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Abstract. We give a status report of our current theoretical work on QCD near the light-
cone.
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1. INTRODUCTION

A simple extension of the quantum mechanics of bound states to a relativistic
field theory of massless quanta bound into hadrons is not possible. The light-cone
Hamiltonian approach attacks this problem from a quite different point of view.
Take a cube of length 2 fm filled with quarks and gluons and boost it in the
3− direction with a Lorentz factor of γ = 1000. This gedanken experiment is well
suited to imagine a proton moving with fast speed in the laboratory. The box will
contract on one side, valence quark momenta will be high, and valence states will
have very high energies. Naively vacuum properties of QCD are not important
because of the high energies. By some suitable kinematic choices of coordinates
one can construct invariants. Commonly, the light-cone energy P− = E−Pz√

2
and the

light-cone momentum P+ = E+Pz√
2

are chosen and M2 = 2P+P−−P 2
⊥ is invariant.

With these variables all light-cone energies are positive and increase as P− =
P 2
⊥
+m2

√
2P+

for small light-cone momenta. Only fluctuations with small P+ momenta may
pose a problem. Their light-cone energies are very high. In light-cone physics the
ultraviolet problem gets mixed up with the infrared problem. Formally, the problem
reappears in the context of constraint equations for x− independent fields [1].
These constraint equations arise in the light-cone Hamiltonian framework, since the
Lagrangian contains the velocities in linear form L= ∂−φ∂+φ. The momenta related
to these velocities obey constraint equations including ∂−φ. Therefore, integrals of
the equations of motion over the spatial light-cone distance x− become operator
equations of reduced dimensionality (two transverse spatial dimensions and one
time dimension). These equations are called zero-mode equations. For example,
in equal time theory zero-mode equations determine the condensate of a scalar
field. The x− independent zero-mode field couples to the transverse fluctuations
of all other fields, consequently these equations depend on the cutoff and are
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involved in the whole renormalization procedure. This feature is often overlooked in
näıve pictures assuming either superrenormalizable models or models with a simple
cutoff. In Nambu-Jona-Lasinio models one has been able to solve [2, 3] these zero-
mode equations e.g. in large Nc approximation giving a view of chiral symmetry
breaking on the light-cone, which is quite special. These zero-mode equations have
not been solved in QCD.
A common argument goes as follows: Zero modes decouple from the rest of

the theory, because their energies lie beyond the cutoff. Näıvely, the light-cone
momentum P+ =0 means that the light-cone energy P− =∞. If, however, the mass
m of the zero mode is zero, the mode does not disappear into infinity for very small
transverse momenta. How is the situation in QCD? Can we just ignore this problem,
buy a big computer, use some suitable Fock truncation, put all transverse gluon
modes into a Hamiltonian matrix and diagonalize it? Pauli and Brodsky [4] and
many others have solved successfully 1+1 dimensional theories. QCD on the light-
cone is a tremendously seductive field theory, since the Euler-Lagrange equation for
time-like light-cone potential can be solved directly in a gauge, where the potential
along the spatial light-cone direction vanishes. The resulting Hamiltonian contains
the light-cone Coulomb energy plus the kinetic energies of the transverse gluons
and nothing else. The light-cone Coulomb energy is already in a form which linearly
confines sources separated along the spatial light-cone directions. This is a simple
consequence of the massless gluon propagator in one spatial dimension.
The massless gluon interaction has to be implemented also correctly for colored

line sources smeared over the spatial light-cone direction. Otherwise, we violate the
equal treatment of all spatial directions. This necessity can be demonstrated rather
easily in perturbation theory, where the rotational invariance of the gluon exchange
is reconstituted via the exchange of one transverse gluon. I think, one can be easily
misled by the experience that QCD will always favor a finite correlation mass
for color sources moving along time-like directions. At finite energies one sees this
phenomenon in the hadronic cross sections which are given by the geometrical sizes
of the hadrons, the low light-cone momentum partons do not matter at finite (small)
energies. There is a natural transverse scale of the moving proton. The energy
dependence of the high Q2-structure functions indicate, however, an abnormal
increase of “size” in transverse direction. The proton first gets blacker, but then
its transverse radius has to increase. Purely theoretical arguments point towards
conformal invariance at high energies, a conjecture, which supports the view, that
partons with small light-cone momenta sampling large spatial light-cone distances
correlate over large transverse distances compared to normal hadronic scales.
We have analyzed QCD approaching the light-cone with a tilted near-light-

cone coordinate reference system [5, 6, 7] containing a parameter η 6= 0 giving the
distance away from the light-cone. The constraint equations appear in the near-
light-cone Hamiltonian as terms proportional to 1/η2. We then multiply the light-
cone energy with η, considering P̃+ = ηT+

