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Chiral symmetry breaking via constituent quarks for q̄q pseudoscalar mesons
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We base our chiral symmetry approach on the quark–level linear sigma model Lagrangian. Then
we review the Nambu–Goldstone theorem with vanishing π, K, η8 masses. Next we dynamically
generate the π, K, η8 masses away from the chiral limit. Then we study pion and kaon Goldberger–
Treiman relations. Finally we extend this qq̄ scheme to scalar and vector mesons. We also show the
above qq̄ meson scheme fits the higher mass octet baryon qqq pattern as well.

PACS numbers: 14.40-n, 11.30Rd, 13.25-k, 13.40.Hq

I. INTRODUCTION

Chiral symmetry breaking for pseudoscalar mesons(π,K, η8) requires that although these masses vanish in the chiral
limit [then satisfying Goldberger–Treiman relations (GTRs)], mπ, mK , mη8

are non-vanishing away from the chiral
limit – hopefully near their observed values. In a quark–level linear sigma model (LσM) qq̄ scheme (with constituent
quarks) of Sec. II, the massless Nambu–Goldstone (NG) limits are reviewed in Sec. III and the chiral–broken π, K,
η8 qq̄ meson masses are extracted in Secs. IV and V. Then GTRs are studied in Sec. VI. The analogue ground–state
vector and scalar masses are obtained in Sec. VII. Finally this LσM qq̄ scheme is summarized in Sec. VIII.

II. QUARK–LEVEL LINEAR σ MODEL

The strong interaction quark–level LσM Lagrangian density is

Lint = gψ̄(σ + iγ5τ · π)ψ + g′σ(σ2 + π
2)− λ

4
(σ2 + π

2)2 −mqψ̄ψ , (1)

where

mq = fπ g , g′ =
m2

σ

2fπ
= λfπ (2)

in the chiral limit (CL) for fπ being approximately 93 MeV with g = 2π/
√
3 [1]. See, e.g., Ref. [2] for the orig-

inal nucleon–level version. The latter LσM also manifests a) the chiral current algebra b) the fermion and meson
Goldberger–Treiman relations in Eq. (2), c) the partially conserved axial current (PCAC) scheme as well.

III. REVIEW OF NAMBU–GOLDSTONE THEOREM IN CL

Tree level ∂ ·ACL = 0 ⇒ mCL
π = 0 [3] due to the chiral symmetry extended via quark and pion loops as Quark loops

(ql):

(m2
π)ql = i8Nc g

(

−g + 2g′mq

m2
σ

)
∫

d̂4p

p2 −m2
q

→ 0 in CL , (3)

where d̂4p = d4p
(2π)4 . Meson loops (ml):

(m2
π)ml = (−2λ+ 5λ− 3λ) i

∫

d̂4p

p2 −m2
π

+ (2λ+ λ− 3λ)i

∫

d̂4p

p2 −m2
σ

= 0 + 0 = 0 . (4)
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Then the Nambu–Goldstone theorem in the CL is

m2
π = (m2

π)ql + (m2
π)ml = 0 + 0 = 0 . (5)

The coefficients multiplying the three (formally divergent) integrals in Eqs. (3) and (4) are identically zero before

cutoffs keep these integrals finite.
Extending this to SU(3) LσM we get the GTRs: fπ g = m̂, fK g = 1

2 (ms + m̂) where m̂ = (mu +md)/2 along with
the GTR ratio 1.22 from data [4]

fK
fπ

=
1

2

(ms

m̂
+ 1

)

≈ 1.22 ⇒ ms

m̂
≈ 1.44 , (6)

(m2
K)ql = i 4Nc g

∫

d̂4p

(

−2g
p2 −msm̂

(p2 −m2
s)(p

2 − m̂2)
+

g′
ns

m2
σns

2m̂

p2 − m̂2
+
√
2
g′
s

m2
σs

ms

p2 −m2
s

)

= 0 in CL (7)

(see Ref. [3], Eqs. (23) and (24), or [1]) leading via quark loops to

m2
K =MK

VP +MK
qktad,ns +MK

qktad,s = 0 (8)

in the CL (see Ref. [5], Eq. (14a)).

