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We study the out-of-equilibrium nonlinear dynamics of fields after post-inflationary preheating.
During preheating, the energy in the homogeneous inflaton is exponentially rapidly transfered into
highly occupied out-of-equilibrium inhomogeneous modes, which subsequently evolve towards equi-
librium. The infrared modes excited during preheating evolve towards a saturated distribution long
before thermalization completes. We compute the equation of state during and immediately after
preheating. It rapidly evolves towards radiation domination long before the actual thermal equilib-
rium is established. The exact time of this transition is a non-monotonic function of the coupling
between the inflaton and the decay products, and it varies only very weakly (around 10−35 s) as
this coupling changes over several orders of magnitude. This result is applied to refine the relation
between the number of efoldings N and the physical wavelength of perturbations generated during
inflation. We also discuss the implications for the theory of modulated perturbations from preheat-
ing. We finally argue that many questions of the thermal history of the universe should be addressed
in terms of pre-thermalization, illustrating this point with a calculation of perturbative production
of gravitinos immediately after chaotic inflation. We also highlight the effects of three-legs inflaton
interactions on the dynamics of preheating and thermalization in an expanding universe.

I. INTRODUCTION: BETWEEN INFLATION

AND THERMALIZATION

According to the inflationary scenario, the universe at
early times expands quasi-exponentially in a vacuum-like
state without entropy or particles. During this stage
of inflation, all energy is contained in a classical slowly
moving inflaton field φ. The fundamental Lagrangian
L(φ, χ, ψ,Ai, hik, ...) contains the inflaton part with the
potential V (φ) and other fields which give subdominant
contributions to gravity. In chaotic inflationary models,
soon after the end of inflation the almost homogeneous
inflaton field φ(t) coherently oscillates with a very large
amplitude of the order of the Planck mass around the
minimum of its potential. Due to the interactions of other
fields with the inflaton in L, the inflaton field decays and
transfers all of its energy to relativistic particles. If the
creation of particles is sufficiently slow (for instance, if
the inflaton is coupled only gravitationally to the matter
fields) the decay products simultaneously interact with
each other and come to a state of thermal equilibrium
at the reheating temperature Tr. This gradual reheating
can be treated with the perturbative theory of particle
creation and thermalization as long as the couplings are
sufficiently small [1, 2, 3]. However, the particle produc-
tion from a coherently oscillating inflaton for a wide range
of couplings occurs in a non-perturbative regime of para-
metric excitation [4, 5, 6]. This picture, with variation
in its details, is extended to other inflationary models.
For instance, in hybrid inflation inflaton decay proceeds
via a tachyonic instability of the inhomogeneous modes
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which accompany the symmetry breaking [7].

One consistent feature of preheating – non-
perturbative copius particle production immediately
after inflation – is that the process occurs far away from
thermal equilibrium. The energy of the inflaton zero
mode is transferred to particles in an out-of-equilibrium
state with very large occupation numbers within a
very short time interval of about 10−35 sec, which can
be much shorter than the time needed for relaxation
towards thermal equilibrium.

One can expect the initial conditions for many parame-
ters of the subsequent cosmological thermal history to be
settled during or around preheating. It is often thought
that the details of the transition between inflation and
the hot radiation dominant stage are not relevant, except
for the so-called reheating temperature Tr, the tempera-
ture of the ultra-relativistic plasma at the time when it
reaches thermal equilibrium. Definitely, this is an impor-
tant parameter of the early universe. However, a precise
understanding of how thermal equilibrium is reached is
crucial since partial thermal distributions can be respon-
sible for cosmological baryo/leptogenesis, the possible
creation of dangreous cosmological relics, etc. The out-
of-equilibrium character of preheating opens the possibil-
ity for equally relevant phenomena associated with non-
equilibrium physics, including phase transitions, non-
thermal production of heavy particles, etc.

Precise knowledge of the expansion of the universe a (t)
is also required to connect a physical wavelength of the
observed cosmological perturbation, k/a (t), to the num-
ber of e-foldings N at which that wavelength exited the
horizon during inflation.

Finally, we can have an alternative mechanism of gen-
eration of (almost) scale free adiabatic metric perturba-
tions from preheating, based on spatial modulation of
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couplings [8, 9, 10]. Small spatial fluctuations in the cou-
plings lead to small fluctuations of the rates of physical
processes, which in turn generate adiabatic perturbations
of the energy density and of the metric. Analyzing the
details of this mechanism require precise knowledge of
the evolution of the equation of state (EOS).

To understand the early post-inflationary period we
have to understand the dynamics of interacting fields in
an out-of-equilibrium state with large occupation num-
bers evolving towards a state of ultimate thermal equilib-
rium. This is a complicated problem of non-equilibrium
quantum field theory, which is by itself a very interesting
topic.

The theory of the transition from inflation to thermal-
ization has been investigated with fully non-linear nu-
merical lattice simulations plus different techniques of
classical field dynamics [11, 12, 13, 14]. Classical field
dynamics is adequate as long as occupation numbers of
field excitations are large. There has also been progress
in understanding out-of-equilibrium QFT dynamics in
O(N) sigma models beyond the Hartree approximation
[15], taking into account crucial effects of rescattering
after preheating [16]. From all of these methods, the fol-
lowing picture emerges. Immediately after preheating, ei-
ther from parametric resonance or tachyonic, one or more
bose fields are excited in an out-of-equlibrium state with
large occupation number. Backreaction of these fields
terminates their production. Interaction (rescattering)
of these modes between each other, and with the remain-
ing inflaton field after the first stage of preheating is vi-
olent and non-perturbative. During this very short stage
a large amount of entropy is generated, chaotic (turbu-
lent) wave dynamics is established, and the fields not
directly excited during preheating get excited in out-of-
equilibrium states due to rescattering; residual inflaton
oscillations are still present. A next, longer stage then
takes place, characterized by lower (but still large) oc-
cupation numbers such that rescattering is perturbative,
and the occupation spectra gradually move towards a sat-
urated state by cascading towards ultra-violet (UV) and
infra-red (IR) modes (in the spirit of Kolmogorov wave
turbulence). The last and the longest stage will be the
stage of proper thermalization, when the distributions
evolve towards thermal equilibrium. Quantum physics
is important at the end of this stage, when the occupa-
tion numbers are small and the classical approximation
breaks down. One may say that reheating is completed
when this last, longest stage is completed, and its timing
defines Tr and ar.

In this paper we suggest a new look at the transition
between inflation and thermalization. We focus on cal-
culation and understanding of the effective equation of
state w = p/ǫ throughout all of these stages after infla-
tion. We use numerical lattice simulations [14] to cal-
culate w in the simple chaotic model with a quadratic
potential and a simple four-legs interaction g2φ2χ2.

