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Abstract

The six-quark instanton induced ’t Hooft interaction, which breaks the
unwanted UA(1) symmetry of QCD, is a source of perturbative corrections
to the leading order result formed by the four-quark forces with the UL(3)×
UR(3) chiral symmetry. A detailed quantitative calculation is carried out
to bosonize the model by the functional integral method. We concentrate
our efforts on finding ways to integrate out the auxiliary bosonic variables.
The functional integral over these variables cannot be evaluated exactly. We
show that the modified stationary phase approach leads to a resummation
within the perturbative series and calculate the integral in the “two-loop”
approximation. The result is a correction to the effective mesonic Lagrangian
which may be important for the low-energy spectrum and dynamics of the
scalar and pseudoscalar nonets.
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1. Introduction

In the absence of a quantitative framework within QCD to deal with its
large distance dynamics, the physics of hadrons is usually approached either
through an effective field theory or through phenomenological parametriza-
tions based on some simple ansatz with solid symmetry grounds. In the first
case the theory is written in terms of mesonic degrees of freedom [1, 2]. In
the second case the existence of underlying multi-quark interactions can be
assumed. In this way one takes into account the quark structure of mesons
explicitly, which may yield very important information about the structure
of the QCD vacuum. Although these interactions are not renormalizable
(as compared with CHPT, which is renormalizable in the sense of effective
field theories), it is often possible to derive useful results in such models by
introducing an ultraviolet cutoff.

Not much is known about the origin of multi-quark vertices. The semi-
classical theory based on the QCD instanton vacuum [3] provides evidences
in favor of these interactions: two or more quarks can scatter off the same
instanton (or anti-instanton), certain correlations between quarks originate
from averaging over their positions and orientations in color space, the result
being an effective quark Lagrangian. Assuming a dominant role for quark
zero modes in this scattering process one obtains 2Nf -quark interactions (Nf

is the number of quark flavors), which are known as ’t Hooft interactions [4].
Actually, an infinite number of multi-quark interactions, starting from the
four-quark ones, has been found in the instanton-gas model considered be-
yond the zero mode approximation, all of them being of the same importance
[5].

On the other hand, accurate lattice measurements for the realistic QCD
vacuum show a hierarchy between the gluon field correlators with a domi-
nance of the lowest one [6]. A similar hierarchy of the multi-quark interac-
tions can be triggered after averaging over gluon fields. If this is true, there
is an apparent contradiction with the instanton-gas model. This point has
been stressed in [7].

The hierarchy problem of multi-quark interactions can be addressed on
pure phenomenological grounds. For that we suggest to simplify the task
considering only the four- and six-quark interactions. Once one knows the
Lagrangian the obvious question arises: does the system possess a stable
vacuum state and does this state correspond to our phenomenological expec-
tations? If hierarchy takes place this question is pertinent for the leading
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four-quark interaction, because in this case the effective quark Lagrangian
can be studied step by step in the hierarchy with the assumption that four-
quark vertices are the most important ones. In the opposite case we must
study the system as a whole to answer the question. For the best known and
simplest example, to which we dedicate most of our attention here, the solu-
tion may be found analytically. As a result one can obtain definite answers
to the above questions with a convincing indication in favor of a hierarchy
for the considered example.

Our choice of model is not accidental. The importance of the four-fermion
interactions has been recognized for many years, starting in the early sixties,
when Nambu and Jona-Lasinio (NJL) [8] used it for studying dynamical
breaking of chiral symmetry. Later on a modified form of this interaction,
written in terms of quark fields, has been used to derive the QCD effective
action at long distances [9, 10, 11].

The six-quark vertices contain additional information about the vacuum
[12]. They break explicitly the UA(1) symmetry and are the only source of
OZI-violating effects [13]. Taken together with the NJL interactions, the ’t
Hooft Lagrangian gives a good description of the pseudoscalar nonet, espe-
cially the η and η′ masses and mixing [14, 15]. In this form the model has
been widely explored at the mean-field level [16].

Let us discuss the Lagrangian which we shall use in our analysis. On
lines suggested by multicolor chromodynamics it can be argued [17] that
the UA(1) anomaly vanishes in the large Nc limit, so that mesons come de-
generate in mass nonets. Hence the leading order (in Nc counting) mesonic
Lagrangian and the corresponding underlying quark Lagrangian must inherit
the UL(3)×UR(3) chiral symmetry of massless QCD. In accordance with these
expectations the UL(3)× UR(3) symmetric NJL interactions,

LNJL =
G

2

[

(q̄λaq)
2 + (q̄iγ5λaq)

2
]

, (1)

can be used to specify the corresponding local part of the effective quark
Lagrangian in channels with quantum numbers JP = 0+, 0−. The Gell-Mann
matrices acting in flavor space, λa, a = 0, 1, . . . , 8, obey the basic property
trλaλb = 2δab.

The ’t Hooft determinantal interactions are described by the Lagrangian
[4]

LH = κ(det q̄PLq + det q̄PRq) (2)
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where the matrices PL,R = (1∓ γ5)/2 are projectors and the determinant is
over flavor indices.

The coupling constant κ is a dimensional parameter ([κ] = GeV−5) with

the large Nc asymptotics κ ∼ 1/N
Nf
c . The coupling G, [G] = GeV−2,

counts as G ∼ 1/Nc and, therefore, the Lagrangian (1) dominates over LH

at large Nc. It differs from the counting G ∼ 1/N2
c , which one obtains in the

instanton-gas vacuum [5].
It is assumed here for simplicity that interactions between quarks can be

taken in the long wavelength limit where they are effectively local. The ’t
Hooft-type ansatz (2) is a frequently used approximation. Even in this essen-
tially simplified form the determinantal interaction has all basic ingredients
to describe the dynamical symmetry breaking of the hadronic vacuum and
explicitly breaks the axial UA(1) symmetry [18]. The effective mesonic La-
grangian, corresponding to the non-local determinantal interaction, has been
found in [19].

Anticipating our result, we would like to note that if the hierarchy of
multi-quark interactions really occurs in nature, the perturbative treatment
seems adequate. The NJL interaction alone has a stable vacuum state corre-
sponding to spontaneously broken chiral symmetry. But, as we shall show,
the effective quark theory based on the Lagrangian5

L = q̄(iγµ∂µ − m̂)q + LNJL + LH (3)

has a fatal flaw: if LH is comparable with LNJL, it has no stable ground state.
This feature of the model is invisible in a perturbative approach in LH. The
situation is exactly analogous to the problem of a harmonic oscillator per-
turbed by an x3 term. This system has no ground state, but perturbation
theory around a local minimum does not know this. In eq.(3) the current
quark mass, m̂, is a diagonal matrix with elements diag(m̂u, m̂d, m̂s), which
explicitly breaks the global chiral SUL(3) × SUR(3) symmetry of the La-
grangian.

There is also a special problem related with the bosonization of multi-
quark interactions. To bosonize the theory one introduces auxiliary bosonic
variables to render fermionic vertices bilinear in the quark fields. This proce-
dure requires twice more bosonic degrees of freedom than necessary [15]. Re-
dundant variables must be integrated out and this integration is problematic
as soon as one goes beyond the lowest order stationary phase approximation

5The other multi-quark terms have been neglected here.
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[20, 21]: the lowest order result is simply the value of the integrand taken
at one definite stationary point [18]. In this paper we shall show for the
first time how to extract systematically the higher order corrections which
contribute to the effective mesonic Lagrangian, and what to do with infini-
ties contained in these corrections. The model (3) is considered to illustrate
our calculations. If the coupling κ is not too small, corrections can be much
larger than one might expect from 1/Nc counting, and be important for the
mesonic (0+, 0−) mass spectra and their dynamics. The large value of the
η − η′ mass difference obtained already at leading order and totally deter-
mined by the six-quark interactions gives some credit to large corrections.
Additionally, one can expect some enhancement at next to leading order by
virtue of divergent factors: the cutoff scale is not known beforehand, and can
be relatively large.

