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Abstract We propose an inequality between the longitudinally polarized density

and the transversity of a quark in a nucleon. This inequality, whose validity is

limited to very small scales, is based on considerations about Lorentz

transformations and on commonly accepted models. Therefore it may be used as a

consistency check with other models. It turns out to agree with most model

predictions. Moreover it allows to establish, thanks to the positivity constraint,

another inequality between the longitudinally polarized and the unpolarized valence

quark density. We show that this latter inequality may be extended to any Q2,

consistently with commonly used factorization schemes and with some

nonperturbative evolution models. This inequality finds nontrivial applications to

the valence d-quark densities and is compared with data analyses, with model

predictions and with parametrizations of quark densities.
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Inequalities may be useful in extracting quark densities from data[1, 2]. In

particular, important bounds can be fixed by means of the positivity constraint[3, 1],

which gives rise, among other things, to the famous Soffer inequality[4]. This may

be employed, for example, for determining the behavior of the polarized densities for

x → 1[5]. In the present article we propose two inequalities concerning polarized

and unpolarized densities. The first inequality, which regards the transversely and

longitudinally polarized densities, may be taken into account only at small Q2; it

relies on considerations about Lorentz transformations and on a property shared by

commonly accepted models. This inequality may be used as a consistency check

with other models and results to be fulfilled by most current model predictions. The

second inequality is inherent to unpolarized and longitudinally polarized densities.

It is a consequence of the previous one and of the Soffer inequality and, according

to some evolution pictures, it may be extended to any Q2. This latter inequality

finds nontrivial applications to the valence d-quark densities: it results in accord with

model predictions, with available data analyses and with some best fits.

We introduce the transverse momentum (tm) longitudinally polarized density

δq(x,p2
⊥) and the tm transversity δT q(x,p⊥), whose integrals over p⊥ are, respec-

tively, the functions ∆q(x) and h1(x) (this latter often denoted as ∆T q(x)).

Let us consider Q2 values such that Q2 << M2, where M is the nucleon rest mass.

Then a quark can be viewed as a constituent quark[6]. In the rest frame of a polarized

nucleon, denote with q±0 (p
′) the probability density for a quark of momentum p′ ≡

(p⊥, p
′
3) to have spin parallel (+) or antiparallel (-) to the nucleon spin vector S0. A

boost parallel to the nucleon spin, and such that the nucleon momentum becomes

infinite, produces a spin dilution in the quark polarization density, which, in the

Q2-range considered, turns out to coincide with δq, i. e.,

δq(x,p2
⊥) =

[

q+0 (p
′)− q−0 (p

′)
]

cosθM . (1)

Here x = (p′0 + p′3)/M and p′0 =
√

m2 + p
′2. Moreover θM is the Melosh-Wigner

rotation angle[6, 7], i. e.,

θM = arccos

[

X2 − p2
⊥

X2 + p2
⊥

]

(2)
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and X = m + p′0 + p′3. Under the same conditions, a boost from the nucleon rest

system, analogous to the previous one, but in a direction perpendicular to its spin,

produces a less drastic spin dilution. Really, in this case the density results in δT q,

the Melosh-Wigner rotation giving[6]

δT q(x,p⊥) =
[

q+0 (p
′)− q−0 (p

′)
]

D⊥(θM , φ). (3)

Here

D⊥(θM , φ) = cos2
θM
2

+ sin2 θM
2
(2sin2φ− 1) (4)

and φ is the azimuthal angle of p⊥ with respect to the plane perpendicular to S0.

Eqs. (1) and (4) imply

δT q(x,p⊥) = δq(x,p2
⊥)

D⊥(θM , φ)

cosθM
. (5)

This, in turn, implies, for Q2 << M2, the inequality

δT q(x,p⊥)

δq(x,p2
⊥)

≥ 1, (6)

which reduces to equality for a nonrelativistic bound state. Now we make the following

assumption:

The difference q+0 (p
′)− q−0 (p

′) is either always positive or always negative, except,

at most, in a small neighborhood of x = 1, where q−0 (p
′) → 0.

This assumption agrees with the predictions of some models[8, 9, 10, 11], which

explain various data concerning the nucleon phenomenology. Moreover the it implies

that the valence quark density, ∆qv, related to q+0 (p
′) − q−0 (p

′) through eq. (1) and

through integration over p⊥, is either positive (for u-quarks) or negative (for d-quarks)

for any x (except, possibly, for x ≃ 1[5]). As we shall see below, this property may

be assumed also at large Q2, in accord with best fits to high energy data[1].