In particular, we notice that w approaches (but
does not necessarily reach) the equilibrium radiation-

dominated value 1/3 while the fields are far from ulti-
mate thermal equilibrium. We compare this with the
analysis of [17], devoted to thermalization of the O (N)
sigma model in Minkowski spacetime. In that case, the
equation of state was found to evolve sharply towards
w = 1/3 long before thermalization completes, which
prompted the authors of [17] to describe the state of the
system as a pre-thermalized state. Although we also see
a somewhat similar effect, the expansion of the universe
and the presence of a residual massive inflaton compo-
nent, prevent the equation of state from being exactly
the one of radiation at this very early stage. Moreover,
we enphasize that the exact microphysics of the system
is described by a turbulent state, which is still very far
from a thermalized one. (This difference can be impor-
tant when discussing the cosmological effects of decay
products, as for instance production of dangerous relics
from nonthermal distributions.) Indeed, our simulations
show that the occupation numbers of excited infra-red
modes evolve towards a steady state, related to turbu-
lence of classical interacting waves.

The plan of the paper is the following:

In Section II we describe preheating in a simple chaotic
inflationary model. In Section III we present the results
of lattice simulations for time-dependent variables, in-
cluding the equation of state w(t) during different stages
of preheating, occupation numbers and fluctuations.

In Section IV we discuss some immediate applications
of our results for cosmology. We consider the application
of the EOS evolution to modulated cosmological fluctua-
tions and to the N− log k formula. We note several qual-
itatively important issues in the dynamics of thermaliza-
tion. The interaction φ2 χ2 describes (at the perturbative
level) scattering between inflaton quanta, rather than in-
flaton decay. Scattering between massive φ soon becomes
inefficient, and does not lead to a complete depletion of
the inflaton, which eventually ends up dominating over
the light degrees of freedom χ. This problem is automat-
ically avoided if three-legs bosonic interactions φχ2 are
also present. We illustrate this with an example moti-
vated by supersymmetry. We also discuss the rapid sat-
uration of the IR modes excited during preheating, which
occurs long before the ultimate thermal equilibrium (of
all modes) is reached.

One consequence of the excitation of infrared modes is
that it can lead to an overproduction of gravitinos or of
other dangerous gravitational relics. This generation is
different from direct nonperturbative production during
preheating [18]. Instead, it is analogous to the pertur-
bative thermal production first considered in [19]. The
main difference with [19] is that we compute the produc-
tion right after the first preheating stage, and not only
after thermalization has completed [19]. Although the
distributions formed at preheating/rescattering are far
from thermal, the high particle occupation numbers can
lead to a significant generation of gravitinos.

The above results are summarized in Section V.
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II. THE MODELS AND METHODS

In this section we briefly describe the model of chaotic
inflation with a quadratic potential and additional inter-
action terms and the methods we use to investigate the
fields dynamics. The quadratic form of the potential is
a good generic approximation around the minimum. For
simplicity, we take the potential

V (φ) =
1

2
m2φ2 (1)

also throughout inflation. The inflaton mass is taken to
be m ≃ 1013 Gev, which, in the simplest cases, repro-
duces the correct amplitude for the CMB anisotropies.
After inflation, the background inflaton field oscillates
with its amplitude diluted by the expansion as φ ∝
φ0/a

3/2 , where φ0 ≈ Mp/10 is the initial amplitude,
and a(t) is the scale factor of the FRW flat universe.
More accurately, the inflaton evolution is given by φ(t) ≈

MP√
3πmt

sinmt. The energy density of the inflaton oscil-

lations evolves as ǫ ≈ m2φ2
0/a

3, while the pressure is
p ≈ −(m2φ2

0/a
3) cos 2mt. Since the frequency of the

oscillations is higher than the rate of expansion H , we
deal with a nearly vanishing averaged effective pressure,
p ≈ 0. Therefore, immediately after inflation, the equa-
tion of state (EOS) is effectively the one of matter dom-
ination

w = p/ǫ ≈ 0 . (2)

This is what we expect for inflaton oscillations inter-
preted as the coherent superposition of heavy inflaton
(quasi)-particles at rest.

Inflaton oscillations decay due to the coupling between
the inflaton and other fields. One may think about the
inflaton coupling to other bosons through four-legs or
three-legs interactions, for instance coupling to another
scalar χ as g2φ2χ2 or g2σφχ2. Yukawa-type couplings to
fermions will be of the form hψ̄φψ. During preheating
the leading channel of inflaton decay will be parametric
resonance decay into bosons. A three legs interaction
between bosons g2σφχ2 requires a dimensionful scale σ,
which emerges naturally in SUSY theories. However, in
most cases the amplitude of the inflaton is sufficiently
high during the early stages of preheating that the four-
legs interaction dominates [20]. For this reason, at this
stage we consider only the four-legs interaction

Lint = −g
2

2
φ2χ2 . (3)

Three-legs interactions are important for the completion
of the decay of massive inflatons, and we will discuss
them further in Section IV, and in detail in [20].

Before proceeding with the generation of χ particles
from the inflaton oscillations, we need to comment on the
range of the coupling g2. At the level of QFT we can ob-
tain an upper limit for g2. Indeed, in non supersymmetric

models, the interaction (3) leads to radiative corrections 1

to the effective potential (1), of the form g4φ4

32π2 lnφ. For
inflaton values φ ∼ 4Mp , which correspond to the scales
where cosmological fluctuations are observed, radiative
corrections do not alter the the potential (1) as long as
g2 <∼ 10−5. In supersymmetric theories radiative correc-
tions from bosons and fermions cancel each other out so
that the value of g can be even higher.

There is also a lower limit on g2. During inflation
the field χ has the effective mass m2

χ + g2〈φ2〉 ∼ g2M2
p ,

where mχ is its “bare mass”: we take mχ ≪ m and thus
neglect it. It is known [21] that if we have two scalar
fields φ and χ, the latest stage of inflation will be driven
by the lightest scalar (light scalars are always generated
during inflation). A consistent setting where the end of
inflation is driven by the φ field requires g2M2

p > m2, i.e.

g2 > 10−12. This lower limit can be evaded, however, if
χ is conformally coupled to gravity.

A quantum scalar field χ in a flat FRW background

has the eigenfunctions χk(t)e−i~k~x with comoving mo-

menta ~k. The temporal part of the eigenfunction χk(t) =
a3/2Xk(t) obeys the equation

Ẍk +

(

k2

a2
+ g2φ2

)

Xk = 0 (4)

with positive-frequency initial conditions in the far past.

In the effective frequency ω2

k ≈ k2

a2 + g2φ2 we neglect

small terms proportional to H2. This is an oscillator-like
equation with a periodic frequency, which contains expo-
nentially unstable solutions corresponding to parametric
resonance. It is convenient to use a new time variable
z = mt. Then, the essential dimensionless coupling pa-
rameter which characterizes parametric amplification is

q =
g2φ2

0

4 m2 . The limits on the coupling g2 we have discussed

above correspond to 10−3 <∼ q <∼ 105. A large portion of
this interval is in the broad parametric resonance regime
(q > 1) of production of χ particles [4].

What is important, however, is that even one bosonic
field with a large parameter q is sufficient to have the
leading channel of inflaton decay occur through broad
parametric resonance. Indeed, if one such field χ is ex-
ponentially amplified in this way then other fields that
are coupled to it directly or indirectly will tend to be
amplified as well [12].

We are interested in the dynamics of the fields φ and
χ after inflation. Although this toy model is simple, its
dynamics are rather rich and complex. The first stage is
the stage of parametric excitation of the quantum fluc-
tuations of the field χ, where the light χ particles are
copiously produced from the classical inflaton oscillation.

