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Process e+e− → 3π(γ) with final state radiative corrections

S. Bakmaev,∗ Yu. M. Bystritskiy,† and E. A. Kuraev‡

Joint Institute for Nuclear Research, 141980 Dubna, Russia

(Dated: November 12, 2018)

We consider the process of annihilation of e+e− to three pion final state for the

case of moderately high energies. The final state emission of virtual and real photon

is considered explicitly. The calculations are performed in frames of QED with point-

like mesons and pion part of chiral perturbation theory. Some numerical estimates

are given.

I. INTRODUCTION

The problem of taking into account of radiative corrections (RC) of lowest order of per-

turbation theory to process of three pion production in annihilation channel of colliding

e+e− at moderately high energies becomes urgent for precision measurement of hadronic

contribution to muon anomalous magnetic moment (g − 2)µ [1]. This is the motivation of

this paper. The similar calculation for production of 2 π and µ+µ− at the annihilation

channel was performed recently [2].

We shall use the pion sector of chiral perturbation theory (ChPT) to perform the cal-

culations of interaction of pions with electromagnetic field. This theory is given by Wess-

Zumino-Witten effective lagrangian [3, 4]. The relevant piece of this lagrangian is reproduced
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below:

L =
f 2
π

4
Sp
[

DµU (DµU)+ + χU+ + Uχ+
]

−

− e

16π2
εµναβAµSp

[

Q
{

(∂νU)
(

∂αU
+
)

(∂βU)U+ −
(

∂νU
+
)

(∂αU)
(

∂βU
+
)

U
}]

−

− ie2

8π2
εµναβ (∂µAν)AαSp

[

Q2 (∂βU)U+ +Q2U+ (∂βU) +

+
1

2
QUQU+ (∂βU)U+ − 1

2
QU+QU

(

∂βU
+
)

U

]

, (1)

where fπ = 94 MeV is the pion decay constant, U = exp
(

i
√
2Φ
fπ

)

, DµU = ∂µU + ieAµ [Q,U ],

Q = diag
(

2
3
,−1

3
,−1

3

)

is the quark charge matrix and terms with χ = Bdiag (mu, md, ms)

introduce explicit chiral symmetry breaking due to nonzero quark masses. The constant B

has dimension of mass and is determined through the equation Bmq = M2, where mq =

mu ≈ md and M is the pion mass. The pseudoscalar meson matrix Φ has its standard form:

Φ =











1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η











. (2)

II. BORN APPROXIMATION

We consider reaction of e+ e− annihilation into three pions:

e−(p−) + e+(p+) → π−(q−) + π+(q+) + π0(q0). (3)

Matrix element for this process in Born approximation have a form (see Fig. 1):

M (0) =
iα

πf
(0)3
π

· 1

q2
· v̄(p+)γµu(p−) · (µq+q−q0), (4)

where f
(0)
π is the unrenormalized pion decay constant, s = q2 = (p+ + p−)

2 – invariant mass

of initial state, (µq+q−q0) ≡ εµναβq
ν
+q

α
−q

β
0 .

Squaring this matrix element and performing summation over initial leptons spin states

we get the total cross section for this process:

σ
(0)
B =

α2s2

28 · 3 · π5f
(0)6
π

∫ xmax

+

xmin

+

dx+

∫ xmax

−

xmin

−

dx− G(x+, x−), (5)

here

G(x+, x−) = 4(x2
+ − µ2)(x2

− − µ2)−
(

1− 2x+ − 2x− + 2x+x− + µ2
)2

, (6)
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with µ2 = M2/s, M – is pion mass, x± = ε±/
√
s, x0 = ε0/

√
s – are fractions of final pion’s

energies, while x+ + x− + x0 = 1. Limits of integration in (5) follows from kinematical

constrains:

xmin
+ = µ, xmax

+ =
1

2

(

1− 3M2

s

)

=
1

2

(

1− 3µ2
)

,

xmax,min
− =

1

2(1− 2x+ + µ2)

(

(1− x+)(1− 2x+ + µ2)± R(x+)
)

,

where R2(x+) = (x2
+ − µ2)(1− 2x+ + µ2)(1− 2x+ − 3µ2).

III. VIRTUAL PHOTON EMISSION

Radiative corrections from emission of virtual photon can be represented by 11 Feynman

diagrams (FD) (see Fig. 2).