Our study represents a very simplified view on the matter and should be
considered as a first rough estimate which can be improved if necessary. The
most essential approximation made here is related with the local character of
the multi-quark vertices in eq.(3). It leads to δ(0) -singularities beyond the
mean-field framework (see also [20, 21]). Nevertheless, if it turns out that the
low-energy QCD vacuum contains the hierarchy of multi-quark interactions,
our approach can be used as a basis for a more serious work in this direction.

The paper is organized as follows. In Section 2 the functional integral
representation, Z, for a bosonized version of the NJL model with ’t Hooft
interactions is derived. To make clear the approximations which will be used
for the functional integration, a similar non functional integral, I, is consid-
ered in Section 3. The reader who just wants to get a general idea of what
we intend to study, can find it here. This section contains several clarifying
points which are important in the following. In subsection 3.1 we give the
exact result for I. Its stationary phase asymptotics is obtained in subsection
3.2. The semi-classical method yields the same result, as shown in subsec-
tion 3.3, as does the method presented in subsection 3.4. The point of these
numerous calculations is just to show that all methods considered lead to
the same asymptotics for the integral I which is totally determined by the
number of stationary points. The perturbative treatment is given in subsec-
tion 3.5. Here we discuss why the perturbation theory result is essentially
different from the asymptotics obtained in the previous subsections, even for
very small value of the expansion parameter. We resum the perturbative
series in subsection 3.6. Calculating the next to leading order correction we
illustrate the main goal of our studies in the forthcoming sections.
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In Section 4 (subsection 4.1) we show that the chiral symmetry group
imposes strong constraints which are only compatible either with the pertur-
bative approach, or the expansion in a parameter that multiplies the total
Lagrangian density (the loop expansion). Otherwise, as the consistent sta-
tionary phase treatment shows (subsection 4.2), the model is unstable.

The first alternative is considered in Section 5. To evaluate the functional
integral Z, we consider it like the natural infinite-dimensional limit of ordi-
nary finite-dimensional Gaussian integrals (subsection 5.1). The perturbative
treatment essentially simplifies calculations. Nevertheless, the integration
over auxiliary variables leads to a special problem with δ(0) -singularities.
We discuss this aspect of the bosonization in subsection 5.2. Another way to
obtain the result is shown in subsection 5.3. Here a more elaborate spectral
representation method is used to justify our computations. This subsection
contains the prescriptions for the regularization of the δ(0) infinities, and a
discussion of their reliability.

The second alternative (the loop expansion) is considered in Section 6.
Here, in subsection 6.1, we obtain in closed form the two-loop contributions
to the functional integral Z and give arguments to justify this result. In
subsection 6.2 we end with short conclusions and suggest future applications
of our result.

The summary is given and outlook is surveyed in Section 7.
The Appendix contains the definition and the main properties of Airy’s

functions.

2. Bosonization

The many-fermion vertices of Lagrangian (3) can be linearized by introducing
the functional unity [15]

1 =
∫

∏

a

DsaDpa δ(sa − q̄λaq)δ(pa − q̄iγ5λaq)

=
∫

∏

a

DsaDpaDσaDφa

× exp
{

i
∫

d4x[σa(sa − q̄λaq) + φa(pa − q̄iγ5λaq)]
}

(4)
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in the vacuum-to-vacuum amplitude

Z =
∫

DqDq̄ exp
(

i
∫

d4xL
)

. (5)

We consider the theory of quark fields in four-dimensional Minkowski space.
It is assumed that the quark fields have color (Nc = 3) and flavor (Nf = 3)
indices which range over the set i = 1, 2, 3. The auxiliary bosonic fields,
σa, and, φa, (a = 0, 1, . . . , 8) become the composite scalar and pseudoscalar
mesons and the auxiliary fields, sa, and, pa, must be integrated out.

By means of the simple trick (4), it is easy to write down the amplitude
(5) as

Z =
∫

DqDq̄
8
∏

a=0

Dsa
8
∏

a=0

Dpa
8
∏

a=0

Dσa

8
∏

a=0

Dφa exp
(

i
∫

d4xL′

)

(6)

with

L′ = q̄(iγµ∂µ − σ − iγ5φ)q + sa(σa − m̂a) + paφa + L′
NJL + L′

H , (7)

L′
NJL =

G

2

[

(sa)
2 + (pa)

2
]

, (8)

L′
H =

κ

64
[det(s+ ip) + det(s− ip)] =

κ

32
Aabcsa (sbsc − 3pbpc) . (9)

We assume here that σ = σaλa, and so on for all auxiliary fields σ, φ, s, p.
The totally symmetric constants Aabc are related to the flavor determinant,
and equal to

Aabc =
1

3!
ǫijkǫmnl(λa)im(λb)jn(λc)kl

=
2

3
dabc +

√

2

3

(

3δa0δb0δc0 − δa0δbc − δb0δac − δc0δab
)

. (10)

We use the standard definitions for antisymmetric fabc and symmetric dabc
structure constants of U(3) flavor symmetry. One can find, for instance, the
following useful relations

feacAbfc + febcAfac + fefcAabc = 0,

deacAbfc + debcAfac + defcAabc =
√
6δe0Aabf ,

8
∑

b=0

Aabb = −2

√

2

3
δa0,

8
∑

c,e=0

AaceAbce =
8

9
δab. (11)

7



At this stage it is easy to rewrite eq.(6), by changing the order of integra-
tions, in a form appropriate to accomplish the bosonization, i.e., to calculate
the integrals over quark fields and integrate out from Z the unphysical part
associated with the auxiliary bosonic variables (sa, pa)

Z =
∫

∏

a

DσaDφaDqDq̄ exp
(

i
∫

d4xLq(q̄, q, σ, φ)
)

×
∫

∏

a

DsaDpa exp
(

i
∫

d4xLr(σ, φ, s, p)
)

(12)

where

Lq = q̄(iγµ∂µ − σ − iγ5φ)q, (13)

Lr = sa(σa − m̂a) + paφa + L′
NJL + L′

H . (14)

The Fermi fields enter the action bilinearly, thus one can always integrate
over them, since one deals with a Gaussian integral. One should also shift the
scalar fields σa(x) → σa(x)+ma by demanding that the vacuum expectation
values of the shifted fields vanish 〈0|σa(x)|0〉 = 0. In other words, all tadpole
graphs in the end should sum to zero, giving us the gap equation to fix the
constituent quark masses ma corresponding to the physical vacuum state.

The functional integrals over sa and pa

Z[σ, φ; ∆] ≡ N
+∞
∫

−∞

∏

a

DsaDpa exp
(

i
∫

d4xLr(σ +m,φ, s, p)
)

(15)

are the main subject of our study. We put here ∆a = ma − m̂a, and N is
chosen so that Z[0, 0;∆] = 1.

Let us join the auxiliary bosonic variables in one 18-component object
RA = (Ra, Rȧ) where we identify Ra ≡ sa and Rȧ ≡ pa; a, ȧ run from 0 to 8
independently. It is clear then, that R2

A = s2a + p2a. Analogously, we will use
ΠA = (σa, φa) for external fields and ∆A = (∆a, 0).

Next, consider the sum ΦABCRARBRC . If we require

Φabc =
3

16
Aabc , Φaḃċ = − 3

16
Aabc , Φabċ = 0, Φȧḃċ = 0, (16)

we find after some algebra

κ

3!
ΦABCRARBRC = L′

H (17)
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with the following important property to be fulfilled

ΦABCδBC = 0. (18)

Now it is easy to see that the functional integral (15) can be written in a
compact way

Z[Π,∆] ≡ N
+∞
∫

−∞

∏

A

DRA exp
(

i
∫

d4xLr(Π,∆;R)
)

, (19)

where

Lr = RA(ΠA +∆A) +
G

2
R2

A +
κ

3!
ΦABCRARBRC . (20)

We have arrived at a functional integral with a cubic polynomial in the
exponent.