1 There is also a divergent quadratic contribution. However, for
the supersymmetric theory this term is independent of the value
of φ and can thus be cancelled by a counter-term.
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This process is described by the theory of broad stochas-
tic parametric resonance in an expanding universe [6].

As soon as the occupation number of created particles

nk =
ωk

2

(

|Ẋk|2
ω2

k

+ |Xk|2
)

− 1

2
(5)

becomes large, nk ≫ 1, one can approximate the dy-
namics with that of the classical interacting fields φ and
χ. Fully non-linear wave equations for coupling clas-
sical fields are rather complicated. We use the LAT-
TICEASY numerical simulations [14] to solve the equa-
tions �φ + m2φ + g2φχ2 = 0 and �χ + g2φ2χ = 0 in
an expanding universe (� being the covariant wave op-
erator in the FRW geometry). The scale factor a(t) is
self-consistently calculated from the Friedmann equation.
The initial conditions correspond to gaussian initial fluc-
tuations of φ and χ, which arise from vacuum fluctua-
tions.

The novel element of our current study is the focus on
new diagnostics of the numerical experiments. In par-
ticular, we investigate the evolution of the equation of
state w(t) during different stages, and for various cou-
plings g2. Many previous numerical studies of preheat-
ing concentrated on inflation with a quartic potential
V (φ) = λφ4, where the expansion of the universe can
be “scaled away”. The inflaton oscillations in this model
have the EOS w = 1/3, which corresponds to that of
radiation domination, so w does not change after the in-
flaton decay. By contrast, w changes during preheating
in the more general model with a quadratic potential.

The total energy density ǫ and pressure p contain con-
tributions from kinetic and gradient energies of the fields
φ and χ, plus interaction terms. It is instructive to cal-
culate separate contributions from all of these terms. We
find that the interaction term, except for a transient mo-
ment between the end of preheating and onset of turbu-
lent regime, is sufficiently small that we can interpret the
results in terms of different particles δφ and χ coupled to
each other. In particular, this allows us to interpret the
energy density in each component in terms of the integral

ǫ ≈ 1

(2π)3a4

∫

d3k ωk nk , (6)

where the comoving frequency is

ωk =
√

k2 +m2

effa
2 , (7)

and the co-moving occupation number nk is given in (5).
To study w we have to monitor the relationship between
the effective masses of the fields

m2

φ,eff = m2 + g2〈χ2〉 , (8)

m2

χ,eff = g2〈φ〉2 + g2〈δφ2〉 . (9)

and the typical momenta.
The variances of the fluctuations

〈χ2〉 =
1

(2π)3

∫

d3k |χk|2 (10)

〈δφ2〉 =
1

(2π)3

∫

d3k |δφk|2 (11)

are also an important diagnostic of the non-equilibrium
physics. Let us rewrite the wave function Xk(t) in

the WKB form Xk(t) = αk√
2ωk

e−i
∫

dtωk + βk√
2ωk

ei
∫

dtωk .

While the occupation numbers in terms of α − β coeffi-
cients are simply nk = |βk|2, the exact expression for the
variances is more complicated

〈χ2〉 =
1

(2π)3a3

∫

d3k

ωk

(

nk + 2Re
(

αkβ
∗
ke

2
∫

dtiωk

))

.

(12)
Particles χ produced at preheating are created in a
squeezed state. In particular, this is reflected in the pres-
ence of the oscillatory second term in the integral (12),
where the phases of αk, βk are present.

The total co-moving number densities of χ and φ par-
ticles are

Nχ =
1

(2π)3a3

∫

d3k nχ
k , (13)

Nφ =
1

(2π)3a3

∫

d3k nφ
k , (14)

respectively. It is instructive to monitor the time evolu-
tion of the total number of particles Ntot = Nχ +Nφ. At
leading order in g2 the total number of particles is con-
served, Ntot (t) = const. However, there is a brief period
immediately after preheating whereNtot is poorly defined
due to the strong interactions between the waves. Indeed,
during preheating the occupation number of χ particles
can be as large as nk ∼ 1/g2. Consider the collision in-
tegral in the kinetic equation for the particle. If we for-
mally represent it as a series with respect to the coupling
g2, the smallness of g2 will be compensated by the large
occupation numbers. This means that the next terms of
the collision integral associated with the higher order dia-
grams (for example, the diagram with four incoming, two
outgoing legs, and two vertices) are as important as the
first term. In fact, the non-perturbative character of the
interactions during this short intermediate stage makes
it difficult to investigate the whole dynamics analytically.
After this period ends, the spectrum of the occupation
numbers formed at preheating is weighted towards the
infra-red relative to a thermal distribution of the same
energy density. Hence, particle fusion is more favored
than particle dissociation. Once rescattering leads to a
decrease of nk, only the leading four-legs diagram with
one vertex becomes important, and Ntot decreases on
the way to thermalization, on a timescale which is much
longer than the one which can be observed in our lattice
simulations.
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III. OUTPUT OF THE CALCULATIONS

A. The Calculations

We performed three-dimensional lattice simulations for
the model of Section II. Our grid was a 256× 256 × 256
cube with a comoving edge size L = 10/m, which corre-
sponds to a comoving grid spacing of dx ≈ 0.04/m. As
energy flows towards the UV end of the spectrum the
simulations eventually reach a point where the grid spac-
ing is too large to capture the important UV physics.
By monitoring the spectra of the fields, however, we can
verify that these simulation parameters were adequate to
capture the relevant IR and UV physics well past the end
of preheating. The time step was dt = 0.001/m and the
inflaton mass was m = 10−6Mp. We used values of the
coupling near g2 = 10−7 This value is optimal because
it is large enough to produce highly efficient preheating,
but small enough that the occupation numbers nk ∼ 1/g2

produce strong rescattering. The results should be quali-
tatively similar for a wide range of values of g2, but would
require more IR and/or more UV to simulate accurately.

To probe later times and wider ranges of the couplings
it will be necessary to extend the lattice simulations.
This can be done with a parallelized version of the sim-
ulation code LATTICEEASY (currently under construc-
tion), or by combining the straightforward lattice simu-
lations with other methods, like the equations for a large
number of weakly coupled oscillators [22]. We intend to
pursue both of these approaches in subequent work.

In the rest of this section we present the results of our
simulations.

B. Equation of State

The time evolution of the EOS w(t) for different cou-
plings is shown in Figure 1. Each point plotted on this
figure represents the value of w averaged over a complete
inflaton oscillation. This represents one of the main re-
sults of our study.

Immediately after inflation, the EOS averaged over in-
flaton oscillations is w = 0. It sharply changes at the end
of preheating.

There are at least three important points worth enpha-
sizing about the evolution of w.

i) First, the transition of the EOS from w = 0 to the

value w ∼ 0.2 − 0.3 occurs very sharply, within a time

interval ∼ 10−36 sec.