First we shall notice that FDs 4, 5, 6, 7, 10, 11 gives zero contribution (δ4 = δ5 = δ6 =

δ7 = δ10 = δ11 = 0) due to
∫

d4k

iπ2

(µkq(2q− − k))

k2(k2 − 2kq−)(k2 − 2kq + q2 −M2)
≡ 0. (7)

FDs 2 and 3 are the contributions from pion wave function renormalization and they are

equal to [5]:

δc = δ2 + δ3 =
α

π

(

LΛ + ln
M2

λ2
− 3

4

)

, (8)

where LΛ = ln(Λ2/M2) and Λ – is the ultraviolet cut-off parameter, λ – is the fictitious

photon mass. Considering contributions of FDs 1, 8, 9 we get:

δv = δ1 + δ8 + δ9 =
α

π

[

1 +
1

2
LΛ − 1 + β2

2β
ln

(

1 + β

1− β

)

ln
M2

λ2
+

+
1 + β2

4
s1 Re

∫ 1

0

dx

q2x

(

ln
q2x
M2

− 2

)

+Q

]

, (9)

Q =

∫ 1

0

dx

∫ 1

0

dyy ln
−x(1− xy) + xx+(1− y) + µ2y

−x(1− xy) + xx−(1− y) + µ2y
. (10)

Here s1 = (q+ + q−)
2 is the invariant mass of charged pions pair, β2 = 1 − 4M2/s1, q

2
x =

M2 − s1x(1 − x)− i0. The integrals in (9) can be calculated explicitly:

Re

∫ 1

0

dxs1
q2x

= − 2

β
L, (11)

Re

∫ 1

0

dxs2
q2x

ln
q2x
M2

=
4

β

[

L ln

(

1 + β

2β

)

− 1

4
L2 + Li2

(

1− β

1 + β

)

+ 2ξ2

]

, (12)

where L = ln 1+β

1−β
, Li2 (x) = −

∫ x

0
dt
t
ln(1− t) and ξ2 =

π2

6
.
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IV. SOFT REAL PHOTON EMISSION

The standard calculation of contribution of real soft photon emission by final pions

δs =
σsoft

σB

= − α

4π2

∫

d3k

ω

(

q−
kq−

− q+
kq+

)2
∣

∣

∣

∣

∣

ω<∆ε

, (13)

where ∆ε is the maximum energy of soft photon (i.e. ω < ∆ε), leads to:

δs =
2α

π

{(

ln∆− 1

2
ln(x+x−) + ln

M

λ

)(

−1 +
1 + β2

2β
L

)

+

+
1 + β2

4β

[

−g − 1

2
L2 + L ln

(

4

1− β2

)

− ξ2 − 2Li2

(

−1− β

1 + β

)]}

, (14)

where ∆ = ∆ε/
√
s and the quantity g is defined by

g = 2β

∫ 1

0

dt

1− β2t2
ln

(

1 +
1− t2

4

(x+ − x−)
2

x+x−

)

. (15)

V. HARD REAL PHOTON EMISSION

Consider the contribution of radiative corrections which arises from the emission of ad-

ditional hard photon by final particles, i.e. the process:

e−(p−) + e+(p+) → π−(q−) + π+(q+) + π0(q0) + γ(k). (16)

Amplitude for this process can be written in the form:

M = (4πα)2
1

q2
· v̄(p+)γµu(p−) ·

1

4π2f 3
π

· Tµνe
ν(k), (17)

where k, eµ(k) are the momenta and the polarization vector of final real photon. Tµν is the

tensor corresponding to the γ∗(µ,Q) → π+(q+)π
−(q−)π

0(q0)γ(ν, k) vertex, which follows

from (1):

T µν = (µνQk)A+ (µν(Q + k)q0) + (µλQq0)

(

qν−q
λ
+

(q−k)
+

qν+q
λ
−

(q+k)

)

−

−(νλkq0)

(

(2q− −Q)µqλ+
Q2 − 2(q−Q)

+
(2q+ −Q)µqλ−
Q2 − 2(q+Q)

)

, (18)

where Q = q+ + q− + q0 + k, (thus Q0 =
√
s), A = 1 − (s1 −M2)/((Q − k)2 −M2). This

tensor satisfies the gauge-invariance condition for both photon legs:

QµT
µν = kνT

µν = 0. (19)
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Thus we may write the cross section in a form:

σhard =
(4πα)3

8s
· 1

s2
Sp [p̂+γ

µp̂−γ
ν ]

(

1

4π2f 3
π

)2
1

3

(

gµν −
QµQν

Q2

)
∫

dΓ4

∑

λ

∣

∣T αβeλβ
∣

∣

2
. (20)

Phase volume for final state has a form:

dΓ4 = (2π)4δ4 (p+ + p− − q+ − q− − q0 − k)
d3q+

(2π)32ε+

d3q−
(2π)32ε−

d3q0
(2π)32ε0

d3k

(2π)32ω
=

= (2π)−8s
2π2

16
x dx dx+ dx− dOγ, (21)

where x = ω/
√
s, x+ x+ + x− + x0 = 1. And now the cross section takes the form:

σhard =
α3

28 · 3 · π7f 6
π

∫

dx x dx+ dx− dOγ

(

−
∑

λ

|T µν |2
)∣

∣

∣

∣

∣

x>∆

. (22)

We shall notice, that the sum of hard photon emission δh = σhard/σB and soft real photon

emission δs contributions (δh + δs) does not contain the auxiliary parameter ∆. To see this

explicitly let us consider the small x = ω/
√
s limit of σhard. Really if we consider the case

∆
√
s < ω ≪ √

s then (see (18)):

T µνeν(k)|ω≪√
s ≈ (µq+q−q0)

(

(q−e)

(q−k)
− (q+e)

(q+k)

)

. (23)

We can calculate the hard photon emission contribution in this limit:

∫

d3k

2πω

∑

λ

(

− |T µνeν(k)|2
)∣

∣

ω→∆
√
s
= 4 ln

1

∆

(

1 + β2

2β
ln

(

1 + β

1− β

)

− 1

)

, (24)

and we get for δh:

δh|ω→∆
√
s ≈

2α

π

[

ln
1

∆

(

1 + β2

2β
ln

(

1 + β

1− β

)

− 1

)

+O(∆)

]

. (25)

We redefine the contributions in the following manner:

δs + δh → δ̄s + δ̄h, (26)

δ̄s = δs +
2α

π
ln

1

∆

(

1 + β2

2β
ln

(

1 + β

1− β

)

− 1

)

, (27)

δ̄h = δh −
2α

π
ln

1

∆

(

1 + β2

2β
ln

(

1 + β

1− β

)

− 1

)

, (28)

where both δ̄s and δ̄h are not dependent on ∆ any more.



6

VI. CONCLUSION

The final result is

σee→3π(γ) = σ
(0)
B (1 + δsw) (1 + δ) = σB (1 + δ) , σB = σ

(0)
B

(

f (0)
π → fπ

)

(29)

δ =
(

δc + δv + δ̄s + δ̄h
)∣

∣

LΛ=0
, δsw =

3α

2π
LΛ, (30)

where we extracted the short-distance contributions in form (1 + δsw) and used this factor

to renormalize f
(0)
π pion decay constant in form f

(0)−6
π (1 + δsw) = f−6

π [6].

The explicit form of δ − δ̄h is:

δ − δ̄h =
α

π

{

−1

2
ln (x+x−)

(

−1 +
1 + β2

2β
L

)

+
1

4
+Q +

+
1 + β2

4β

[

−g − 1

2
L2 + L ln

4

1− β2
− ξ2 − 2Li2

(

−1− β

1 + β

)]

+

+
1 + β2

β

[

L+ L ln
1 + β

2β
− 1

4
L2 + Li2

(

−1− β

1 + β

)

+ 2ξ2

]}

, (31)

with L = ln
(

1+β

1−β

)

, g defined in (15) and Q defined in (10). We note that g(x+ = x−) =

Q(x+ = x−) = 0. The form of δ̄h depends on the experimental conditions of final state

particles registration and not considered here.

In Fig. 3 we present the value δ − δ̄h for typical experimental situation.
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Fig. 1: Feynman diagram contributing the process probability in Born approximation.
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Fig. 2: Feynman diagrams of emission of additional virtual photon.
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Fig. 3: The value δ− δ̄h (see (31)) in percents for typical experimental conditions as function of β.
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