3. Digression to a one dimensional case

To get a rough idea of how to evaluate the integral (19) we start with its
one-dimensional analog

I =

+∞
∫

−∞

dx eiP (x) (21)

where

P (x) = σx+
a

2!
x2 +

b

3!
x3 , (22)

and σ, a, b are constants. This integral plays the same role as our desired
functional one, but is well defined as an improper Riemann integral of the
real variable x.

3.1 The exact result

The integral (21) can be evaluated exactly. To show this let us express the
polynomial P (x) in the form

P (x) = P (x0) + P ′(x0)(x− x0) +
P ′′′(x0)

3!
(x− x0)

3 , (23)
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where x0 is chosen to satisfy the following equation

P ′′(x) = bx+ a = 0 ⇒ x0 = −a

b
. (24)

The coefficients are

P (x0) = −aσ

b
+

a3

3b2
, P ′(x0) = σ − a2

2b
, P ′′′(x) = b. (25)

Hence the integral (21) is given by

I = eiP (x0)

+∞
∫

−∞

dx exp

[

i

(

P ′(x0)x+
P ′′′(x0)

3!
x3

)]

. (26)

We can rewrite eq.(26) in terms of the new variable t

x =

(

2

|P ′′′(x0)|

)1/3

t , (27)

thus we arrive at

I = eiP (x0)

(

2

|b|

)1/3 +∞
∫

−∞

dt exp

(

i

(

t3

3
+ δt

))

, (28)

where δ is defined to be

δ = sgn(b)P ′(x0)

(

2

|b|

)1/3

. (29)

This integral is well known. The result of integration can be represented in
terms of the Airy function (see Appendix for details)

I = 2π eiP (x0)

(

2

|b|

)1/3

Ai(δ). (30)

If δ is real, the function Ai(δ) is also real, and the phase of I is equal to P (x0).
In the following, after some generalizations made for the integral I, its phase
will represent the effective action of a dynamical system. The expression for
this phase is the main goal of our calculations.
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3.2 The stationary phase result

The result (30) for I is exact. It can be approximated at large values of δ
by its asymptotic series, still giving us an exact expression for the phase. To
obtain asymptotics let us transform eq.(28) to a more convenient form by
the replacement

t =
√

|δ| y . (31)

One has

I = eiP (x0)

(

2

|b|

)1/3
√

|δ|
+∞
∫

−∞

dy exp
(

i|δ|3/2g(y)
)

, (32)

where g(y) = y3/3+ sgn(δ)y. The integral (32) is already in the form appro-
priate for the stationary phase method to be applied. Indeed, as δ → −∞
the term |δ|3/2g(y) gives a rapidly oscillating contribution to the integrand
in eq.(32) which cancels out, except at the regions of critical points. The
contribution from these regions can be evaluated on the basis of the station-
ary phase method. In our case a ∼ G ∼ 1/Nc, b ∼ κ ∼ 1/N3

c , σ ∼ 1, i.e.,
δ3/2 ∼ N3

c and large Nc arguments6 can be used to justify the δ → −∞
limit. Both critical points (g′(y) = 0 ⇒ y1,2 = ±1) belong to the interval of
integration. Thus we have

I ∼ eiP (x0)

(

2

|b|

)1/3
√

|δ|
+∞
∫

−∞

dy

{

exp

[

i|δ|3/2
(

−2

3
+ y2 +

y3

3

)]

+ exp

[

i|δ|3/2
(

2

3
− y2 +

y3

3

)]}

(δ → −∞). (33)

The last term in both exponents can be factorized and then expanded in a
power series of y3

I ∼ eiP (x0)

(

2

|b|

)1/3
√

|δ|
+∞
∫

−∞

dy
{

exp
[

i|δ|3/2
(

y2 − 2

3

)]

+ exp
[

−i|δ|3/2
(

y2 − 2

3

)]} ∞
∑

n=0

1

n!

(

i|δ|3/2y
3

3

)n

(δ → −∞), (34)

6All large Nc arguments given in this section hint of course at the functional integral
case which will be discussed later.
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and integrated term by term. The corresponding integrals are evaluated
exactly

+∞
∫

−∞

dy exp
(

±iαy2
)

y2n = (±i)n
(2n− 1)!!

(2α)n
e±iπ/4

(

π

α

)1/2

(α > 0) (35)

giving as a result the following asymptotics for the integral I

I ∼ 24/3
√
π

|δ|1/4|b|1/3 e
iP (x0)

[

cos
(

2

3
|δ|3/2 − π

4

)

+O(|δ|−3/2)
]

(δ → −∞).

(36)
Let us stress that both critical points contribute to the resulting asymptotic
series reproducing the well known asymptotics of the Airy’s function (156).
We have considered here the case when the series oscillates. In the opposite
case, δ → ∞, the asymptotics falls down exponentially (155), and does not
have the appropriate form from the physical point of view.

3.3 Semi-classical asymptotics

One can calculate the integral (21) assuming that a large parameter is already
present in the exponent. For instance, the reduced Planck constant, ~, can
be considered as such a parameter

I =

+∞
∫

−∞

dx exp
(

i

~
P (x)

)

. (37)

In this case one obtains the asymptotic expansion for I at small values of
~ → 0. This approach is known as the semi-classical expansion.

The real function P (x) has two critical points xj (j = 1, 2)

P ′(x) =
b

2
x2 + ax+ σ = 0 ⇒ x1,2 =

−a±
√
a2 − 2bσ

b
. (38)

Both of them are real at a2 > 2bσ and, therefore, belong to the contour
of integration. In the neibourhood of these points the polynomial P (x) is
conveniently written in the form

P (x) = P (xj) +
P ′′(xj)

2!
(x− xj)

2 +
P ′′′(xj)

3!
(x− xj)

3 , (39)
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where

P (xj) = −aσ

b
+

a3

3b2
+ (−1)j

D3/2

3b2
, D ≡ a2 − 2bσ > 0,

P ′′(xj) = (−1)j+1D1/2, P ′′′(x) = b. (40)

Thus the integral under consideration is estimated as

I ∼
2
∑

j=1

eiP (xj)

+∞
∫

−∞

dx exp

[

i

(

P ′′(xj)

2
x2 +

P ′′′(xj)

3!
x3

)]

(~ → 0), (41)

or

I ∼ 23/2
√
π

D1/4
eiP (x0)

[

cos

(

D3/2

3b2
− π

4

)

+O(~)

]

(~ → 0). (42)

Noting that
D = −δ

3
√
4b4 , (43)

one can see that this result coincides with our previous estimate (36).
It may be helpful to remark that if one would take the contribution of

only one critical point in (41), the resulting asymptotics would be obviously
different, and, what is important for us, the phase too.

3.4 The Nc → ∞ asymptotics

The representation (39) can be used as a first step to estimate the integral
I without any reference to the semi-classical expansion. Alternatively, our
calculations can be based on the large Nc asymptotics. According to the
formula (39), we have identically

I = eiP (xj)

+∞
∫

−∞

dx exp

[

i

(

P ′′(xj)

2
x2 +

P ′′′(xj)

3!
x3

)]

. (44)

This holds whether x1 or x2 (see eq.(38)) is chosen here.
Next, replacing the variables

x =

∣

∣

∣

∣

3P ′′(xj)

P ′′′(xj)

∣

∣

∣

∣

t , (45)

we arrive at

I = eiP (xj)
3
√
D

|b|

+∞
∫

−∞

dt exp (iλf(t)) , (46)
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where we have used the following notations

λ =
9D3/2

2b2
, f(t) = t2

[

(−1)j+1 + sgn(b) t
]

. (47)

This form of the integral is already appropriate to apply the stationary phase
method at large λ. Large Nc arguments can be used to justify the λ → ∞
limit, for it is known that λ ∼ N3

c .
Let us obtain the leading term in this asymptotics. The critical points

are given by the equation

f ′(t) = 0 ⇒ t1 = 0, t2 = (−1)j sgn(b)
2

3
. (48)