IV. PION AND KAON MASSES AWAY FROM CL

The average nonstrange constituent quark mass is approximately

m̂ =
1

2
(mu +md) ≈

MN

3
≈ 313 MeV . (9)

Equivalently, the low energy QCD 1 GeV scale 〈−q̄q〉 ≈ (245 MeV)3 with the usual coupling αs ≈ 0.50 suggests a
dynamical mass [6, 7]

mdyn =

(

4π

3
αs〈−q̄q〉

)1/3

≈ 313 MeV . (10)

Either the latter scale or Eq. (9) then predict charge radii via the vector meson dominance (VMD) and LσM schemes

rVMD
π =

hc
√
6

mρ
≈ 0.623 fm , (11)

rLσMπ =
hc

m̂
≈ 0.63 fm , (12)

for hc = 197.3 MeV · fm and with (m̂+ms)/2 = (337.5 + 486)/2 ≈ 411.75 MeV [see Eqs. (23) and (24)],

rVMD
K =

hc
√
6

m⋆
K

≈ 0.54 fm , (13)

rLσMK =
2hc

m̂+ms
≈ 0.49 fm , (14)
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near present data [4]

rπ+ = (0.672± 0.008) fm , rK+ = (0.560± 0.031) fm . (15)

Also the u and d constituent quark masses are [8]

m̂(mag. dipole moment) =
mp

2.792847

[

1 +
14 MeV

9m̂

]

≈ 337.5 MeV , (16)

mu = 335.5 MeV , md = 339.5 MeV , (17)

due to

md −mu ≃ mK0 −mK+ = 3.97 MeV , (18)

away from the CL and isospin limit [9]. See Ref. [10] for a global q̄q picture of mesons.
The quark-level LσM predicts

Nc = 3, mσ = 2mq, g =
2π√
3
≈ 3.6276 (19)

via either the LσM [1], QCD in infrared limit [11], Z = 0 compositeness condition (Z=0 c.c.) [12, 13]. This implies
via the GTR

m̂ = fπ g ≈ 93 MeV · 2π√
3
≈ 337.4 MeV , (20)

very near (16). Given the above constituent quark masses away from the CL, the chiral–breaking pion and kaon
masses are found via [14] Eq. (4.4).
The difference between the constituent and dynamical quark mass defines an effective current quark mass which

vanishes in the CL [14]:

δm̂ = m̂con −
m̂3

CL

m̂2
con

= 337.5 MeV− 269.2 MeV = 68.3 MeV , (21)

where δm̂→ 0 when m̂con → m̂CL ≈ mN/3 ≈ 313 MeV.
Then because mesons are taken as qq̄ states,

mπ = δm̂+ δm̂ ≈ 136.6 MeV (22)

midway between mπ+ = 139.57 MeV and mπ0 ≈ 134.98 MeV experimental masses [4]. Also from Eq. (6) above,

ms = 1.44 m̂ ≈ 486.0 MeV (23)

away from the CL or with g = 2π/
√
3 and fK = 1.22fπ ≈ 113.46 MeV,

ms = 2fK g − m̂ = (823.2− 337.5) MeV ≈ 485.7 MeV (24)

close to (23). However with ms ≈ 510 MeV ≈ mφ(1020)/2 or via magnetic dipole moments, one finds the average
constituent quark masses extending Eq. (23) to [14]

mavg
s = (486 + 510) MeV/2 = 498 MeV ⇒ (25)
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m̄ = (498 + 337.5) MeV/2 = 417.75 MeV ⇒ (26)

δ′m̂ = m̂con −
m̂3

CL

m̄2
≈ (337.5− 175.7) MeV = 161.8 MeV (27)

δ′ms = mavg
s,con −

m̂3
CL

m̄2
≈ (498− 175.7) MeV ≈ 322.3 MeV ⇒ (28)

mK = δ′m̂+ δ′ms = (161.8 + 322.3) MeV = 484.1 MeV (29)

not far away from average [4] K mass mK0 ≈ 497.7 MeV and mK+ ≈ 493.7 MeV.

V. η8 MASS

In the CL mη8
= 0, consistent with the squared Gell-Mann–Okubo (GMO) mass

m2
η8

=
4m2

K −m2
π

3
→ 0 in CL limit , (30)

f8
fπ

=
3

5− 2m̂/ms
≈ 0.831 (31)

for ms/m̂ ≈ 1.44. (f8/fπ → 1 in the U(3) symmetry limit.) Quark–level GTR for η8 [4] gives (fη8
/fπ) ≈ 1.2. Then

√
3
f8
fπ

(

fη8

fπ

)

fπ g =
√
3 · 0.831 · 1.2 · 92.42 MeV · 2π√

3
= mη8

≈ 579.1 MeV , (32)

a dynamical estimate reasonably close to the GMO value mη8
≈ 566.6 MeV from Eq. (30). Also ηns and ηs q̄q mixing

masses are [15] mηns
≈ 758.1 MeV and mηs

≈ 801.2 MeV, respectively, so that

m2
η +m2

η′ = m2
η1

+m2
η8

= m2
ηns

+m2
ηs

≈ 1.217 GeV2 . (33)