Indeed, recall that the unit of time on the plots is 1/m,
where m is the inflaton mass, i.e. 10−37 sec. The first
stage of preheating is completed within about a hundred
of these units, i.e., 10−35 sec. The rise of w and gradual
saturation takes roughly the same time.

ii) Second, the dependence of w(t) on the coupling g2

for resonant preheating is a non-monotonic function of

g2.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 60  80  100  120  140  160  180  200  220

w
=

p/
ε

t

g2=2.0•10-7

g2=2.1•10-7

g2=2.2•10-7

g2=2.4•10-7

g2=2.5•10-7

FIG. 1: Evolution of the equation of state w = w(t) as a
function of time (given in units of m−1) for various couplings
g2 around g2 = 2 × 10−7.

This is to say that the time during which preheating
comes to an end is very weakly (logarithmically) depen-
dent on the coupling. As seen from Figure 1 the curves
w(t) begin to shift to the left towards an earlier end of
preheating, as we vary g2 by 5%. However, at some point
the curves stop moving to the left and instead begin to
return toward the right. As we change g2 by about 25%,
the cycle repeats. As we vary g2, the function w not
only shifts, but it also varies its detailed shape. Still,
to characterize these variations, we pick up the moment
where w is equal to the value 0.15 (just for convenience
of calculation), w(ttran) = 0.15. This allows us to plot
the transition moment ttran(g2) as a function of g2, see
Figure 2.

 100

 105

 110

 115

 120

 125

 130

 135

 140

 2  2.1  2.2  2.3  2.4  2.5

t tr
an

s

g2, 10-7

FIG. 2: Transition (preheating) time as a function of g2.

We see that the transition time varies between 100/m
and 150/m. This non-monotonic behavior of the dura-
tion of preheating is explained in the theory of broad
paremetric resonance [6] (see Sections 6 and 9 there).

The g2 dependence of the EOS is the critical issue
for the theory of modulated cosmological perturbations,
which we will discuss in Section IV.
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iii) The third point is that w does not necessarily im-

mediately go to the radiation dominated value 1/3. This
is partly because immediately after preheating the light
field still has a significant induced effective mass due to
the interaction, and partly due to the significant residual
contribution from the homogeneous inflaton [13]. Unfor-
tunately, limitations on running longer simulations pre-
clude us from seeing further details of the time evolution
of w. However, we have a strong theoretical argument to
advance the discussion further. In a model with a massive
inflaton and light scalar χ even the radiation dominated
stage is transient. Indeed, sooner or later the massive
inflaton particles, even if significantly under-abundant at
the end of preheating, will become the dominant compo-
nent, and the universe will again be matter-dominated.

C. Occupation Numbers

The occupation numbers nχ
k and nφ

k are among the
most interesting variables to understand the micro-
physics in our system of two interacting fields. First,
we shall determine when the definition of nk is mean-
ingful. To do so, we consider the composition of total
energy density ǫ of the system of coupled φ and χ fields.
The total energy density ǫ can be decomposed into par-
tial contributions from the kinetic energy of both fields,
their gradient energy, their potential energy (φ only in
this model), and finally the interaction energy

ǫ =
1

2
φ̇2+

1

2
χ̇2+

1

2a2
(∇φ)2+

1

2a2
(∇χ)2+

1

2
m2φ2+

1

2
g2φ2χ2 .

(15)
Figure 3 shows the relative contribution to the total en-
ergy from each of the components for g2 = 2.5 × 10−7.
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lo
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 o
f e

ne
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y 
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m
po

ne
nt

s

mt

kinetic φ
kinetic χ

gradient φ
gradient χ

m2 φ2 /2
g2 φ2 χ2/2

FIG. 3: Relative contribution of each of the energy compo-
nents to the total energy, as a function of time. The vertical
axis is the log of the various energy components in units of
the initial energy m2φ2

0 multiplied by a3.

We note two features of this plot. First, the interaction
term is comparable to the other terms in the time interval
100/m < t < 120/m. In this short period, the formula

(6) for the energy of the particles is not a good approxi-
mation and the occupation number nk is not well defined.
Outside this time interval, nk is a meaningful quantity.
Secondly, the contribution from the background homoge-
neous inflaton is dominant even after preheating, up to
approximately t ∼ 150/m. A similar point was made for
the λφ4 model in [13].

Let us now turn to the occupation numbers nk. We
find it more instructive to output not the occupation
numbers nk per se (as it is commonly done in the lit-
erature) but the combination of nk with the energy per
mode ωk . This combination can be immediately com-
pared with the Rayleigh-Jeans spectrum,

nk ≈ Teff

ωk − µ
, (16)

which corresponds to the equipartition spectrum of clas-
sical waves (we introduce the chemical potential µ for
generality). The comparison allows to determine how
close the distribution is to the thermal one.

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1  10  100

ω
φ,

k 
n φ

,k
 / 

m

k / m

t = 46 / m
t = 59 / m

t = 104 / m
t = 131 / m
t = 250 / m

FIG. 4: Time evolution of the combination ωφ,kn
φ

k , for the
model g2 = 2.5 · 10−7.

The combination nk ωk for the two fields is shown at
some characteristic times in the two Figures 4 and 5.
There are three distinct stages which characterize the
evolution covered by our simulation. The first stage,
characterized by linear dynamics, is the one of pre-
heating and early rescattering. The first modes to be
populated are the IR ones. Preheating of χ particles
occurs in the resonant band at comoving momentum
k∗ =

√
gmφ0 a

1/4 ≃ 7ma1/4 [6]. Then, quanta δ φ are
generated by rescattering. The annihilation δχk δχk →
δφk δφk amplifies quanta of the inflaton at k ≃ k∗ . Even
more effective is the rescattering of the χ quanta against
the inflaton zero mode, δχk φ0 → δχk δφk , which pro-
duces quanta of both φ and χ at momentum k ≃ k∗/2 .

The second stage is a violent stage of highly nonlinear
dynamics. Starting at mt ∼ 100 − 110 , the higher band
at k∗/2 both increases in its amplitude and broadens to-
wards higher momenta; quite interestingly, the peak lo-
cation shifts from ∼ k∗/2 to ∼ k∗ during this quick and
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FIG. 5: Same as Fig. 4, but for the χ field.

explosive stage. As we remarked, the particle occupation
number is ill defined at this stage, and a nonlinear wave
description is more adequate.

The explosive stage of rescattering ends at about
mt ∼ 130 . In the next stage, characterized by pertur-
bative dynamics, the distributions smooth out and start
evolving (at a much slower rate) towards higher comov-
ing momenta. The spectra in the IR approach a satu-
rated power-law state, which then slowly propagates to-
wards the UV. Although one can observe a greater ten-
dency towards thermalization for the IR modes (where
the rescaled spectra are closer to flat), the overall dis-
tributions are still typical of the turbulent regime, and
they are far from thermal. If we contrast this with the
macroscopic behavior we have described above, particu-
larly the evolution of the EOS, we see that the system can
be considered in a pre–thermalized state (see also [17]),
but that thermalization is still far from being complete .

It is also instructive to consider the product of the
occupation number nk with the phase space sphere area
k2 and energy per mode ωk. This combination represents
the energy density of the quanta at momentum k (since
the product 4 π k2 ωk nk dk is the energy density of the
quanta whose momentum has a magnitude between k
and k + dk ).