Therefore, the integral I has the following asymptotical estimate at λ → ∞

I ∼ eiP (xj)
3
√
D

|b|

+∞
∫

−∞

dt
{

exp
[

iλ
(

(−1)j+1t2 + sgn(b) t3
)]

+ exp
[

iλ
(

(−1)j+1 4

27
+ (−1)jt2 + sgn(b) t3

)]}

. (49)

The first term of the integrand is the contribution of the critical point t1, the
second one comes due to t2. Noting, that

P (xj) = P (x0) + (−1)j
2λ

27
, (50)

one has

I ∼ eiP (x0)
3
√
D

|b|

+∞
∫

−∞

dt
{

exp
[

iλ
(

(−1)j
2

27
+ (−1)j+1t2

)]

+ exp
[

−iλ
(

(−1)j
2

27
+ (−1)j+1t2

)]}

eiλ sgn(b) t
3

. (51)

It is now obvious that the integrand does not depend on j, thus

I ∼ eiP (x0)
3
√
D

|b|

+∞
∫

−∞

dt
{

exp
[

iλ
(

2

27
− t2

)]

+ exp
[

−iλ
(

2

27
− t2

)]}

eiλ sgn(b) t
3

. (52)

14



One can see finally that the obtained asymptotical series

I ∼ eiP (x0)
6
√
D

|b|

√

π

λ
cos

(

2λ

27
− π

4

)

+ . . . (53)

coincides with our previous result (42).

3.5 The perturbation theory approach

Our asymptotic estimate requires a further explanation in what concerns the
definition of the improper Riemann integral (21). It is understood as the
limit

I = lim
L→∞

I(L), I(L) =

L
∫

−L

dx eiP (x) (54)

where we assumed that both stationary points x1,2 (see eq.(38)) belong to
the interval −L < x1,2 < L; the asymptotics of I(L) was formed accordingly
by two independent contributions: I(L) ∼ Ix1

(L) + Ix2
(L). Integrating in

Ixi
(L), we took into account that only a neighbourhood of a stationary point

xi is important, and extended the integration limits to L → ∞.
Let us suppose now that the coupling b is small, as compared with a, and

one can consider the limit b → 0. It is easy to see that

x1 ≃ −σ

a
+O(b), x2 ≃ −2a

b
+

σ

a
+O(b) (55)

at small b. The first solution is regular at b → 0, but the second one shows
the singular behavior

lim
b→0

|x2| = +∞ . (56)

This behavior reflects the increasing importance of the stationary point x1

in the physical problem for which the cubic term ∼ b is considered as a
perturbation. The second stationary point, x2, varying as 1/b, can finally
leave the interval (−L, L), changing as a result the asymptotics of the integral
I(L) to

I(L) ∼ Ix1
(L) , x2 /∈ (−L, L). (57)

The intuitive argumentation given above must be clarified. One should
not think that the real value of L is very important for the matter. Actu-
ally, one excludes the singular critical point from the phase P (x) by directly
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expanding the phase in the neighbourhood of a regular stationary point, as
we already did it for Ix1

. What is really important here is to conclude that
only the regular critical point determines the perturbative regime of the sys-
tem. According to this attitude, we use the term “perturbative regime” in
a wide sense: the standard perturbative expansion in powers of b, which we
will obtain below, is merely another way of looking at the one critical point
asymptotics of I.

Let us separate the unperturbed part P0 from the perturbation Ppt in the
integral I

P (x) = P0(x) + Ppt(x), P0(x) = σx+
a

2
x2, Ppt(x) =

b

6
x3. (58)

Expanding the integrand in powers of the coupling b, we obtain

I =

+∞
∫

−∞

dx eiP (x) =

+∞
∫

−∞

dx eiP0(x)
∞
∑

n=0

in

n!
P n
pt(x)

∼
∞
∑

n=0

in

n!
P n
pt

(

−i
∂

∂σ

) +∞
∫

−∞

dx eiP0(x)

= exp







ib

6

(

−i
∂

∂σ

)3






+∞
∫

−∞

dx eiP0(x) ≡ Ipt . (59)

The new feature is the fact that the integrand of Ipt has only one stationary
point, xst = −σ/a, as opposed to I. The singular critical point is gone.

The evaluation of the Gaussian integral is straightforward

I0 =

+∞
∫

−∞

dx eiP0(x) =

√

2π

a
exp

(

i

(

π

4
− σ2

2a

))

, (a > 0). (60)

This reduces our integral Ipt to the form

Ipt =

√

2π

a
eiπ/4



1 +
ib

6

(

−i
d

dσ

)3

− b2

72

(

−i
d

dσ

)6

−ib3

64

(

−i
d

dσ

)9

+ . . .



 exp

(

−i
σ2

2a

)

. (61)
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Up to the terms of order b3 we have now

Ipt = I0

[

1 + b

(

σ

2a2
− iσ3

6a3

)

+ b2
(

5i

24a3
+

5σ2

8a4
− 5iσ4

24a5
− σ6

72a6

)

+b3
(

35iσ

48a5
+

35σ3

36a6
− 7iσ5

24a7
− σ7

36a8
+

iσ9

1296a9

)

+O(b4)

]

.

Noting, that

(1 + bβ1 + b2β2 + b3β3 + . . .
)

exp
[

i
(

bα1 + b2α2 + b3α3 + . . .
)]

= 1 + b(β1 + iα1) + b2
(

i(α2 + α1β1) + β2 −
α2
1

2

)

(62)

+ b3
[

i

(

α3 + α1β2 + α2β1 −
α3
1

6

)

+ β3 − α1α2 −
β1

2
α2
1

]

+ . . .

one can represent this result in the more convenient form (up to the same
order of accuracy)

Ipt = eiπ/4
√

2π

a

(

1 + b
σ

2a2
+ b2

5σ2

8a4
+ b3

15σ3

16a6
+ . . .

)

eiPeff (σ), (63)

where

Peff(σ) = −σ2

2a
− b

σ3

6a3
+ b2

(

5

24a3
− σ4

8a5

)

+ b3
(

5σ

8a5
− σ5

8a7

)

+O(b4). (64)

The perturbative result Peff(σ) is an approximation, which can be sys-
tematically improved. In its truncated form the obtained series differs from
the expansion which one can obtain from Ix1

(see next subsection for de-
tails). It is clear, however, that if one sums up the series, the perturbative
and asymptotic estimates will coincide, i.e., Ipt = Ix1

.

3.6 Resumming the perturbative series

Let us calculate the contribution to the integral I which comes from the
critical point y1 = 1 in eq.(34). It is not difficult to find out that exactly this
point represents the regular solution at b → 0. For this part of the integral
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I we will use the symbol Iy1 , as we did before for Ixi
,

Iy1 ∼ eiP (x0)

(

2

|b|

)1/3
√

|δ|
+∞
∫

−∞

dy exp
{

i|δ|3/2
(

y2 − 2

3

)}

×
∞
∑

n=0

1

n!

(

i|δ|3/2 y
3

3

)n

(δ → −∞). (65)

It is clear that in the last sum only the even powers of n contribute. For
the first two terms (n = 0, 2) one obtains

Iy1 ∼
21/3

√
π

|b|1/3|δ|1/4 exp
{

i
[

P (x0)−
2

3
|δ|3/2 + π

4

]}

(

1 +
5i

48|δ|3/2 + . . .

)

. (66)

Since

|δ|3/2 = a3

2b2

(

1− 2bσ

a2

)3/2

, (67)

we can rewrite this result in the compact form

Iy1 ∼ eiπ/4
√

2π

a
A(σ) eiP

′

eff

(

1 +
5i

48|δ|3/2 + . . .