Reference [15] suggests using mη8
= 575.56 MeV as in Eqs. (34) and (35) below

|θP | = arctan

√

m2
η8

−m2
η

m2
η′ −m2

η8

≈ 13◦ , (34)

m2
η8

= cos2 θP m
2
η + sin2 θP m

2
η′ ≈ (575.56 MeV)2 , (35)

φP = arctan

√

m2
ηns

−m2
η

m2
η′ −m2

ηns

≈ 41.84◦ , (36)

m2
ηns

= cos2 φP m
2
η + sin2 φP m

2
η′ = (758.1)2 MeV , (37)

θP = φP − arctan
√
2 ≈ 41.84◦ − 54.74◦ = −12.9◦ , (38)

close to −13◦ in Eq. (34) and near the resulting GMO mass mη8
≈ 566.6 MeV in Eq. (30) away from the CL with

average

mavg
η,η′ =

547.75 + 957.78

2
MeV = 752.77 MeV , (39)

near mηns
= 758.1 MeV above. With hindsight, the above tightly bound qq̄ meson masses are near data [4] in spite

of their NG vanishing values.
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VI. CHIRAL GOLDBERGER–TREIMAN RELATIONS

Given the massless NG pseudoscalars mπ = mK = mη8
= 0 and their massive version in Secs. IV and V, the

massive chiral symmetry breaking poles combined with axial current conservation then lead to the quark–level GTRs
for pions and for kaons:

fπg = m̂ =
1

2
(mu +md) ≈ 337.5 MeV , (40)

fKg =
1

2
(ms + m̂) ≈ 411.8 MeV , (41)

where we have invoked the constituent quark masses, Eqs. (16,17,23). Also evaluating the lhs of Eqs. (40) and (41) for

fπ ≈ 93 MeV, fK ≈ 1.22fπ ≈ 113.5 MeV and the meson–quark coupling g ≈ 2π/
√
3 ≈ 3.6276 for Nc = 3 [1, 6, 7], the

lhs of Eqs. (40,41) becomes 337.4 MeV, 411.6 MeV, in very close agreement with the rhs of Eqs. (40,41), respectively.
For finite UV cutoff Λ, the pion coupled to the axial current via the quark loop with g = 2π/

√
Nc leads to

∫

d4p

(p2 −m2
q)

2
= iπ2 , (42)

or equivalently to the log–divergent gap equation [1, 16]

−i4Ncg
2

∫

d̂4p

(p2 −m2
q)

2
= 1 . (43)

Explicitly accounting for Λ, the lhs of Eq. (43) can be written as [1]

ln

(

1 +
Λ2

m2
q

)

− 1

1 +
m2

q

Λ2

= 1 , (44)

with the numerical solution

Λ2

m2
q

≈ (2.3)2 , (45)

or

ΛCL ≈ 2.3 m̂CL
q ≈ 750 MeV , (46)

for CL quark mass 325.7 MeV and Λ ≈ 2.3 m̂q ≈ 776 MeV for chiral–broken mass 337.5 MeV.
It is significant that the above quark mass scales from Eq. (46) correspond to the Z=0 c.c. [12, 13] with ΛCL <

Λ ≈ 776 MeV near the ρ(775) and ω(782) slightly bound q̄q masses, but slightly heavier then ΛCL ≈ 750 MeV. In
a similar fashion, the Λ′ cutoff for the vector K⋆ q̄q mass is (for ms ≈ 469 MeV and m̂ ≈ 325.7 MeV see Eq. (54)
below) in the CL:

Λ′ ≈ 2.3
√

ms m̂ ≈ 899 MeV , (47)

reasonably near the observed K⋆(894) mass. Lastly, the Z=0 c.c. also requires the meson–quark coupling to be [12]

g ≈ 2π/
√
3, analogous to the infrared QCD limit [6, 7] and also found via the quark–level LσM [1].
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VII. EXTENSION TO q̄q SCALAR AND VECTOR MASSES

To complete the ground state q̄q meson scheme, we summarize and update the results of Ref. [10], first obtaining the

SU(3) ground state octet vector meson q̄q masses from the bare plus symmetry–breaking terms as mV =
√

2/3m0
V −

di8i δmV :

mρ,ω =

√

2

3
m0

V − 1√
3
δmV ≈ 779 MeV , (48)

mK⋆ =

√

2

3
m0

V +
1

2
√
3
δmV ≈ 894 MeV , (49)

mφ =

√

2

3
m0

V +
2√
3
δmV ≈ 1019 MeV , (50)

leading to the average scales

m0
V ≈ 961 MeV , δmV ≈ 139 MeV ,

δmV

m0
V

≈ 14% . (51)

Also for scalar meson masses, the model–independent nonstrange scalar sigma mass is [17]

mσns ≈ 665 MeV . (52)

