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Dominant Two-Loop Electroweak Correction to H → γγ
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We discuss a recent analysis of a dominant two-loop electroweak correction, of O(GFM
2
t ), to

the partial width of the decay of an intermediate-mass Higgs boson into a pair of photons. The

asymptotic-expansion technique was used in order to extract the leading dependence on the top-

quark mass plus four expansion terms that describe the dependence on the W - and Higgs-boson

masses. This correction reduces the Born result by approximately 2.5%. As a by-product of this

analysis, also the O(GFM
2
t ) correction to the partial width of the Higgs-boson decay to two gluon

jets was recovered.

I. INTRODUCTION

The Higgs boson is the missing link of the Standard Model (SM) of elementary particle physics. If this particle

will be discovered at the Fermilab Tevatron or the CERN LHC, then an important experimental task at a future

e+e− linear collider (ILC) will be to determine its properties with high precision. The electroweak precision data

mainly collected at CERN LEP and SLAC SLC in combination with the direct top-quark mass measurement at the

Tevatron favour a Higgs boson with mass MH = 129+74
−49 GeV with an upper bound of about 285 GeV at the 95%

confidence level [1]. Incidentally, this MH window includes the one that is encompassed by the vacuum-stability lower

bound and the triviality upper bound allowing the SM to be valid up to the grand-unified-theory scale Λ ≈ 1016 GeV

[2]. This roughly corresponds to the so-called intermediate mass range, defined by MW ≤ MH ≤ 2MW . In this

mass range, the decay into two photons has a branching fraction of up to 0.3% [3], represents one of the most useful

detection modes at hadron colliders, and produces a clear signal at the ILC. The cross section of γγ → H , to be

measured in the γγ operation mode of the ILC, is proportional to the partial decay width Γ(H → γγ). In conclusion,

the precise knowledge of Γ(H → γγ) is required for MW ≤ MH ≤ 2MW .

Since there is no direct coupling of the Higgs boson to photons, the process H → γγ is loop-induced and so

provides a handle on new charged massive particles that are to heavy to be produced on-shell with available particle

accelerators. The lowest-order result for Γ(H → γγ) has been known for three decades [4]. QCD corrections, which

only affect the diagrams involving virtual quarks are known at two [5] and three [6] loops. In Ref. [7], the dominant

two-loop electroweak correction for a high-mass Higgs boson was found by means of the Goldstone boson equivalence

theorem. In Ref. [8], the dominant two-loop electroweak correction induced by a sequential isodoublet of ultraheavy

quarks was investigated by means of a low-energy theorem [9]. Recently, also the two-loop electroweak correction

induced by light-fermion loops has been evaluated [10]. Here, we discuss the two-loop electroweak correction that is

enhanced by GFM
2
t [11].

Due to electromagnetic gauge invariance, the amputated transition-matrix element of H → γγ possesses the

structure

T µν = (q1 ·q2 gµν − qν1q
µ
2 )A, (1)

where µ and ν are the Lorentz indices of the external photons with four-momenta q1 and q2, respectively. Thus, we

have

Γ(H → γγ) =
M3

H

64π
|A|2. (2)

The form factor A is evaluated in perturbation theory as

A = A(0)
t +A(0)

W +A(1)
tW + · · · , (3)
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where A(0)
t and A(0)

W denote the one-loop contributions induced by virtual top quarks and W bosons, respectively,

A(1)
tW stands for the two-loop electroweak correction involving virtual top quarks, and the ellipsis represents the

residual one- and two-loop contributions as well as all contributions involving more than two loops.

Prior to discussing the results for A(0)
t , A(0)

W , and A(1)
tW , we summarize the approximations, techniques, and checks

applied in Ref. [11]. For simplicity, the bottom-quark mass is neglected, and the element Vtb of the Cabibbo-

Kobayashi-Maskawa quark mixing matrix is set to unity, so that the quarks of the third fermion generation decouple

from those of the first two, which they actually do to very good approximation [12]. Exploiting the (formal) hierarchy

M2
H = 2q1·q2 ≪ (2MW )2 ≪ M2

t , the method of asymptotic expansion [13] is applied to evaluate the results as Taylor

expansions in τt = M2
H/(2Mt)

2 and τW = M2
H/(2MW )2. The on-mass-shell scheme is adopted, and the ultraviolet

(UV) divergences are regularized by means of dimensional regularization. The anti-commuting definition of γ5 is

employed. The tadpole contributions are treated properly. The coefficients of the tensors q1 ·q2 gµν and qν1q
µ
2 in

Eq. (1) are projected out, evaluated separately, and found to agree. The UV divergences are found to cancel in the

final result. The general Rξ gauge in adopted for the W boson, and the gauge parameter ξW is found to drop out

in the final result. Terms quartic in Mt, which arise from the asymptotic expansion, the genuine two-loop tadpoles,

and the counterterms are found to cancel. As a by-product of the two-loop calculation, the known result [14] for the

electroweak two-loop correction of O(GFM
2
t ) to Γ(H → gg) is recovered. Finally, the convergence properties of the

expansions in τt and τW are checked.