In Figures 6 and 7, we plots the distributions at dif-
ferent times separated by intervals δt = 4π/m. This
allows us to visualize the growth of the distributions,
and to monitor the cascade of energy in the phase space
k. When the ultraviolet part of the distribution hits the
highest momentum of the simulation (defined by the grid
size), the energy is artificially reflected back to the IR
modes and the simulation is no longer reliable. Due to
the scale chosen (natural rather than log scale), only the
distributions at times greater than about 100/m can be
appreciated in the two figures 6 and 7. Moreover, the
double peak structure that can be observed for χ at late
times is due to the rescaling chosen. The plot for the
occupation number, nk k

2 (not shown) has a high peak
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FIG. 6: Time evolution of the combination k2ωknk for the
field φ . The thicker (green) curve is the spectrum at the final
time of our evolution.
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FIG. 7: Same as Figure 6, but for the field χ.

at k ∼ 4m , followed by a plateau up to k ∼ 30m . The
combination k2ωknk shown has a peak at the momenta
corresponding to this plateau, showing that these mo-
menta dominate the energy density in the χ distribution.
The saturated spectra can be clearly seen in the green
(thick) curves on these plots.

The combination k2ωknk is also given in Figures 8 and
9, where we however show only few times, and we focus on
the IR part of the distributions. These figures show the
rapid broadening (towards the UV) of the distributions
in the violent rescattering stage, and the tendency to
saturation at later times.

D. Fluctuations and Effective Masses

The evolution of the scalar fields can be strongly af-
fected by the presence of dynamical effective masses for
the two fields. A high mass for some of the fields can
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FIG. 9: Same as Figure 8, but for the field χ.

disfavour or block some of the interactions, with a con-
sequent delay of thermalization. For instance, it is well
known that a condensate which is strongly coupled to
some field ψ can have a very long lifetime, since the same
coupling which would allow the decay also produces a
high effective mass for ψ, which can prevent the decay
from occuring. In the case we are discussing, the effec-
tive masses of the fields acquire significant (loop) con-
tributions from the high variances produced at preheat-
ing/rescattering, according to Eqs. (8)-(9).

Figure 10 shows the evolution of the background infla-
ton oscillations and fluctuations of 〈δφ2〉 and 〈δχ2〉. All
values are plotted in “comoving scales”, i.e. multiplied
by a3. The corresponding physical quantities can be ob-
tained by the value of the scale factor, which is shown in
Figure 11.

Figure 12 shows the effective masses for φ and χ , mul-
tiplied by the scale factor a. This combination enters in
the comoving dispersion relations for the quanta of the
two fields, given by eq. (7). Therefore, the product ameff
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FIG. 10: Evolution of the background inflaton field 〈φ〉2 and
of the variances 〈δφ2〉 and 〈χ2〉. Fields squared are rescaled
by a3 .
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is the correct quantity to compare with the comoving mo-
mentum k .

This comparison is shown in Figure 13, where we
show the fraction of relativistic quanta (that is, with
k > ameff) for the two fields. We see that the majority
of the particles are non-relativistic, so that the effective
masses indeed play a significant role in the evolution of
the spectra. In particular, we observe that during rescat-
tering very few particles are relativistic; this confirms the
fact that the distributions are very peaked in the IR at
this stage. The fraction of relativistic χ particles rapidly
increases during the violent thermalization stage. The
fraction of relativistic δφ remains instead always smaller
(confirming the fact that mφ,eff > mχ,eff ), and it slowly
increases during the thermalization stage, when the dis-
tributions evolve towards the UV.

Up to mt ∼ 120 , the coherent mode of the inflaton
dominates the effective mass for χ . (The rapid variation
of mχ,eff due to the coherent oscillations of φ is the cause
of preheating.) At later times, the variance of φ gives in-
stead a greater contribution. In the effective mass for φ
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the “bare” term m dominates up to mt ∼ 100 , while the
variance of χ provides the dominant contribution at later
times. Eq. (12) provides a useful expression for the vari-
ance; during the turbulence stage, the occupation num-
bers vary only adiabatically, so one may expect that the
growth of ameff results in a decrease of the variance, and
vice-versa. This relation is visible in the figures shown.
The “late time” decrease of amχ,eff is accompanied by
an increase of 〈χ2〉. This in turns cause an increase of
amφ,eff , and, consequently, a decrease of 〈φ2〉.

IV. COSMOLOGICAL IMPLEMENTATIONS OF

THE RESULTS

A. Complete Decay of the Inflaton

In the simple model discussed so far, with the inter-
action term φ2 χ2 , the decay of the inflaton φ is not
complete. Indeed, such a term mediates scatterings be-
tween inflaton quanta, rather than single particle decay.

Once φ is diluted by the expansion of the universe, the
scatterings become inefficient, and the number of infla-
ton quanta remain practically constant. This poses a
problem because in order to reach the stage of radiation
domination we need to have complete decay of the infla-
ton.

The simplest way to have a complete decay is to con-
sider three legs interactions. For instance, we can re-
place (3) by

Lint = −g
2

2
(φ+ σ)

2
χ2 (17)

where σ is a mass dimension parameter, which breaks
the φ ↔ −φ symmetry. For σ ≪ φ , the trilinear term
produced by this interaction is irrelevant and the infla-
ton decay occurs as described above. However, when φ
is decreased by the expansion of the universe, the trilin-
ear interaction becomes dominant, leading to a complete
inflaton decay.

We can avoid discussing the introduction of the scale
σ by considering a Yukawa interaction of the inflaton
with some fermions ψ . By itself, this interaction has
interesting consequences for preheating, as discussed e.g.
in [23]. When both fermionic and bosonic interactions are
present, preheating into bosons is typically much more
efficient, since the one into fermions is reduced by Pauli
blocking. However, once the interactions become per-
turbative, the trilinear φ → ψψ decay will eventually
dominate over the φφ→ χχ scattering.

Three-legs interactions arise very naturally in SUSY
theories. Indeed, consider the simple superpotential

W =
m√
8
φ2 + g2φχ2 . (18)

The corresponding scalar field potential contains three-
legs as well as four-legs plus self-interaction terms

V =
m2

2
φ2 +

√
2g2mφχ2 + 4g2φ2χ2 + g4χ4 (19)

(neglecting the imaginary parts of the fields). The four-
legs interaction dominates over the three-legs one as long
as φ >∼ σ = 2g2m. For reasonable values of σ, this hap-
pens during the first stages of preheating. Eventually, the
amplitude of φ decreases due to the expansion of the uni-
verse, and the trinlinear interaction dominates, resulting
in a complete decay of the massive inflaton.

Hence, considering a supersymmetric theory automat-
ically introduces trilinear vertices among the scalars. It
also allows for stronger couplings between the inflaton
and other fields, without spoiling the flatness of the in-
flaton potential, as we have discussed in Sec. II.

B. Relation between efoldings N and wavelength of

perturbations

The precise history of the expansion of the universe
a (t) is important for connecting the physical wavelength
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k/a (t) of the cosmological perturbations we observe to
the number of efoldings N at which the perturbation was
generated (left the horizon) during inflation.