)

, (68)

where

A(σ) =

(

1− 2bσ

a2

)−1/4

= 1 +
bσ

2a2
+

5b2σ2

8a4
+

15b3σ3

16a6
+O(b4), (69)

P ′
eff(σ) = −aσ

b
+

a3

3b2



1−
(

1− 2bσ

a2

)3/2




= −σ2

2a
− bσ3

6a3
− b2σ4

8a5
− b3σ5

8a7
+O(b4). (70)

One can explicitly see that the series in powers of b obtained from the integral
Iy1 perfectly coincides7 with the perturbative expansions (63) and (64).

The series (68) corresponds to a partial resummation of the perturbative
series. In order to see what is resummed, let us introduce a parameter t

7Actually, we checked the terms up to and including b5 order.
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according to the substitution: a, b, σ → ta, tb, tσ in eqs.(63) and (64). We
find for Ipt → Ipt(t)

Ipt(t) = eiπ/4
√

2π

a

(

1 + b
σ

2a2
+ b2

5σ2

8a4
+ b3

15σ3

16a6
+ . . .

)

eitPeff (t,σ), (71)

where

Peff(t, σ) = −
(

σ2

2a
+

bσ3

6a3
+

b2σ4

8a5
+

b3σ5

8a7

)

+
1

t2

(

5b2

24a3
+

5b3σ

8a5

)

+O(b4). (72)

It is clear now that the leading term, P ′
eff , is represented in Peff(t) by the sum

of terms which are ∝ (1/t)0, the first stationary phase correction is given by
terms of order ∝ 1/t2, and so on. The field theoretical analog of this power
series expansion in (1/t) is well known as a loop expansion [22].

4. Outlining the problem

So far we have worked with a one-dimensional case. We now want to clarify
what actually can be learned from this simple example for the functional
integral (19) considered.

It is clear, for instance, that we cannot follow the approaches discussed
in subsections 3.1 and 3.2. An analog of eq.(24) for our functional integral is
the equation

∂2Lr

∂RA∂RB
≡ L′′

AB = GδAB + κΦABCRC = 0 (73)

which cannot be fulfilled.
On the contrary, the system of equations based on the first order deriva-

tives
∂Lr

∂RA
= GRA +∆A +ΠA +

κ

2
ΦABCRBRC = 0 (74)

is self-consistent and can be solved [21]. Therefore, one can obtain the semi-
classical asymptotics by analogy with the stationary phase method discussed
in subsection 3.3. It corresponds to the case without hierarchy, since two
critical points are considered. We will show, however, that such a system does
not have a stable vacuum state, i.e., the hierarchy of multi-quark interactions
is a very important physical requirement for the model. Let us discuss the
matter in detail here.
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4.1 Solving equation (74)

We need to recall shortly the solutions of eq.(74). Up to some order in the

external mesonic fields, ΠA, we may write them as a polynomial RA = R(i)
A

R(i)
A = H

(i)
A +H

(i)
ABΠB +H

(i)
ABCΠBΠC +H

(i)
ABCDΠBΠCΠD + . . . (75)

where i = 1, 2, . . . denote different possible solutions. The coefficients H
(i)
A...

depend on ∆a and on the coupling constants G, κ, and the higher index
coefficients H

(i)
A... are recurrently expressed in terms of the lower ones. For

instance, we have
(

H
(i)
AB

)−1
= −

(

GδAB + κΦABCH
(i)
C

)

, (76)

H
(i)
ABC =

κ

2
ΦDEFH

(i)
DAH

(i)
EBH

(i)
FC , (77)

and so on.
Putting this expansion in eq.(74) one obtains a series of self-consistent

equations to determine H
(i)
A.... The first one is

GH
(i)
A +∆A +

κ

2
ΦABCH

(i)
B H

(i)
C = 0. (78)

One can always find the trivial solution HA = 0, corresponding to the
unbroken vacuum ∆A = 0. There are also non-trivial ones for the scalar
component, i.e.,

H
(i)
A = (h(i)

a , 0). (79)

The number of possible solutions, i, depends on the symmetry group.
The coefficients h(i)

a are determined by the couplings G, κ and the mean field
value ∆a. In accordance with the pattern of explicit symmetry breaking the
mean field can have only three non-zero components at most with indices
a = 0, 3, 8. If two of the three indices in Aabc are {0, 3, 8}, then the third one
also belongs to this set. Thus ∆a is the only object which determines the
vector structure of the solution h(i)

a , and therefore h(i)
a 6= 0 if a = 0, 3, 8. It

means that in general we have a system of only three equations to determine
h(i) = h(i)

a λa = diag(h(i)
u , h

(i)
d , h(i)

s )






























Ghu +∆u +
κ

16
hdhs = 0

Ghd +∆d +
κ

16
hshu = 0

Ghs +∆s +
κ

16
huhd = 0 .

(80)
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This system is equivalent to a fifth order equation for a one-type variable
which can be solved numerically. For two particular cases, when m̂u = m̂d =
m̂s and m̂u = m̂d 6= m̂s, eqs.(80) can be solved analytically [21]. The simplest

example: m̂u = m̂d = m̂s (or, equivalently, h(i)
u = h

(i)
d = h(i)

s ) corresponds to
SU(3) flavor symmetry. In this case eq.(80) has two solutions

h(1)
u = −8G

κ



1−
√

1− κ∆u

4G2



 , h(2)
u = −8G

κ



1 +

√

1− κ∆u

4G2



 . (81)

If 4G2 > κ∆, they are real and will contribute to the stationary phase tra-
jectory.

4.2 The lowest order semi-classical asymptotics

Since the system of equations (74) can be solved, we may replace variables

RA → R̄A = RA − R(i)
A in the functional integral (19) to obtain the semi-

classical asymptotics

Z[Π,∆] ∼ N
n
∑

i=1

exp
(

i
∫

d4xL(i)
st

)

×
+∞
∫

−∞

∏

A

DR̄A exp
(

i

2

∫

d4xL′′
AB(R(i))R̄AR̄B

)

×
∞
∑

k=0

1

k!

(

i
κ

3!
ΦABC

∫

d4xR̄AR̄BR̄C

)k

(~ → 0) (82)

where n is the number of solutions, R(i)
A , of eq.(74), L′′

AB has been defined in
eq.(73), and

L(i)
st = R(i)

A (ΠA +∆A) +
G

2

(

R(i)
A

)2
+

κ

3!
ΦABCR(i)

A R(i)
B R(i)

C

=
G

6

(

R(i)
A

)2
+

2

3
R(i)

A (ΠA +∆A) = h(i)
a σa +O(Π2). (83)

Here we used eq.(74) to eliminate the term proportional to κ. Let us stress

that L(i)
st depends on κ implicitly: κ is contained in R(i)

A , or more precisely in

the coefficients H
(i)
A... which are functions of h(i)

a . This dependence is singular
at κ → 0. One can see this, for instance, from eq.(81) where h(2)

u → ∞ for
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small κ. This behavior reflects the fact that we are far from the perturbative
regime, meaning that the interactions LNJL and LH are equally weighted.

The linear term in the σ field is written explicitly. This part of the
Lagrangian is responsible for the dynamical symmetry breaking in the multi-
quark system and taken together with the corresponding part from the Gaus-
sian integration over quark fields in eq.(12) leads us to the gap equation.

At leading order, k = 0, we have the estimate for eq.(82)

Z ∼
n
∑

i=1

A(i) exp
(

i
∫

d4xL(i)
st

)

∼ exp

(

i
∫

d4x
n
∑

i=1

h(i)
a σa + . . .

)

(84)

where A(i) is real and proportional to

A(i) ∼ | detL′′
AB(R(i))|−1/2. (85)

Therefore, if one considers the case with m̂u = m̂d = m̂s, Z is given by

Z ∼ exp

(

i
∫

d4x
2
∑

i=1

h(i)
a σa + . . .