This presentation is organized as follows. In Sections II, we illustrate the usefulness of the asymptotic-expansion

technique by redoing the one-loop calculation. In Section III, we discuss the two-loop calculation. Section IV contains

the discussion of the numerical results. We conclude with a summary in Section V.

II. ONE-LOOP RESULTS
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FIG. 1: Typical one-loop diagrams contributing to H → γγ.

Typical Feynman diagrams contributing at one loop in Rξ gauge are depicted in Fig. 1, where φ and u denote

the charged Goldstone bosons and Faddeev-Popov ghosts, respectively. The analytic expression for A(0)
t and A(0)

W in

Eq. (3) and their expansions in τt and τW read:

A(0)
t = ÂNcQ

2
t

{

1

τt

[

1 +

(

1− 1

τt

)

arcsin2
√
τt

]}

= ÂNcQ
2
t

(

2

3
+

7

45
τt +

4

63
τ2t +

52

1575
τ3t +

1024

51975
τ4t +

2432

189189
τ5t + . . .

)

, (4)
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A(0)
W = Â

{

−1

2

[

2 +
3

τW
+

3

τW

(

2− 1

τW

)

arcsin2
√
τW

]}

= Â
(

−7

2
− 11

15
τW − 38

105
τ2W − 116

525
τ3W − 2624

17325
τ4W − 640

5733
τ5W + . . .

)

, (5)

where Â = 21/4G
1/2
F (α/π). Here, α is Sommerfeld’s fine-structure constant, GF is Fermi’s constant, Nc = 3 is the

number of quark colours, and Qt = 2/3 is the electric charge of the top quark in units of the positron charge.

III. TWO-LOOP RESULTS
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FIG. 2: Typical two-loop electroweak diagrams contributing to H → γγ.

The contributions of O(GFM
2
t ) are obtained by considering all two-loop electroweak diagrams involving a virtual

top quark. This includes also the tadpole diagrams with a closed top-quark loop, which are proportional to M4
t . For

arbitrary gauge parameter, this leads us to consider a total of order 1000 diagrams. Some of them are depicted in

Fig. 2. These diagrams naturally split into two classes. The first class consists of those diagrams where a neutral

boson, i.e. a Higgs boson or a neutral Goldstone boson (χ), is added to the one-loop top-quark diagrams. The

exchange of a Z boson does not produce quadratic contributions in Mt. The application of the asymptotic-expansion
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technique to these diagrams leads to a simple Taylor expansion in the external momenta. This is different for the

second class of diagrams, which, next to the top quark, also contain a W or a φ boson and, as a consequence, also

the bottom quark, which is taken to be massless throughout the calculation. Due to the presence of cuts through

light-particle lines, the asymptotic-expansion technique applied to these diagrams also yields nontrivial terms.

The final result for A(1)
tW emerges as the sum

A(1)
tW = A(1)

u +A(1)
H,χ +A(1)

W,φ, (6)

where A(1)
u is the universal contribution induced by the renormalization of the Higgs-boson wave function and the

factor 1/MW common to all one-loop diagrams [15], A(1)
H,χ is the two-loop contribution involving virtual H and χ

bosons, and A(1)
W,φ the remaining two-loop contribution involving virtual W and φ bosons. In A(1)

H,χ and A(1)
W,φ, also

the corresponding counterterm and tadpole contributions are included. For the individual pieces, one has [11]

A(1)
u = ÂNcxt

(

−329

108
− 77

90
τW − 19

45
τ2W − 58

225
τ3W − 1312

7425
τ4W + · · ·

)

,

A(1)
H,χ = ÂNcxt

(

− 8

27

)

,

A(1)
W,φ = ÂNcxt

(

182

27
+

22

15
τW +

76

105
τ2W +

232

525
τ3W +

5248

17325
τ4W + · · ·

)

, (7)

where Â is defined below Eq. (5), xt = GFM
2
t /(8π

2
√
2), and the ellipses indicate terms of O(τ5W ). Notice that the

leading O(GFM
2
t ) term of A(1)

H,χ is not accompanied by an expansion in τW , since the contributing diagrams do not

involve virtual W or φ bosons. On the other hand, detailed inspection reveals that there is also no expansion in

the parameter M2
H/(2MZ)

2, contrary to what might be expected at first sight. Inserting Eq. (7) into Eq. (6), one

obtains the final result

A(1)
tW = ÂNcxt

(

367

108
+

11

18
τW +

19

63
τ2W +

58

315
τ3W +

1312

10395
τ4W + · · ·

)

. (8)

IV. NUMERICAL RESULTS

We are now in a position to discuss the numerical results. They are evaluated using the following numerical values

for the input parameters: GF = 1.16639× 10−5 GeV−2, MW = 80.423 GeV, and Mt = 174.3 GeV [12].