According to the general lore [24, 25], one has

N(k) = 62 − ln
k

6.96 × 10−5 Mpc−1
+ ∆, (20)

where 6.96×10−5Mpc−1 is the inverse size of the present
cosmological horizon and ∆ is defined by the physics after
inflation:

∆ = −ln
1016GeV

V
1/4

k

+
1

4
ln

Vk

Vend

− 1

3
ln
V

1/4

end

ρ
1/4

reh

, (21)

where ρreh is the energy density at the end of reheating,
Vk is the value of the inflaton potential at the moment
when the mode with the comoving wave number k exits
the horizon at inflation and finally Vend is the value at
the end of inflation.

The last term in the right hand side of eq. (21) is re-
lated to reheating, specifically that it is not an instan-
taneous process. It is typically computed under the as-
sumption that the universe is matter dominated (by the
coherent oscillations of the inflaton) all throughout re-
heating, and that it (instantaneously) becomes radiation
dominated at the end of the reheating stage. As we have
seen, this is not what happens.

Indeed, a better definition of the last term in ∆ is
− 1

4
ln ard

ainf

where ard is the scale factor at the moment
after reheating at which the EOS reaches its value at
radiation dominance. As we have been discussing, this
moment can occur while the distributions of particles are
very far from thermal, shortly after the end of preheat-
ing. This amounts to taking ard/ainf ∼ 10—20 , rather
than ard/ainf

>∼ 108 , where aRD is the value of the scale
factor at the end of reheating under the common assump-
tion that perturbative reheating occurs entirely within a
regime of matter domination, with Tr ≃ 109 GeV. In this

situation one has HRD ∼ T 2

r

MP

at the end of matter dom-
ination, and the corresponding value of the scale factor

aRD can be estimated as aRD

ainf

∼
(

Hinf

HRD

)2/3

∼
(

mMP

T 2
r

)2/3

.

Hence, for a preheating scenario with a very wide range
of values of the coupling g2 , the first term of (21) can be
fixed to

−1

4
ln
ard

ainf

∼ −(0.6—0.8) . (22)

This result holds for a wide class of inflationary models,
and for many different types of preheating.

C. Physics before thermalization

One of the most important parameters in physics of
the early universe is the highest temperature of the hot

plasma after the inflaton field decays and transfer its en-
ergy into radiation.2 This is traditionally called the re-
heating temperature Tr. As we have seen in many pre-
vious papers and above in this paper, ultimate thermal
equilibrium is preceeded by several stages. Let us distin-
guish four of them:

• preheating, with the duration δt1 ∼ 100/m,

• a short violent stage at the end of preheating when
non-linearity and non-perturbative effects are dom-
inant; chaos is onset, erasing the details of the ini-
tial conditions, on a timescale δt2 ∼ 10/m,

• the stage of turbulence of classical fields, with the
saturated spectrum cascading both towards UV
and IR modes with duration δt3, longer than the
two previous stages,

• the last stage of proper QFT thermalization, with
particle fusion/offshell processes; it is characterized
by the timescale δt4, much longer than the previous
ones.

Traditionally the beginning of the thermal history is
related to the moment δt4, which may be very long; as
a result of redshift, the reheating temperature can be
rather low.

Let us reconsider this attitude. While the question
of when the ultimate thermal equilibrium will be estab-
lished and to which value of Tr it corresponds is still very
interesting, we will argue that important physics which
constrains the model of inflation and interactions takes
place long before full thermal equilibrium is completed.

Indeed, Figures 4–6 show that the modes at physically
interesting scales, up to k ∼ tens of m ∼ 1014 GeV, are
quickly excited towards a saturated distribution. This
raises several subtle and interesting questions. Usually,
the relativistic particles embedded in the thermal bath
are brought into thermal equilibrium after the relaxation
time 1/σn, where σ is the cross section of the processes
relevant for thermalization, and n =

∫

d3knk is the num-
ber density of particles. This estimate works in the di-
luted gas approximation. Indeed, consider the vertex
φχ2, leading to inflaton decay into quanta of χ. The
particle number density enters in the collisional integral
in the combination

nφ
p1

(

1 + nχ
p2

) (

1 + nχ
p3

)

− nχ
p2
nχ

p3

(

1 + nφ
p1

)

(23)

(p1 is the momentum of the inflaton quantum, while
p2,3 are the momenta of the two quanta of χ entering

2 It is well known that if you assume a slow, perturbative inflaton
decay and a quick thermalization of the decay products, a sub-
dominant thermal bath will be present while the inflaton is still
decaying. That will have a temperature muich higher than Tr ,
defined at the moment when the thermal bath starts dominating.



11

in the process). The above estimate for the thermaliza-
tion timescale assumes that the inverse process χχ → φ
(described by the second term in (23)) is irrelevant, and
that all the occupation numbers are much smaller than
one, so that 1 + np ≃ 1 . In particular, this last assump-
tion is not valid until the very end of the thermalization
stage.

Therefore, for large nk we expect that particles are
dragged into effective thermal equilibrium faster, due to
the stimulated interaction. We have observed this fact
also in previous numerical lattice simulations [12].

Another relevant effect, already discussed above, is
that large fluctuations of fields can contribute to the ef-
fective masses of particles, which can become effectively
heavy. This leads to the blocking of some processes which
may lead to a faster thermalization, until fields fluctua-
tions are diluted by the expansion.

Finally, a very relevant question is the one of parti-
cle production from the nonthermal but highly excited
distributions. In particular, one should verify that dan-
gerous relics are not overproduced at this stage. To see
this, let us discuss gravitino production from the decay
products of the inflaton. In models where supersymme-
try is broken gravitationally, only a very small number
of gravitinos can be tolerated, Y3/2 = n3/2/s <∼ 10−14

(the exact value being dependent on the gravitino mass)
[19]3. The typical approach is to compute the produc-
tion of gravitinos only after the thermal bath has formed.
The dominant processes are 2 → 2 scatterings with only
one gravitino as outgoing particle (and, hence, only one
gravitationally suppressed vertex, while the other vertex
is typically a gauge interaction). The rate of gravitino
production follows from the Boltzman equation

dN3/2

dt
+ 3HN3/2 = 〈σ |v|〉NT NT , (24)

where NT ∼ T 3 is the abundance of the (MSSM) degrees
of freedom in the thermal bath, and where the average
cross section is of the order 〈σ|v|〉 ∼ α/M2

p , where α is a
gauge structure constant. The right hand side decreases
very rapidly with time, and the production at the highest
possible temperature (that is, at Tr) dominates. Hence,
only the production in the first Hubble time is relevant,
and the final result can be estimated as

N3/2 ∼ αT 6
r

M2
p

×H−1

r , (25)

where Hr ∼ 10T 2
r /Mp is the Hubble parameter at T =

Tr . This leads to the gravitino abundance

Y3/2 ∼ 10−4
Tr

Mp
, (26)

3 A more stringent limit applies if the decay has a significant
hadronic branching ratio [26].

and to the well known bound Tr
<∼ 109 GeV on the re-

heating temperature.