)

∼ exp
(

−i
8G

κ

∫

d4x(σu + σd + σs) + . . .
)

(86)

Let us recall that the quark loop contribution to the gap equation is
well known (see, for instance, [23]). Combining this known result with the
estimate (86), one can obtain the corresponding effective potential U(m) as
a function of the constituent quark mass m

U(m) =
24G

κ
m− 3Nc

16π2

[

m2

(

Λ2
q −m2 ln

(

1 +
Λ2

q

m2

))

+ Λ4
q ln

(

1 +
m2

Λ2
q

)]

, (87)

where we consider the case m̂ = 0 for simplicity and Λq denotes the cutoff of
quark loop integrals.

We plot this function in fig.1 for G/κ > 0. The parameters are fixed there
as Λq = 1GeV, G/κ = 2.34·10−3GeV3. One sees that the system has at most
a metastable vacuum state8. We must conclude that the model considered
has a fatal flaw and can be used only in the framework of the perturbative
approach, which does assume the hierarchy of multi-quark interactions.

8In the opposite case, G/κ < 0, the effective potential does not have extrema in the
region m > 0.
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Figure 1: The effective potential U(m) (see eq.(87)) for the parameter set
given in the text as a function of the constituent quark mass m. All are given
in dimensionless units.

5. Perturbative expansion of Z
We shall restrict ourselves in this section to the perturbative treatment of
the functional integral (19). The loop expansion will be considered in the
next section.

5.1 The perturbative series

Let us devide the Lagrangian (20) in two parts. The free part, L0, is given
by

L0(RA) =
G

2
R2

A +RA(ΠA +∆A). (88)

The ’t Hooft interaction is considered as a perturbation LI

LI(RA) =
κ

3!
ΦABCRARBRC . (89)

Thus the perturbative representation for the functional integral (19) can
be written as

Z = N ′ exp
(

i
∫

LI(X̂A)
) ∫

∏

A

DRA ei
∫

L0(RA) (90)

23



where

X̂A = −i
δ

δΠA
. (91)

Since the boson fields appear quadratically in eq.(90), they may be inte-
grated out, yielding

Z = N exp
(

i
∫

LI(X̂)
)

exp

(

−i
∫

Π̄2
A

2G

)

(92)

where Π̄A = ΠA +∆A. The overall factor N = (−2πi/G)9N ′ is unimportant
in the following.

We want to calculate the effective action Γeff , which by definition is the
phase of Z

Z = A(Π̄A) exp
(

i
∫

Leff(Π̄A)
)

, (93)

and A(Π̄A) is a real function. Comparing (92) and (93), one gets

Γeff = i ln
A

N
+ Γ0 − i ln

(

1 + e−iΓ0

(

ei
∫

LI − 1
)

eiΓ0

)

. (94)

Here Γ0 represents the leading order result for Γeff

Γ0 = − 1

2G

∫

Π̄2
A (95)

while the second logarithm in eq.(94) is a source of UA(1) breaking corrections
which arise as a series in powers of the functional derivatives operator

Γ̂I =
∫

LI(X̂A) =
κ

3!
ΦABC

∫

X̂AX̂BX̂C . (96)

To make this statement more explicit let us consider the expansion

δ = e−iΓ0

(

eiΓ̂I − 1
)

eiΓ0 =
∞
∑

m=1

im

m!

(

e−iΓ0Γ̂Ie
iΓ0

)m
. (97)

Taking into account the symmetry properties of the coefficients ΦABC and
our previous result (18), we find

e−iΓ0Γ̂Ie
iΓ0 = − κ

3!
ΦABC

∫ (

1

G3
Π̄AΠ̄BΠ̄C − 3

G2
Π̄AΠ̄BX̂C

+
3

G
Π̄AX̂BX̂C − X̂AX̂BX̂C

)

(98)
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so that

δ =
∞
∑

n=1

κnδn, (99)

represents the effective action (94) as a perturbative series in powers of κ.
For instance, up to and including the second order in κ we have

Γeff = i ln
A

N
+ Γ0 − iκδ1 − iκ2

(

δ2 −
1

2
δ21

)

− . . . (100)

where

δ1 =
−i

3!G3
ΦABC

∫

Π̄AΠ̄BΠ̄C , (101)

δ2 −
δ21
2

= − i

8G5
ΦABCΦAEF

∫

Π̄BΠ̄CΠ̄EΠ̄F

+ δ(0)
∫ Π̄2

A

(8G2)2
+ [δ(0)]2

∫ 3i

32G3
. (102)

The real factor A(Π̄) is always chosen such as to cancel the imaginary
part of the effective action. To the approximation considered we have, for
instance,

A(Π̄) = N exp

{

δ(0)
(

κ

8G2

)2 ∫

Π̄2
A

}

= N

(

1 + δ(0)
κ2

64G4

∫

Π̄2
A + . . .

)

. (103)

It contributes to the measure of the functional integral over σa, φa.

5.2 The problem with infinities

The terms with the δ(0) function require further explanation. The fact that
auxiliary fields can lead to special problems with infinities is well-known
[24]. For instance, a relevant case can be found in [25]: the new variable λ is
introduced in the photon self-energy diagram in a similar way, i.e., through
the integral over a δ-function, see eq.(8.18) of the book, which is equal to 1
and finally, after changes of variables in the whole expression eq.(8.19), the
logarithmically divergent integral over λ requires a cutoff.

A case involving a functional integral is given in [26] where the author
considers as an example the non-linear σ-model and shows that the Gaussian

25



functional integral with a field dependent coefficient in the exponent (there
are no derivatives of fields there) leads to a δ(0) factor in the corresponding
effective action (see also [27]).

In our case auxiliary variables have been introduced by eq.(4) and chang-
ing the order of integration in eq.(12) we finally came to a similar problem
with infinities.

To see the origin of the encountered singularities in detail we shall use the
language of Feynman diagrams. The graphs contributing to lowest order in
κ are shown in fig.2. In these diagrams, a line segment (straight or curved)

+

 

Figure 2: The lowest order graphs contributing to δ1.

stands for a “propagator”

∆AB(x− y) = −(i/G)δABδ(x− y), (104)

extracted from the last exponent in eq.(92). A filled circle at one end of a line
segment corresponds to the external field, i

∫

d4xΠ̄A(x), and a vertex joining
three line segments is used for iκΦABC

∫

d4x.
The first diagram represents the δ1 term in eq.(101). The contribution

of the second tadpole diagram is equal to zero. Indeed, the vertex contains
the group factor ΦABC . The contraction of any two indices in this factor by
δAB from the propagator (situation occuring for the tadpole graph) reduces
it to zero, according to eq.(18). We thus find that tadpole diagrams do not
contribute due to the flavor structure of the ’t Hooft interaction.

To next to leading order in κ we have the four graphs shown in fig.3.
As we just learned, the third diagram does not contribute. The other ones
correspond exactly to the three terms of eq.(102). The first tree diagram is
finite. The second one-loop diagram has a divergent factor δ(0). The last
two-loop diagram contributes as δ(0)2. These singularities were caused by
the local structure of the last exponent in eq.(92) or, which is the same, by
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Figure 3: The diagrams of the κ2 order contributing to δ2.

the δ(x−y) term in the propagator (104). We believe that if one would start
from non-local NJL interactions, the singularities could be weaker or would
even disappear.

The factor δ(0) requires a regularization. This is an expected trouble in
the NJL model which is nonrenormalizable and, as a consequence, the funda-
mental interactions must be cut off. The cutoff is an effective, if crude, imple-
mentation of the known short distance behavior of QCD within the model.
In the next subsection we shall discuss this procedure in the framework of
the spectral method. The value of the cutoff can be fixed by confronting the
model with the experiment. In this interpretation the model is effectively
finite, including the higher order corrections.9

The diagrams are a very convenient language to understand another fea-
ture related to the multi-loop contributions: the phase factor corresponding
to the diagram can be simply calculated. Indeed, it is easy to see that for
any diagram the formula

E = 2I − 3V (105)

is fulfilled. Here E is the number of external fields, I stands for the number
of internal lines, and V is the number of vertices. On the other hand, the
number of loops, L, is given by

L = I − V − E + 1 . (106)

This is because the number of loops in a diagram is equal to the number of δ
functions surviving after all integrations over coordinates are performed, ex-

9Actually, if one works with the NJL model, one must choose among several known
regularizations. Unfortunately, the dimensional regularization (DR) cannot be used. The
gap equation in this case does not have solutions and as a result there is no dynamical
chiral symmetry breaking. This is why we cannot simply take advantage of the well-known
result δ(0) = 0 (in DR) to avoid the problem.
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ept for one over-all integration related to the effective action. Every internal
line contributes one δ function, but every vertex or external field carries an
integration over the corresponding coordinate, and thus reduces the number
of δ functions by one.