We first assess the convergence property of the τW expansion of A(1)
tW in Eq. (8). To this end, it is useful to also

consider the example of A(0)
W , for which the exact result is known. In Figs. 3(a) and (b), A(0)

W and A(1)
tW are presented

as functions of τW , respectively. The dashed curves represent the sequences of approximations that are obtained by

successively including higher powers of τW in the expansions, while the solid curve in Fig. 3(a) indicates the exact

result. The dotted vertical lines and the right edges of the frames encompass the MH range MW ≤ MH ≤ 2MW . We

observe from Fig. 3(a) that, for MH = 120 GeV, 140 GeV, and 2MW , the approximation for A(0)
W by five expansion

terms deviates from the exact result by as little as 0.3%, 1.6%, and 19.9%, respectively. The relatively modest

description towards MH = 2MW , i.e. τW = 1, may be understood by observing that the exact result behaves like√
1− τW in this limit. From Fig. 3(b), we see that the τW expansion of A(1)

tW converges rapidly, too. The goodness

of our best approximation for A(1)
tW may be estimated by considering its relative deviation from the second best one.

For MH = 120 GeV, 140 GeV, and 2MW , this amounts to 0.3%, 1.0%, and 2.8%, respectively. The situation is very

similar to the one in Fig. 3(a). In fact, the corresponding figures for A(0)
W are 0.4%, 1.1%, and 3.1%. We thus expect

that the goodness of the approximation of A(1)
tW by the expansion through O(τ4W ) is comparable to the case of A(0)

W .

For the comparison with future measurements of Γ(H → γγ), all known corrections have to be included in Eq. (3).

In this connection, it is interesting to compare the O(GFM
2
t ) electroweak correction discussed above with the well-

known O(αs) QCD correction [5] and the O(NfGFM
2
W ) electroweak correction induced by light-fermion loops, which

has become available recently [10]. This is done in Figs. 4(a) and (b), where the respective corrections to Γ(H → γγ)
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FIG. 3: (a) A
(0)
W normalized to Â and (b) A

(1)
tW normalized to ÂNcxt as functions of τW .
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FIG. 4: (a) O(GFM
2
t ) [11] (solid line), O(αs) [5] (dashed line), and (b) O(nfGFM

2
W ) [10] (dotted line) two-loop corrections

to Γ(H → γγ) as functions of MH .

are displayed as functions of MH . As in Fig. 3, the dotted vertical line and the right edge of the frame in Fig. 4(a)

margin the MH range MW ≤ MH ≤ 2MW . We observe that, within the latter, the O(GFM
2
t ) correction slightly

exceeds the O(αs) one in magnitude, a rather surprising finding. Due to the sign difference, the two corrections

practically compensate each other. The O(NfGFM
2
W ) correction is also negative, but has a slightly smaller size than

the O(GFM
2
t ) one.

V. CONCLUSIONS

We discussed the dominant two-loop electroweak correction, of O(GFM
2
t ), to the partial width of the decay into

two photons of the SM Higgs boson in the intermediate mass range, MW ≤ MH ≤ 2MW , where this process is of

great phenomenological relevance for searches at hadron colliders and precision tests at the ILC.

The relevant Feynman diagrams were evaluated with the aid of the asymptotic-expansion technique exploiting
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the mass hierarchy MH ≪ 2MW ≪ 2Mt. In this way, an expansion of the full O(GFM
2
t ) result in the mass ratio

τW = M2
H/(2MW )2 through O(τ4W ) was obtained. The convergence property of this expansion and the experience

with the analogue expansion at the Born level, where the exact result is available for reference, lead one to believe

that these five terms should provide a very good approximation to the exact result for MH
<∼ 140 GeV. By the same

token, the deviation of this approximation for the O(GFM
2
t ) amplitude A(1)

tW from the unknown exact result for this

quantity is likely to range from 2% to 20% as the value of MH runs from 140 GeV to 2MW .

In the intermediate Higgs-boson mass range, the O(GFM
2
t ) electroweak correction reduces the size of Γ(H → γγ)

by approximately 2.5% and thus fully cancels the positive shift due to the well-known O(αs) QCD correction [5].

As a by-product of this analysis, also the O(GFM
2
t ) correction to the partial width of the decay into two gluon

jets of the intermediate-mass Higgs boson was recovered [14].

Note added

After the workshop, a preprint [16] appeared in which the two-loop electroweak corrections to Γ(H → γγ) involving

intermediate bosons and the top quark are computed as expansions in q2/(2MW )2, where q is the four-momentum

of the decaying Higgs boson. In that paper, also the key result of Ref. [11], Eq. (8), is confirmed.
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