+ and divide the light-cone momentum

by η, defining P̃− = 1
η
T+
− . The invariant masses remain unchanged up to terms

higher order in η. By the trick with near-light-like coordinates we can derive a full
quantum Hamiltonian for the zero modes which now depends on the QCD coupling



g, the extension L|| of the spatial light-cone distance compared to some lattice size
a (or ultraviolet cutoff Λ = 1/a) and the parameter η which gives the nearness
to the light-cone. Having fixed the QCD coupling g which determines the lattice
size a, we would like to study in this Hamiltonian the physics at large longitudinal
distances L||/a→∞ close to the light-cone η→ 0. Because of dimensional reduction
the product

s=
ηL||
a

(1)

appears as a coupling in the Hamiltonian. Its limit is not defined. The order of
the limiting process is important as one knows from simple superrenormalizable
models. One first has to let L||/a→ ∞ and then η → 0 in order not to lose the
nonperturbative properties of the vacuum. For QCD an analytical limiting process
is impossible. Therefore, the only way out is to start for large s, corresponding to
fixed η and large L|| and then approach smaller values of s.

This procedure ends, when we have found a fixed point s∗ =
ηL||

a
where the

mass gap of the zero mode theory vanishes. Approaching this fixed point from the
correct side which corresponds to a large longitudinal extension of the lattice, we
include the nonperturbative dynamics of the zero modes. The trivial, wrong other
side where s is arbitrarily small would be disconnected from the large L|| limit.
When the (2+1)-dimensional system has an infinite correlation length, both the
infrared limit of large longitudinal distances and of nearness to the light-cone is
realized. For a simplified zero mode theory in SU(2) we have demonstrated such a
possibility on the lattice [5]. In principle the full (3+1)-dimensional theory can be
solved for any η as long g,L||/a are chosen in such a way that we have asymptotic
scaling. But in order to synchronize the infrared behavior encoded in the zero mode
system correctly with the ultraviolet behavior of small lattice size, the choice of η
is no longer free for a given length of the longitudinal direction, one must choose
η in agreement with the fixed point found in the zero mode calculation, i.e. in
the (3+1)-dimensional calculation the number of slices L||/a in spatial light-cone
direction determines η

η =
s∗

L||/a
. (2)

It has to be demonstrated numerically that with decreasing QCD-coupling g
the value s∗ becomes smaller in such a way that we approach the light-cone
η → 0 having a reasonable number of slices L||/a in spatial light-cone direction.
The reduced calculation in SU(2) [5] was done without the inclusion of transverse
gluons, so we still have to prove that this procedure works. Phenomenologically [7]
we have conjectured that the increase of the high-energy electron-proton cross
section is due to this critical point s∗. At infinite energies when this point is
approached, the correlation length of near-light-like Wilson lines of the partons
increases with a critical index from Z(3) symmetry. The photon density remains
power behaved beyond the short distance scale given by the resolution of the
photon. According to our conjecture this critical opalescence phenomenon is the
cause of the increase of the virtual photon cross section with high energies.



2. THE QCD HAMILTONIAN AND MOMENTUM

We use the near light-cone coordinates defined in ref. [6]

x+ =
1√
2
((1+

η2

2
)x0+(1− η2

2
)x3)

x− =
1√
2
(x0−x3) (3)

with the metric

gµν =

0 0 0 1
0 −1 0 0
0 0 −1 0
1 0 0 −η2

,gµν =

η2 0 0 1
0 −1 0 0
0 0 −1 0
1 0 0 0

(4)

with µ,ν =+,1,2,−,detg =−1, which defines the scalar product

xµy
µ = x−y++x+y−−η2x−y−−~x⊥~y⊥

= x−y++x+y−+η2x+y+−~x⊥~y⊥. (5)