This can be verified by first working in the CL with NJL–LσM mass

mCL
σ = 2m̂CL ≈ 651.4 MeV , (53)

due to the GTR. In the CL

m̂CL = fCL
π g = (89.775 MeV)

2π√
3
≈ 325.7 MeV , (54)

leading to (53). Also fCL
π above follows from the once–subtracted dispersion relation [18]

fπ
fCL
π

− 1 =
m2

π

8π2f2
π

(

1 +
m2

π

10 m̂2

)

≈ 2.946% , (55)

giving the observed pion decay constant [4] – extended in the CL as

fπ ≈ 92.42 MeV , fCL
π =

fπ
1.02946

≈ 89.775 MeV . (56)

Then the nonstrange scalar mass satisfies

m2
σns −m2

π = (mCL
σ )2 or mσns ≈ 665.82 MeV , (57)

compatible with (52). Also the scalar kappa mass satisfies

mκ = 2
√

m̂ms ≈ 810 MeV (58)

for m̂ ≈ 337.5 MeV and from (6), ms ≈ 1.44 m̂ ≈ 486 MeV, compatible with E791 data [19] mκ = 797 ± 19 MeV.
Finally, the pure strange scalar mass satisfies

mσS
≃ 2ms ≈ 972 MeV , (59)
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data Ref. [4] quark sum

σns 665 2m̂ ≈ 675

κ (797± 19) 2
√
m̂ms ≈ 810

σs (980± 10) 2ms ≈ 972

TABLE I: Touching–quark scalar meson masses (in MeV) for m̂ ≈ 337.5 MeV and ms ≈ 486 MeV.

near the almost pure s̄s vector mass mφ ≈ 1019 MeV.
Then the scalar analog of the SU(3) vector masses (48)–(50) are

mσns =

√

2

3
m0

s −
1√
3
δms ≈ 665 MeV , (60)

mκ =

√

2

3
m0

s +
1

2
√
3
δms ≈ 810 MeV , (61)

mσs =

√

2

3
m0

s +
2√
3
δms ≈ 972 MeV , (62)

giving the average SU(3) scalar q̄q masses,

m0
s ≈ 933 MeV , δms ≈ 177 MeV ,

δms

m0
s

≈ 19% , (63)

reasonably near the average SU(3) vector q̄q masses in (51).
Also given the closeness of these scalar masses in (60)–(62) to the approximate quark mass sums in Tab. I, all scalar

meson masses have essentially “touching quarks”. However, the vector masses in (48)–(50) are “loosely bound quarks”
as they are 115 to 50 MeV heavier then the above “touching quark” scalar meson masses. In Ref. [14] a nonrelativistic
quark model L · S coupling roughly accounts for the difference between vector and scalar meson masses.

VIII. CONCLUSION

In this paper we have primarily focused on the ground state q̄q pseudoscalar mesons, which we model via the
quark–level LσM, briefly described in Sec. II.
The vanishing chiral NG pion and kaon masses are discussed in Sec. III. Their non–vanishing mass values away

from the CL are discussed in Sec. IV, characterized by the tightly–bound q̄q charge radii hc/m̂, 2hc/(m̂ +ms) for
charged pions and kaons, respectively. The latter are also close to the VMD values. In Sec. V we have extended the
vanishing NG η8 mass to its non–vanishing GMO and its tightly bound q̄q meson–mixing value. Sec. VI deals with
chiral–symmetric pion and kaon GTRs. In Sec. VII we extended the LσM scheme to q̄q vector and scalar masses.
Note that the loosely bound SU(3) masses m0

S ≈ 933 MeV and m0
V ≈ 961 MeV are close to the tightly bound mP

mass characterized by the observed [4] η′ mass mη′ = (957.78± 0.14) MeV.
The above q̄q scheme appears somewhat counter to the PDG p.848 “non–q̄q candidates” [20]. However, in Ref. [10]

we remind the reader of the standard ground state SU(3) qqq octet and decuplet baryon states with [10] m0
O ∼

1150 MeV, m0
D ∼ 1230 MeV being about 250 MeV greater then the above q̄q ground states m0

V ∼ m0
S ∼ mη′ ∼

950 MeV. Taking φ ∼ s̄s or ms ∼ 500 MeV and J/ψ(3100) ∼ c̄c or mc ∼ 1550 MeV, one can reasonably model the
(higher mass) ground state qqq baryon states vs. data [4] as in Tab. II.
With hindsight, the recent paper [21] complements the present LσM qq̄ picture quite well. In particular, Ref. [21]

shows in detail why the quark triangle LσM predictions (involving no arbitrary parameters for at least 15 decays)
match data [4] to within 5%. This is for V → PV or P → V V strong or electromagnetic decays. Also, the dynamic
Schwinger–Dyson approach describes π, K, and η decays in conformity with empirical constraints.
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