This result shows that the overall phase factor of a given graph iI−E−V =
iL−1 is entirely determined by the number of loops. In particular, diagrams
with an even number of loops contribute to the effective action (the argument
of Z), while the diagrams with odd number of loops contribute to the measure
(the modulus of Z), see eq.(93).

5.3 The spectral representation method

The problem with δ(0) singularities can be analysed with more accurate
methods. In this subsection we shall use the spectral representation method
to evaluate the integral (15).

Let us consider, for simplicity, a one-dimensional field theory approxi-
mation for the integral (15). The number of dimensions does not matter
here. The extension to the real case is straightforward. We also put our
system in an interval of size L, i.e. −L/2 ≤ x ≤ L/2, assuming the limit
L → ∞ in the end of calculations. The Fourier decomposition of the fields
fa(x) = {sa, pa, σa, φa} inside the interval is

fa(x) =
+∞
∑

n=−∞

fa
n exp

(

i2π
nx

L

)

. (107)

This corresponds to the periodic boundary conditions fa(−L/2) = fa(L/2).
The Fourier coefficients fa

n represent the field fa(x) inside the considered
interval

fa
n =

1

L

∫ +L/2

−L/2
dx fa(x) exp

(

−i2π
nx

L

)

, f−n = f ∗
n. (108)

Then we have
∫

dxL(x) ≃
∫ L/2

−L/2
dxL(x) = LL , (109)

where L is devided in two parts: the free one L0, and the perturbation LI

L0 =
+∞
∑

n=−∞

[

G

2

(

sans
a
−n + panp

a
−n

)

+ σa
ns

a
−n + φa

np
a
−n

]

, (110)
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LI =
κ

32
Aabc

∑

n,m,k

san
(

sbms
c
k − 3pbmp

c
k

)

δn+m+k,0. (111)

The functional integral can be understood as the product of integrals over
the Fourier coefficients

+∞
∫

−∞

Dsa(x)Dpa(x) →
∏

n

+∞
∫

−∞

dsandp
a
n (112)

and in the perturbative approximation can be written as

Z[σ, φ] ∼ exp
{

iLL̂I(S
a
n, P

a
n )
}

∏

n

+∞
∫

−∞

dsandp
a
n exp (iLL0) (113)

where

Sa
n = − i

L

∂

∂σa
−n

, P a
n = − i

L

∂

∂φa
−n

. (114)

It is convenient to use the normalized functional Z defined as

Z =
Z[σ, φ]

Z[0, 0]
. (115)

The Gaussian functional integrals can be simply evaluated, for instance,
one has

I[σ] =
∏

n

+∞
∫

−∞

dsn exp

{

iL
+∞
∑

n=−∞

(

G

2
sns−n + σns−n

)

}

=

+∞
∫

−∞

ds0 exp
{

iL
(

G

2
s20 + σ0s0

)}

×
∞
∏

l=1

+∞
∫

−∞

dslds
∗
l exp

{

iL
+∞
∑

l=1

(Gsls
∗
l + σls

∗
l + σ∗

l sl)

}

= I[0] exp

{

− iL

2G

+∞
∑

n=−∞

σnσ−n

}

. (116)

Thus the functional integration yields

Z ∼ exp
{

iLL̂I(S
a
n, P

a
n )
}

exp

{

− iL

2G

+∞
∑

n=−∞

(σnσ−n + φnφ−n)

}

. (117)
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We should now calculate partial derivatives to obtain the effective action
Γeff

Z ∼ A[σ, φ] eiΓeff . (118)

As before (see subsection 3.2) we have

Γeff = i lnA[σ, φ] + Γ0 − i ln
(

1 + e−iΓ0

(

eiΓ̂I − 1
)

eiΓ0

)

, (119)

where A[σ, φ] is fixed by the requirement that the effective action Γeff is real.
Here Γ0 represents the leading order action

Γ0 = − L

2G

∞
∑

n=−∞

(

σa
nσ

a
−n + φa

nφ
a
−n

)

. (120)

The logarithm in eq.(119) is a source of UA(1) breaking corrections which
arise as a series in powers of the partial derivatives

Γ̂I = LLI(S
a
n, P

a
n )

=
κL

32
Aabc

∑

n,m,k

Sa
n

(

Sb
mS

c
k − 3P b

mP
c
k

)

δn+m+k,0 . (121)

One has the following result

e−iΓ0Γ̂Ie
iΓ0 = −κL

32
Aabc

∑

n,m,k

δn+m+k,0

[

1

G3
σa
n(σ

b
mσ

c
k − 3φb

mφ
c
k)

− 3

G2
(σb

mσ
c
k − φb

mφ
c
k)S

a
n +

6

G2
σa
nφ

b
mP

c
k

+
3

G
σa
n(S

b
mS

c
k − P b

mP
c
k)−

6

G
φa
nS

b
mP

c
k

− Sa
n(S

b
mS

c
k − 3P b

mP
c
k )
]

. (122)

Therefore, expanding

δ = e−iΓ0

(

eiΓ̂I − 1
)

eiΓ0 =
∞
∑

n=1

κnδn, (123)

one can determine

δ1 =
−iL

32G3
Aabc

∑

n,m,k

σa
n(σ

b
mσ

c
k − 3φb

mφ
c
k)δn+m+k,0 , (124)
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δ2 =
δ21
2

− i
9L

64(2G)5
AabcAab̄c̄

∑

m,k,m̄,k̄

δm+k+m̄+k̄,0

[

4σb
mσ

b̄
m̄φ

c
kφ

c̄
k̄

+
(

σb
mσ

c
k − φb

mφ
c
k

) (

σb̄
m̄σ

c̄
k̄ − φb̄

m̄φ
c̄
k̄

) ]

+
1

(8G2)2
∑

n

(

σa
nσ

a
−n + φa

nφ
a
−n

)

∑

m

1 +
3i

32LG3

(

∑

m

1

)2

, (125)

and so forth.
The effective action can be also expanded in κ

Γeff = i lnA[σ, φ] + Γ0 − iκδ1 − iκ2

(

δ2 −
δ21
2

)

+O(κ3), (126)

where one assumes that lnA[σ, φ] must be also expanded, i.e.,

A[σ, φ] = 1 + κβ1 + κ2β2 +O(κ3),

lnA[σ, φ] = κβ1 + κ2

(

β2 −
β2
1

2

)

+O(κ3), (127)

and, up to the considered order in κ, we have

β1 = 0, β2 =
1

(8G2)2
∑

n

(

σa
nσ

a
−n + φa

nφ
a
−n

)

∑

m

1 . (128)

Therefore the perturbative action systematically obtains UA(1) breaking cor-
rections in κn, which we collect in the corresponding part of the action, Γn,

Γeff =
+∞
∑

n=0

Γn , (129)

where Γ0 is given by eq.(120), and

Γ1 = − κL

32G3
Aabc

∑

n,m,k

σa
n(σ

b
mσ

c
k − 3φb

mφ
c
k)δn+m+k,0 ,

Γ2 = − 9κ2L

64(2G)5
AabcAab̄c̄

∑

m,k,m̄,k̄

δm+k+m̄+k̄,0

[

4σb
mσ

b̄
m̄φ

c
kφ

c̄
k̄

+
(

σb
mσ

c
k − φb

mφ
c
k

) (

σb̄
m̄σ

c̄
k̄ − φb̄

m̄φ
c̄
k̄

) ]