This standard computation of gravitinos generated
from the thermal bath neglects all the production which
may have taken place during the thermalization stage.
The underlying idea is that, during reheating, most of the
energy is in the inflaton condensate, where the quanta
(loosely speaking) do not have momentum, and hence
cannot scatter to produce gravitinos. While this may be
true for a slow (perturbative) inflaton decay, this is cer-
tainly not the case for preheating/rescattering, where the
distributions of the decay products form right after the
end of inflation. These distibutions may be responsible
for significant gravitino production, even before complete
thermalization has taken place [27].

The computation is now more difficult than in the ther-
mal case [19]. First of all, unlike the thermal computa-
tion, the result is expected to be model dependent. Sec-
ond, turbulent nonlinear processes are dominant right
after preheating, so that it is possible that processes in-
cluding more vertices give a sizeable contribution to the
amount of gravitinos produced. However, we can obtain
a conservative estimate by considering only 2 → 2 tree
level processes also in this case. For definiteness, let us
take the model (1), (3), with g2 = 2.5 × 10−7 (the value
that we have studied above), and assume that the χ field
produced at rescattering has a trilinear vertex with its
femionic superpartner χ̃ and another fermion z̃. For in-
stance, this could be a gaugino, if χ has gauge interac-
tions. However, let us consider here a generic vertex with
coupling constant h and the interaction χχ → ψ3/2 z̃,
mediated by the fermionic partner of χ. (As a technical
point, we consider production of transversal gravitinos,
since the nature of the longitudinal component changes
with time).

We are interested in evaluating the production at the
time t∗ ∼ 120/m , when the (physical) number density
of quanta of χ is maximal. We first discuss whether the
process we are considering is kinematically allowed. At
the time t∗ , the non-gravitational vertex provides an ef-
fective mass for fermions of the order (see Fig. 10).

mz̃ (t∗) ∼ h
√

〈χ2 (t∗)〉 ∼ 5 · 102 hm (27)

The distributions of χ obtained from the lattice have a
typical comoving momenum of the order of 10m , which,
at the time t∗ , corresponds to the physical momentum
p∗ ∼ 0.5m . Hence, if h < 10−3 , most of the quanta of
χ will be able to produce gravitinos through the process
we are considering. For higher values (for example, if the
second vertex is a gauge interaction), only the few quanta
of χ with very high momenta can contribute to the pro-
duction, so that this process is significantly suppressed.
However, as the universe expands,

√

〈χ2〉 decreases as

a−3/2 , while the physical momenta p ∝ a−1 decrease
less. Therefore, more and more quanta will have a suffi-
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ciently high momentum to produce a ψ3/2–z̃ pair.4 For

simplicity, h <∼ 10−3 is assumed in the following discus-
sion; we do not expect that the following conclusions will
significantly change if a stronger coupling is considered.

By proceeding as in the thermal case, we can estimate
the number of gravitinos produced in the first Hubble
time after t∗ . (Again, the numerical values are taken

from the lattice results; Nχ (t∗)
2

denotes the physical
number density of the χ quanta at the time t∗ .)

N3/2 (t∗) ∼
h

M2
p

Nχ (t∗)
2 H (t∗)

−1 ∼ 107 hm3 . (28)

For sufficiently high h , this value is actually incorrect,
since it exceeds Pauli blocking. Assuming that the whole
Pauli sphere up to physical momentum p∗ is filled gives

N3/2 (t∗) ∼ 0.1m3. (29)

The number density of produced gravitinos is then the
smaller between eqs. (28) and (29), according to the value
of h . In the following, we assume h > 10−8 , so that Pauli
blocking is reached and the number density of gravitinos
is given by eq. (29).

The gravitino abundance is obtained by dividing the
gravitino number density by the entropy. At the time
t∗ , the distributions of the decay products are far from
thermal (being concentrated in the IR), so that their en-
tropy is smaller than that of a thermal bath with the
same energy. The entropy density can be computed from
the lattice simulations to be approximately s = 104m3

at this stage [28]. However, the (comoving) entropy is ex-
pected to increase due to thermalization. If we convert
the actual particle distribution instanteneously into the
thermal distribution, the entropy would reach the max-
imal value smax ∼ 107m3 allowed by energy conserva-
tion. The difference between the actual entropy density
and smax gives rise to the dilution of the gravitino abun-
dance during thermalization. (Further sources of dilution
require extensions of the minimal model.)

Therefore, the conservative estimate for the gravitino
abundance is obtained by dividing the gravitino number
density by

ρ (t∗)
3/4 ∼ 107m3 . (30)

where ρ is the (physical) background energy density at
the time t∗ . Hence, the ratio

Y3/2 (t∗) =
N3/2 (t∗)

ρ3/4 (t∗)
∼ 10−8 (31)

4 This scaling argument does not include the effect of the thermal-
ization, which is also increasing the p/mz̃ ratio. Indeed, since
thermalization proceeds through particle fusion it has the effect
of both increasing the typical momenta of the distributions and
of decreasing the effective masses.

is about 6 orders of magnitude higher than the allowed
limit.

This is a serious concern, which has to be addressed
in the model building of inflation. It can be resolved by
introduction of extra radical assumptions. For instance,
this gravitino abundance can be decreased by an entropy
dilution. This happens if a massive species ψ is produced
at reheating, and it dominates the energy density of the
universe for some time. When it decays, it leads to a
significant amount of entropy, which dilutes the parti-
cle pieces produced directly at the inflaton decay. Con-
cretely, the entropy dilution leads to the decrease of the
gravitino abundance Y3/2 ∼ N3/2/ρ

3/4. Supposing that
the universe is matter dominated between the times t1
and t2 , the ratio N3/2/ρ

3/4 is decreasing as (a1/a2)
3/4

(ai being the scale factor at the time ti). This entropy
dilution could also occur through a secondary stage of
inflation [29].

In the specific toy model we have considered, a decrease
of six orders of magnitude does not seem to be realistic,
so that the production of gravitinos in this model ap-
pears to be a serious concern. However, it is important
to remember that the result (31) is very sensitive to the
specific model considered, and that a case by case calcu-
lation is necessary.

D. Modulated Fluctuations from Preheating

One of the motivations for studying the EOS after pre-
heating is related to the theory of modulated cosmolog-
ical fluctuations. We briefly review the idea as it was
presented in [8, 9], and discuss the implications of our
findings on the evolution of the EOS for this mechanism.
We leave the explicit calculations for subsequent publi-
cation.

Suppose that the coupling g2 depends on some modu-
lus field z, (as is typical in string theory)

g2 = g2(z) , δg2 =
dg2

dz
δz . (32)

During inflation the modulus field z can be light, with a
mass smaller than the Hubble parameter during inflation
H ∼ 1013 Gev. Then, large scale fluctuations δz with an
almost scale free spectrum are inevitably generated from
inflation. The wavelength of fluctuations exceeds the size
of the causal patchH−1. As we have discussed above, the
EOS varies very quickly already at the beginning of the
thermalization stage. The variation is a non monotonic
function of the coupling g , see for instance Figs. 1 and 2.
Due to the large scale spatial fluctuations of the coupling
δg2, the change in the EOS proceeds with a slight time
shift in different Hubble patches. This results in the gen-
eration of (almost) scale free scalar metric cosmological
perturbations.