Our assumption implies, together with eq. (6),

h1(x)

∆q(x)
≥ 1 (7)

forQ2 << M2. Inequality (7) - which again reduces to an equality for a nonrelativistic

bound state - is in accord with almost all previous model calculations, based on the
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constituent quark model[7, 6], on the bag model[12, 13], on light cone models[14] or

on the chiral quark model[15] (see also ref. [16] for a review). It disagrees only with

the calculation based on the chiral quark soliton model[17]. It would be interesting

to study the origin of this discrepancy.

At increasing Q2, h1 decreases much more rapidly than ∆q, owing to a different

evolution kernel, therefore the inequalities (6) and (7) no longer hold true. However,

relation (7) gives rise, together with the Soffer inequality[4], to a bound which may

be assumed for any Q2, as we shall see in a moment. The Soffer inequality reads

2|h1(x)| ≤ q(x) + ∆q(x), (8)

where q(x) is the unpolarized quark density. We get from (7) and (8)

2|∆q(x)| ≤ q(x) + ∆q(x) (Q2 << M2), (9)

which is nontrivial for negative values of ∆q(x):

−3∆q(x) ≤ q(x) (Q2 << M2). (10)

Since q(x) is nonnegative, ineq. (10) holds true for any value of x. This inequality is

especially interesting as regards the valence d-quark in the nucleon, whose polarized

density is found to be negative for almost all x. In particular, the nonrelativistic

SU(6)-symmetric quark model predicts

∆dv(x) = −
1

3
dv(x), (11)

which saturates ineq. (10).

Now we show that this inequality, if referred to valence quarks, i. e.

−3∆qv(x) ≤ qv(x), (12)

may be extended to any Q2, consistent with commonly used factorization schemes

and nonperturbative evolution models. This amounts to showing that the function

φ(x, t) = qv(x, t) + 3∆qv(x, t), t = ln(Q2/Q2
0), (13)
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with Q2
0 << M2, is positive for any x and t ≥ 0, given that φ(x, 0) > 0, as follows

from (10). To this end, consider evolution equations for q±v (x, t), where

q±v (x, t) =
1

2
[qv(x, t)±∆qv(x, t)]. (14)

Taking into account parity conservation, set

d

dt
q±v (x, t) =

∫ 1

x

dy

y

[

P v
n(x, y, t)q

±
v (y, t) + P v

f (x, y, t)q
∓
v (y, t)

]

. (15)

Here P v
n(f)(x, y, t) is the probability density for a quark with initial fractional momen-

tum y to evolve into a quark with fractional momentum x ≤ y, without (with) helicity

flip. These equations present a strong analogy with the Boltzmann equation[18, 19].

Positivity of the quark densities q±v (x, t) demands[18], for x < y,

P v
n > 0, P v

f > 0, (16)

with, at most, singular diagonal terms at x = y. Moreover eqs. (15) imply

d

dt
qv(x, t) =

∫ 1

x

dy

y
P v(x, y, t)qv(y, t), (17)

d

dt
∆qv(x, t) =

∫ 1

x

dy

y
∆P v(x, y, t)∆qv(y, t), (18)

d

dt
φ(x, t) =

∫ 1

x

dy

y

[

∆P v(x, y, t)φ(y, t) + 2P v
f (x, y, t)qv(y, t)

]

. (19)

Here P v(x, y, t) = P v
n(x, y, t) + P v

f (x, y, t) and ∆P v(x, y, t) = P v
n (x, y, t)− P v

f (x, y, t).

Then from eq. (19) and from the second condition (16) it follows that φ will be

positive for t > 0 if, for x < y,

∆P v > 0, (20)

i. e., P v
n > P v

f . As a byproduct, condition (20) implies, together with eq. (18), that,

if ∆qv is positive (negative) for any x at t = 0, it is positive (negative) for any x and

t > 0. Now we discuss to what extent condition (20) may be supported by commonly

accepted evolution pictures, examining in detail two different situations.