We refer to p+ as “light-cone” energy and to p− as “light-cone” momentum. We
restrict ourselves to the color gauge group SU(2) and to gluons. The Lagrangian
density in the near light-cone coordinates reads:

L =
1

2
F a
+−F

a
+−+

∑

i=1,2

(F a
+iF

a
−i+

η2

2
F a
+iF

a
+i)

−1

2
F a
12F

a
12. (6)

The energy momentum tensor has the general form:

T µν =
∑

a

(gµαgρβF a
αβF

a
ρν − δµnugραgσβF a

αβF
a
σρ) (7)

We introduce dimensionless gauge fields and coordinates

Ãa
± = ga‖A

a
±, x̃± = x±/a‖;

Ãa
i = ga⊥A

a
i , x̃⊥ = x⊥/a⊥. (8)

The dimensionless Lagrange density L has the form

∫

Ld4x=
∫

L̃d4x̃ (9)



with

L̃ =
1

2

1

g2
(
a⊥
a‖

)2F̃ a
+−F̃

a
+−

+
1

g2
∑

i

(F̃+iF̃−i+
η2

2
F̃+iF̃+i)

−1

2

1

g2
(
a‖
a⊥

)2F̃ a
12F̃

a
12. (10)

The field momenta conjugate to Ãi and Ã− are

Π̃a
i =

∂L̃
∂F̃+i

=
1

g2
(F̃ a

−i+η
2F̃ a

+i)

Π̃a
− =

∂L
∂F̃+−

=
1

g2
(
a⊥
a‖

)2F̃+−. (11)

¿From now on we drop the tilde symbol from all coordinates, fields and momenta
to facilitate the writing and reading of all formulas. The commutation relations
between fields and momenta are standard.

[Πa
i (x̃−,x⊥,x+),A

b
j(y−,y⊥,x+)] =

iδabδijδ(x−−y−)δ(x⊥−y⊥)
[Πa

−(x−,x⊥,x+),A
b
−(y−,y⊥,y+)] =

iδabδ(x−−y−)δ(x⊥−y⊥). (12)

The dimensionless light-cone energy density T+
+ and light-cone momentum density

T+
− are obtained from the energy momentum tensor T µν and the skewed metric

P+ =
∫

T+
+ dx

−dx⊥ (13)

P− =
∫

T+
− dx

−dx⊥ (14)

with

T+
+ =

1

2
g2
(

a‖
a⊥

)2

Π2
−

+
1

2

1

g2

(

a‖
a⊥

)2

F12F12

+
1

2
g2

1

η2
(Πi−

1

g2
F−i)

2

T+
− =

1

2
(ΠiF−i+F−iΠi). (15)



The light cone energy and momentum have an obvious symmetry. They have
electric-magnetic duality of the transverse fields which any solution to the problem
must respect.

Πi → 1

g2
F−i

1

g2
F−i → Πi. (16)

Furthermore, since in the Lagrangian L there are no terms with time derivatives
of A+, the field Aa

+ acts like a Lagrange multiplier for Ga, the Gauss law. For any
wavefunction |Φ> of the system the following identity must hold.

Ga|Φ> = (
1

g2

(

a⊥
a‖

)2

Da
−F

a
+−

+
1

g2
∑

i

Di

(

F a
−i+η

2F a
+i

)

)|Φ>

= (Da
−Π

a
−+

∑

i

DiΠ
a
i )|Φ>= 0. (17)

This Gauss law is fulfilled as long as only closed loops exist in the wave function,
or in the case of excited links the electric flux must be conserved at each site, i.e.
there are also multiple connected flux loops possible.
If one chooses a‖ << a⊥ and uses the same number of sites in x− and x⊥

directions, one ends up with a real system, which is contracted in the longitudinal
directions. Verlinde and Verlinde [8], and Arefeva [9], have advocated such a set
up to describe high energy scattering. A contracted lattice means the minimal
momenta become high in longitudinal direction and this looks a promising starting
point for high energy scattering.
One sees from the Lagrangian L in eq. (10) that the limit a‖/a⊥ → 0 enhances

the terms with F+−F+− and suppresses transverse F12F12.
Because of the enhanced couplings Verlinde and Verlinde conclude that the

curvature in longitudinal directions is zero. One ends up with only one term which
in the Hamiltonian is the term ∝ 1

η2
and fixes the dual symmetry of the electric

and magnetic fields.
Our current project [10] is to introduce lattice variables into this framework and

solve the 1/η2 part of the Hamiltonian exactly.