To perform accurate calculations of the amplitude of
modulated fluctuations, one needs to know the exact
character of the transition from inflaton field to radiation.
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In the simplified picture of perturbative reheating, when
the inflaton energy decays exponentially as ǫφ ∼ e−Γt,
calculations of modulated fluctuations [9] are based on
linearization of the inflaton decay rate Γ, which is lin-
early dependent on the coupling g2. However, as we have
remarked, the decay of the inflaton field is typically more
complicated, and the transition towards RD occurs very
quickly (well before thermalization completes). In addi-
tion, we stress that the time of the transition is a non
monotonic function of g2. Finally, although we focused
only on the direct coupling of the inflaton to matter,
the details of thermalization (and of the evolution of the
EOS) depend on the other interactions among the decay
products; the strength of these interactions are likely to
be dependent on some modulus field as well, and they
can also modulate cosmological perturbations. All these
features have to be taken into account for precision com-
putations of modulated fluctuations.

V. SUMMARY

In this paper we studied the out-of-equilibrium nonlin-
ear dynamics of the fields during and after preheating.
This continues earlier works in [12, 13, 17]. We use lat-
tice numerical simulations of fully non-linear dynamics
of interacting classical fields. In this investigation, we
computed the evolution of the equation of state during
preheating and the early thermalization stage. Immedi-
ately after inflation, the EOS is the one corresponding
to inflaton domination. For a massive inflaton, we have
matter domination, characterized by p = 0. After a very
short time, the inflaton transfers its energy into inhomo-
geneous modes. At the first stage (preheating) inhomo-
geneous field fluctuations are copiously produced in the
regime of parametric resonance. Then the modes rescat-
ter to redistribute the energy by cascading in the phase
space. This process of classical wave turbulence can be
rather long. This leads to a final stage, where the occupa-
tion numbers are small and the classical approximation
breaks down. Thermalization finishes when the quantum
fields reach the ultimate thermal equilibrium. If all the
participating fields are light, the final thermalized state
corresponds to an EOS of radiation, with p = 1

3
ǫ.

The transition between the matter and radiation dom-
inated EOS is hence typically supposed to occur on a
(relatively) very long timescale. What we found in our
numerical simulations is very different from this naive ex-
pectation. In fact, the EOS jumps from matter domina-
tion to (almost) radiation domination immediately after
the first stage of preheating, i.e. in a couple dozen in-
flaton oscillations (10−37 sec each), long before thermal
equilibrium has been established. In other words, the
macroscopic EOS is close to the one of radiation domi-
nation, while the microscopic state is far from thermal.
This result is similar to the conclusion of [17] regarding
O(N) theory in flat spacetime.

The sharp change of the EOS we observed can be very

conveniently related to the moment of energy transfer
from the inflaton to the inhomogeneous radiation. As we
mentioned, it is a very fast process, as is well-known from
the theory of preheating, which takes place in only about
10−35 sec. Moreover, the time at which the transition oc-
curs depends only weakly on the coupling g2 between the
inflaton and the other fields. The exact dependance is
non-monotonic, and the transition time oscillates around
∼ 10−35 sec (as set by preheating) for a very wide range
of couplings. This result is drastically different from per-
turbative inflaton decay, where the transition timing is
proportional to the coupling.

This very quick evolution has several consequences,
and leads to a number of issues which deserve further
investigation. We stress four of them.

i) The first is related to the generation of modulated
cosmological fluctuations from preheating. It is conceiv-
able [8, 9, 10] that the strength of the inflaton interac-
tions with its decay products is a function of some moduli
fields as expected in string theory. Fluctuations of the
light moduli (with mass smaller than 1013 GeV) are in-
evitably generated during inflation. This results in spa-
tial variations of the couplings at large scales, well beyond
the size of the causal (Hubble) patch at the end of infla-
tion. Hence, the transition from inflation to radiation
domination occurs at slightly diffferent times in different
Hubble patches, giving rise to scalar metric fluctuations.

To calculate metric fluctuations from modulated per-
turbations, one needs to know the exact evolution of the
EOS, from the matter domination (inflaton) to the radi-
ation domination (light decay products) stage. We found
that the transition of the EOS occurs sharply in a step-
like manner. Therefore one can introduce a time-like (but
spatially rippled) hypersurface which divides two cosmo-
logical regimes, with p = 0 and p = 1

3
ǫ. Metric fluctu-

ations can be calculated using GR matching conditions
across this hypersurface, similar to how it was done to
calculate modulated fluctuations in hybrid inflation [10].

ii) The second application of the EOS history is related
to the formula which links the number of efoldings during
inflation N and the present day physical wavelengths of
fluctuations in terms of the logs of their momenta log k.
Indeed, the cosmological evolution of the scale factor a (t)
is ultimately defined by the EOS. Refining the N − log k
relation is mandatory to put precise observational con-
straints on inflationary models. In this paper we notice
that a (practically) immediate transition from inflation
to radiation domination is a common feature of inflation-
ary models with preheating, either parametric resonance
or tachyonic ones. Equation (21), with our result (22),
refines the N − log k relation.

iii) The next note is related to the model building of in-
flaton interactions. In the majority of papers discussing
inflaton decay, interactions with bosons are considered in
the form of four-legs vertices of the type g2φ2χ2. These
interactions are the dominant ones at the early stages of
preheating, when the amplitude of the inflaton is large.
(We do not consider here nonrenormalizable interactions,
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which – if present – could be more important.) However,
they do not lead to a complete inflaton decay. A com-
plete decay requires vertices with only one inflaton, as
the Yukawa interaction φ ψ̄ ψ wih fermions, or the three-
legs bosonic interaction σ φχ2 (where σ is a mass scale).
As we have argued, these trilinear interactions are very
natural in supersymmetric models. Supersymmetry has
the additional advantage of protecting the flatness of the
inflaton potential from too large radiative corrections,
which arise from the coupling of the inflaton to the light
degrees of freedom.

iv) Finally, the early evolution of the light degrees of
freedom from the decay of the inflaton can have very
important consequences for the generation of particles
far from thermal equilibrium. A particularly relevant
application is the possible (over)production of graviti-
nos from the decay products of the inflaton. Although
this is a perturbative generation, it can be very effective,
since it occurs at very early times. Traditionally, the
limit Tr

<∼ 109 GeV is due to gravitinos produced only
after the χ quanta have thermalized. However, a non-
thermal distribution can also be responsible for gravitino
overproduction [27]. These inflaton decay products arise
very rapidly, with an energy density much higher than

(

109 GeV
)4

; although their initial distribution is far from
thermal, we have seen that they can be responsible for
a significant gravitino production, which in some cases
exceeds by several orders magnitude the allowed bound.
Clearly, this is a less universal bound than the standard
one, since it depends on the details of how the thermal
bath is produced. (For instance, the gravitino abundance
can be diluted by entropy release during thermalization.)
In addition, the gravitino problem is avoided altogether
if the gravitino mass is significantly smaller (as in gauge
mediated supersymmetry breaking) or larger (as in the
simplest versions of the KKLT model [30]) than the elec-
troweak scale. Still, this possible production must be
addressed in many inflationary models.
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