, u5, u6, u7, u8, u9,ma,mb,mc} (12)

Timing := 0.00 seconds

We can use either global sorting (viaVsorton[True] andVsetsortlist[a,b, c],
which will be automatically the default sorting for all expressions) or local
sorting

In[363] := r0 = Vcalc[G[l1,R, a+ma,b, c+mc,L]]

Out[363] = mamcG[l1, b,L] + G[l1, a, b, c,L] (13)

Timing := 0.00 seconds

In[364] := r1 = Vcalc[G[l1,R, a+ma,b, c+mc,L],

sorting → {c,b, a}]

Out[364] = −G[l1, c, b, a,L] + 2G[l1, c,L] a.b+

G[l1, b,L] (mamc− 2 a.c) + 2G[l1, a,L] b.c (14)

Timing := 0.02 seconds

In[365] := r2 = Vcalc[r1, sorting → {b, c, a}]

Out[365] = G[l1, b, c, a,L] + G[l1, c,L] a.b+

G[l1, b,L] (mamc− 2 a.c) (15)

Timing := 0.00 seconds

4The last row ”Timing: ” shows the tested time of the calculation. Results for Pentium
IV 2.8GHz.

13

In[366] := r3 = Vcalc[r2, sorting → {a,b, c}]

Out[366] = mamcG[l1, b,L] + G[l1, a, b, c,L] (16)

Timing := 0.02 seconds

Here L and R denote (1 − γ5)/2 and (1 + γ5)/2 respectively. As we see, the
Output (including numerical coefficients and scalars) may be used as Input
without any additional transformations (e.g. r1, which is Out[364] is used as
input in (15)).

To use integration and Feynman parameterization, lets define some rules
for scalar product (we use arbitrary expressions and definitions here, just as
mathematical expressions)

In[367] := Vsetrules[{a,ma2}, {b,mb2}, {a,b,ma ∗mb/2}]

Out[367] = {{a,ma2}, {b,mb2}, {a, b,
mamb

2
}} (17)

Timing := 0.02 seconds

In[368] := res = Vcalc[
G[l1,R, a,k, {mu},b+mb,k, {mu},L

((k− a)2 −ma2)((k− b)2 −mb2)
,

integrating → k,dofeynman → True]

Out[368] = −((−2 + d)mb(4π)−2+eps

(

−
1

−ma2(−1 + u2)2 +mamb (−1 + u2)−mb2u22

)

−1+eps

(−(−2 + eps) (−ma2(−1 + u2)2 +mamb (−1 + u2) u2−

mb2 u22)) + (−1 + eps) (ma2 (−1 + u2)2+

mamb (−1 + u2) u2)−mb2 u22) + (−1 + eps)

(ma2(−1 + u2)2 −mamb (−1 + u2) u2 + mb2 u22))

G[l1, a,L]Gamma[−1 + eps])/(−ma2 (−1 + u2)2+

mamb (−1 + u2) u2−mb2 u22) (18)

Timing := 0.13 seconds

We see, that all the substitutions after parameterization are done, a Dirac-
delta integration over parameter u1 is done, integration over k is done, and
we have a final result.

14

Here we calculate the spur in two ways. First we calculate the expression
r0, followed by calculation of the spur of the result, and then we directly
calculate the spur of the initial expression r0.

In[369] := r0 = G[l1, a+ma,b+mb, a+ma, c+mc, f +ma,L];

rr = Vcalc[r0]

Vcalc[rr, spur → True]

Vcalc[r0, spur → True]

Out[370] = 3ma3mbmcG[l1,L] + 3ma2mbmcG[l1, a,L]+

3ma3mbG[l1, c,L] + 3ma2mbmcG[l1, f,L]+

3ma2mbG[l1, a, c,L] + 3mambmcG[l1, a, f,L]+

3ma2mbG[l1, c, f,L] + 3mambG[l1, a, c, f,L]

Out[371] = 6mamb (ma a.c + mc a.f + ma (mamc + c.f))

Out[372] = 6mamb (ma a.c + mc a.f + ma (mamc + c.f)) (19)

Timing := 0.09 seconds

And finally here are the timings for calculations of (7–9): 1.86, 1.64 and
6.00 seconds respectively.

15

	Introduction
	Tracer package
	MatrixExp Package
	User functions of MatrixExp package
	Calculation of an expression by means of MatrixExp package