3. A VALENCE-QUARK LIGHT-CONE HAMILTONIAN

In this section, I would like to present a derivation where the near-light-cone
method and the field strength correlators work nicely together. This example
demonstrates their practicality as a calculational and heuristic tool. Firstly, one



can analytically do the calculation in the stochastic vacuum model and secondly,
the result is so close to reality that one can see the model-independent result. In our
application of the stochastic vacuum model to high-energy scattering we always use
Wilson loops which are on the light-cone. The expectation values of a Wilson loop
along the light-cone is unity, because the area of a light-like Wilson loop is zero. I
was always disturbed by this fact, because I thought that a color dipole moving with
the speed of light should feel confining forces. The wavefunction renormalization
due to single loops cancels out in the S-matrix, but the puzzle remained to me.
So recently, Nurpeissov and myself [11] have looked into this problem again using
a tilted Wilson loop corresponding to a fast moving dipole in Euclidean and in
Minkowski space, i.e. we applied the near light-cone trick.
In Euclidean space the Wegner-Wilson loop can be represented with the help of

the Casimir operator in the fundamental representation C2(3) = t2 = 4/3

〈W [C]〉G = exp

[

−C2(3)

2
χss

]

. (18)

We calculate χss as the double area integral of the correlation function over the
surface of the loop. Let us consider the χss function for large separations R0 of
the quark and antiquark, where the confinement term plays the main role. For
the nonperturbative (NP) confining (c) component χNP c

ss we get the following
expression for large distances R0α >> 2a

χNP c
ss = lim

T→∞

[

2π3a2G2κT

3(N2
c −1)

·R0α

]

. (19)

Here G2 denotes the gluon condensate, κ the weight of the confining correlator
compared to the nonconfining correlator, a gives the correlation length and T the
extension of the loop in Euclidean time.
The geometry of the arrangement enters into the factor α. The angle θ gives

the tilting of the loop in the X3,X4 plane. The angle φ defines the angle of the qq̄
connection in the X1,X3 plane.

α =
√

1− cos2φsin2 θ. (20)

One recognizes that the confining interaction leads to a VEV of the tilted Wilson
loop which is consistent with the area law for large distances R0

<W [C]> = e−σR0αT (21)

σ =
π3G2a

2κ

18
, (22)

where σ is the string tension and the area is obtained from

Area = TR0

∫ 1/2

−1/2
du
∫ 1

0
dv

√

√

√

√

(

dXµ

du

)2(
dXµ

dv

)2

−
(

dXµ

du

dXµ

dv

)2

(23)

= TR0α. (24)



For the Wegner-Wilson loop in Minkowski space-time we define χss in the following
way

〈W [C]〉G = exp

[

−i C2(3)

2
χss

]

. (25)

Minkowskian geometry enters via the factor

αM =
√

1+cos2φsinh2ψ, (26)

which is consistent with the analytical continuation of the Euclidean expression
α = 1− cos2φsin2 θ into Minkowski space by transforming the angle θ→ iψ. This
analytical continuation is similar to the analytical continuation used in high-energy
scattering [12, 13, 14], where the angle between two Wilson loops transforms in
the same way.
The confining contribution to χss reads in Minkowski space:

χNP c
ss = lim

T→∞

[

2π3a2G2κT

3(N2
c −1)

·R0αM

]

. (27)

In order to interpret this result, one must define the four velocities of the particles
described by the tilted loop

uµ = (γ,0⊥,γβ). (28)

The exponent giving the expectation value of the Wilson loop acquires a new
meaning now, since −ig ∫ dτAµuµ =−ig ∫ dτ(γA0−γβA3), which leads in the VEV
to a value for β ≈ 1

<Wr[C] >= e−iγ(P 0−P 3)T . (29)

The light-cone energy arising from the confining part of the correlation function
has the form