For sufficiently large Q2 (> M2) the evolution of the quarks is governed essentially

by perturbative massless QCD. Therefore helicity conservation implies P v
f = 0 at

leading order. At higher orders the evolution is scheme dependent[20], as the parton
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densities are not directly observable quantities[18]. However, P v
f is still vanishing in

the MS chirally conserving scheme[21, 22] (see also [20] and refs. therein), as well as

in the JET scheme[23, 1]. Moreover, at least in the MS scheme, it is not completely

unrealistic to extend down to Q2 ≃ 0.34 GeV 2 the perturbative evolution picture

at next-to-leading order, respecting the positivity conditions (16) (see [24] and refs.

therein).

At decreasing Q2 the perturbative quark-gluon interaction is accompanied, and

then gradually supplanted, by more complex, nonperturbative mechanisms of recombination[25].

In particular, owing to spontaneous chiral symmetry breaking, recombination is sup-

posed to give rise, above all, to Goldstone bosons[25], especially to pions[15]. There-

fore one may assume the prevalent evolution splitting for a quark at small Q2 to

be q → q′π[26]. In this regime, especially at very small Q2, it is not clear whether

a DGLAP-type evolution picture is applicable at all, since a bound state emission

is involved. However, the picture just described seems to account satisfactorily for

the evolution of the Gottfried sum from very small to large Q2[26]. Therefore it is

worth deducing predictions of such a model about the evolution of φ. Now each

evolution equation (17) to (19) is replaced by a system of two coupled equations,

whose unknowns are linear combinations of the up and down valence quark densities,

and whose kernels are 2× 2 matrices, nondiagonal elements referring to charged pion

emission. Conditions (16) are replaced by (P v
n)ij > 0 and (P v

f )ij > 0 for all matrix

elements; moreover helicity conservation at forward - i. e., in the most favored direc-

tion of emission, according to four-momentum and angular momentum conservation

- implies (P v
f )ij < (P v

n)ij ,
1 which corresponds to condition (20). Our conclusion

is not modified by taking into account also a splitting of the type q → q′ρ, which,

although contributing to helicity flip, is much more unlikely than the one involving

the pion[27]. Nor is our argument changed by the assumption that the Gottfried rule

fails - due to fluctuations of the nucleon into a pion and a baryon[28] - even at very

small scales, as results from chiral quark soliton model calculations[29]. Lastly, due

to the linearity of the evolution equations, positivity is conserved also in the Q2 range

1If we take the model of ref. [26] strictly, we find (P v
f )ij = 0, since both the quark and the pion

are assumed to be massless.
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where both perturbative and nonperturbative evolution mechanisms coexist.

This completes the argument in favor of ineq. (12), which constitutes a nontrivial

bound. For example, it implies, together with the positivity constraint, −1/3qv(x) ≤

∆qv(x) ≤ qv(x), which is stronger than the inequality |∆q(x)| ≤ q(x), usually taken

into account in the fits to data of polarized deep inelastic scattering[1].

Ineq. (12) agrees with the predictions of some models, like the constituent quark

model[9] and the Carlitz-Kaur model[10] (see also ref. [30]). Moreover, as regards

d-quarks, integrating over x from 0 to 1 both sides of that inequality yields

∆Dv ≥ −1/3, (21)

where ∆Dv is the first moment of ∆dv(x). Bound (21) is fulfilled by a lattice

calculation[31]; it is also in agreement with HERMES[32] and SMC[33] data anal-

yses, where one has assumed a flavor symmetric sea polarization. Concerning best

fits, this bound agrees with the one by Leader, Sidorov and Stamenov[1], who assume

an SU(3)-symmetric polarized sea. The accord is even improved, if an asymmetry is

introduced in the polarized sea, either by means of an ad hoc parameter[34, 35, 36], or

as a consequence of a Pauli-blocking ansatz[37]. On the contrary, bound (21) is not

respected by the fit in ref. [2], where no constraints are assumed for the sea. Of course,

as pointed out in refs. [35, 36], the splitting of a polarized quark density into valence

and sea contributions is strongly model dependent. But ineq. (12) may reduce such a

dependence, consistently with commonly used factorization schemes - adherent, as far

as possible, to a parton model description[38, 21] - and with nonperturbative models

at Q2 << M2.

To summarize, we have proposed two inequalities, (7) and (12). The former in-

equality, which relies on general considerations about Lorentz transformations and on

a property shared by commonly accepted models, is found to agree with almost all

model predictions about h1(x) and ∆q(x) at very small scales. The latter inequality,

deduced from the former one, from Soffer’s inequality and successful evolution pic-

tures, agrees with model predictions, with analyses of available data and with some

best fits.
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