P− =
1√
2

(

σR0

√

cos(φ)2+sin(φ)2/γ2
)

. (30)

One sees that the Wilson loop for boosts with large γ indicates that the light-cone
energy does not depend on the transverse distance R0sinφ between the quarks.
We introduce the relative + momentum k+ and transverse momentum k⊥ for the
quarks with mass µ. By adding the above “potential” term to the kinetic term of
relative motion of the two particles we complete the Hamiltonian P−

P− =
(µ2+k2⊥)P

2(1/4P 2−k+2)
+

1√
2
σ
√

x23+x
2
⊥/γ

2. (31)

Next, we multiply P− with the plus component of the momentum P+ and use
that P+/M =

√
2γM to eliminate the boost variable from the Hamiltonian. Fur-

ther, we introduce the fraction ξ = k+/P+ with |ξ| < 1/2 and its conjugate the
scaled longitudinal space coordinate

√
2ρ= P+x3 as dynamical variables. For our

configuration the relative time of the quark and antiquark is zero. Then we get



the light-cone Hamiltonian in a Lorentz invariant manner, because the variables
ξ,ρ,k⊥ and x⊥ are invariant under boosts

M2 = 2P+P− =
(µ2+k2⊥)

1/4− ξ2 +2σ
√

ρ2+M2x2⊥. (32)

To solve theM2 operator one has to replace the square root operator by introducing
an auxiliary parameter s of dimension mass squared and minimizeM2 with respect
to variations of s. Final self consistency must be reached with a guessed mass
eigenvalue M0

M2 =
(µ2+k2⊥)

1/4− ξ2 +
1

2

(

4σ2ρ
2+M2

0x
2
⊥

s
+ s

)

. (33)

In addition, one has to put the self-energy correction calculated by Simonov [15]
which is ∆µ2 =−4σ ∗f(mq)/π and get

M2 =
(µ2− 4σf

π
+k2⊥)

1/4− ξ2 +
1

2

(

4σ2ρ
2+M2

0x
2
⊥

s
+ s

)

. (34)

For light quarks the function f(mq) is close to unity. We have used the above
equation with a simple trial function:

ψ(ξ,x⊥) =Ncos(ξπ)e
− x

2
⊥

2x2
0 . (35)

We obtain two solutions [16] with positive masses due to the s-minimization. One
solution is very low in mass and the other rather high. By tuning f(mq) = 0.8615
away from unity the lower solution is pion-like with a really low mass, whereas the
other solution lies at a typical hadronic scale

Mlow = 0.138GeV (36)

Mhigh = 1.1GeV . (37)

Since on the light-cone the mechanism of chiral symmetry breaking is of particu-
lar interest, we would like to understand this result better. In the approach given
here confinement plays an important role in contrast to Nambu-Jona-Lasinio effec-
tive models, which give an adequate description of spontaneous chiral symmetry
breaking but do not include confinement.
The confining interaction in the light Hamiltonian was derived in the specific

model of the stochastic vacuum. But it also can be inferred from the simple
Lorentz transformation properties of the phase in the Wilson loop and a lattice
determination of the tilted Wilson expectation values. In this respect the final
Hamiltonian is model independent.
The inclusion of confining forces in the initial and final state wave functions can

put all scattering cross sections calculated with the stochastic vacuum model on a
much safer base, when wave functions and cross sections are derived consistently.
For low Q2 photon wave functions the long-distance part of the wave function



matters strongly and confinement is important cf. [17]. Especially the diffractive
cross section has a large contribution from large dipole sizes and a correct behavior
can only be expected when the problem of the large dipole wave function is treated
adequately. Another extension of the above calculation is the coupling of the initial
qq̄ state to higher Fock states qq̄g with gluons which can be calculated with Wilson
loops near the light-cone in Minkowski space.

4. DISCUSSION AND CONCLUSIONS

I have tried to give some impression how QCD appears near the light-cone. I think
we have now a calculational framework to approach the light-cone in a systematic
way. It does not look much easier than equal time lattice gauge theory. One may
hope that some simplifications arise in the process of studying it. The work on a
Wilson loop near the light-cone looked very complicated and intransparent at the
beginning, but it reduced to some simple form. I like this example because it shows
how the vacuum acts near the light-cone.
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