. (130)

Here an unessential constant (for the physical action) has been omitted in
Γ2.
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Using the well known relation

+∞
∑

n=−∞

exp
(

i
2πx

L
n
)

= L
∞
∑

n=−∞

δ(x− Ln) = Lδ(x) (131)

where on the last step we used the fact that in the problem considered all
x-dependent functions are integrated only in the interval −L/2 ≤ x ≤ L/2
and, therefore, only the term with n = 0 can contribute, one can obtain that

∑

n

fa
nf

b
k−n =

1

L

∫ L/2

−L/2
dx fa(x)fb(x) exp(−i2πkx/L). (132)

As a result, taking the infinite-volume limit L → ∞, we have, for instance,

Γ0 = − 1

2G

+∞
∫

−∞

dx
(

σ2
a(x) + φ2

a(x)
)

. (133)

Using the following relation

∑

n1,n2,...,ni

fa1
n1
fa2
n2

. . . fai
ni
δn1+n2+...+ni,0 =

1

L

∫ L/2

−L/2
dx fa1(x)fa2(x) . . . fai(x)

(134)
in (130), and taking the limit L → ∞ one finds that

Γ1 = − κ

32G3
Aabc

+∞
∫

−∞

dxσa(x) [σb(x)σc(x)− 3φb(x)φc(x)] ,

Γ2 = − 9κ2

64(2G)5
AabcAab̄c̄

+∞
∫

−∞

dx [ 4σb(x)σb̄(x)φc(x)φc̄(x)

+ (σb(x)σc(x)− φb(x)φc(x)) (σb̄(x)σc̄(x)− φb̄(x)φc̄(x)) ] . (135)

The infinite-volume limit for the expansion coefficient β2 needs additional
explanation. Here one should define carefully the limiting procedure. We
have

β2 =
1

(8G2)2

∫ L/2

−L/2
dx (σa(x)σa(x) + φa(x)φa(x))

1

L

+∞
∑

m=−∞

1 . (136)
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The integral has a smooth L → ∞ limit, but contains the local factor, which
can be understood as a δ-function singularity, δ(0). It is clear from eq.(131)
that the infinite value

1

L

+∞
∑

n=−∞

1 = δ(0) (137)

appears as a common factor on the right hand side of eq.(136), representing
the density of the Fourier harmonics in the interval. It must be regularized
by cutting an upper part of the spectrum, e.g.,

δ(0)reg =
1

L

N
∑

n=−N

1 =
2N + 1

L
(138)

where N is large enough. Let us recall that the limit L → ∞ is to be taken
afterwards. Therefore one should clarify the meaning ofN being large. There
are two possibilities. One can fixN ≫ 1 without any relation to the size of the
box. In this case, in the limit L → ∞, the δ-function vanishes. Alternatively,
one can relate N with L by introducing a momentum space cutoff Λ: N(L) =
LΛ/(4π) ≫ 1. Unlike L the cutoff Λ has an obvious physical meaning giving
the scale of momenta relevant for the problem. Indeed, the nth harmonic has
a momentum pn = 2πn/L. The size of the considered box is the difference
pN −p−N = 4πN/L = Λ. The scale cannot be eliminated by taking the limit
L → ∞. One has instead

δ(0)reg =
Λ

2π
+

1

L
, (139)

where only the second term does not contribute in the limit L → ∞. By
introducing the cutoff Λ, we suppose that the density of Fourier harmonics
has a finite value which can be fixed phenomenologically. This is the scenario
which we will favor in the following.

6. The loop expansion of Z
The perturbative series, considered in the previous section, can be resummed:
first summing all diagrams with no closed loops (tree graphs), then those
with one closed loop, etc. As we have already discussed, this can be done by
generalizing the method of subsec.3.6. The tree graphs have been summed in
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this way in [15], and the one-loop graphs in [21]. The two-loop approximation
is the next to lowest order result which contributes to the effective action,
since the one-loop diagrams contribute solely to the amplitude.

6.1 The two-loop approximation

In this subsection we present a detailed computation of the two-loop approx-
imation to the effective mesonic action generated by the functional

Z[Π,∆] ∼ N exp
(

i
∫

d4xL(i=1)
st

)

×
+∞
∫

−∞

∏

A

DR̄A exp
(

i

2

∫

d4xL′′
AB(R(i=1))R̄AR̄B

)

×
∞
∑

n=0

1

n!

(

i
κ

3!
ΦABC

∫

d4xR̄AR̄BR̄C

)n

(140)

Note that in comparison with eq.(82), only one critical point, related to the
stable configuration, must be considered. It is the solution with i = 1 in
eqs.(81). We shall identify L(i=1)

st = Lst, and L′′
AB(R(i=1)) = L′′

AB in the
following.

By replacing the continuum of spacetime positions with a discrete lattice
of points surrounded by separate regions of small spacetime volume Ω, the
functional integral (140) may be reexpressed as a Gaussian multiple integral
over a finite number of real variables RA(x) for a fixed spacetime point x.
We think of DRA as the infinite product DRA → ∏

x dRA(x),
∫

d4x → Ω
∑

x.

Z[Π,∆] ∼ N
∏

x







exp (iΩLst)

+∞
∫

−∞

∏

A

dR̄A exp
(

i

2
ΩL′′

ABR̄AR̄B

)

×
(

1− (κΩ)2

2!(3!)2
ΦABCΦDEF R̄AR̄BR̄CR̄DR̄ER̄F + . . .

)}

. (141)

The last sum contains only terms with even powers of R̄A, the odd powers
do not contribute under the Gaussian integration. The dots mean the terms
corresponding to the three-loop contribution and higher.

Let us do the Gaussian integrals

Z[Π,∆] ∼ N
∏

x

{

I0 exp (iΩLst)

(

1 + i
κ2ΦABCΦDEF δABCDEF

72ΩN(N + 2)(N + 4)
M+ . . .

)}

.

(142)
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Here
M =

(

tr L′′ −1
)3
+ 6 tr L′′ −1

tr(L′′ −1
)2+ 8 tr

(

L′′ −1
)3

, (143)

and I0 is a one-loop contribution

I0 =
1√

detL′′

(

2π

Ω

)

N
2

exp



i
π

4

N
∑

j=1

sgn(λj)



 (144)

where λj are eigenvalues of the N × N matrix L′′
AB. In our case N = 18.

L′′ −1 is an inverse matrix of L′′. The totally symmetric symbol δABCDEF

generalizes an ordinary Kronecker delta symbol δAB by the recurrent relation

δABCDEF = δABδCDEF + δACδBDEF + . . .+ δAF δBCDE . (145)

One can find that

ΦABCΦDEF δABCDEF = 6ΦABCΦABC =
27

4
. (146)

Up to the given accuracy we have in eq.(142)

∏

x

(

I0 e
iΩLst (1 + iF )

)

=
∏

x

(

I0 e
i(ΩLst+F )

)

=

(

∏

x

I0

)(

∏

x

ei(ΩLst+F )

)

=

(

∏

x

I0

)

eiΩ
∑

x
(Lst+F/Ω) (147)

It shows that in the continuum limit the two-loop correction contributes
to the effective Lagrangian as

Leff = Lst +
3κ2[δ(0)]2M

32N(N + 2)(N + 4)
. (148)

This is our final expression for the effective Lagrangian in the two-loop ap-
proximation.

Let us do some estimates to justify the result. For this purpose let us
simplify the integral (140). After neglecting the symmetry group and dis-
cretizing the spacetime it takes the form

Z[Π,∆] ∼
∏

x

∫

dRx exp
{

iΩ
(

Lst +
1

2
L′′

stR
2
x +

1

3!
L′′′

stR
3
x

)}

. (149)
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To justify the stationary phase approximation for the integral (149) we as-
sume that

ΩLst ≫ 1. (150)

The dominating role of the Gaussian integral is reflected in the fact that
essential values for Rx in the integral have the order R2

x ∼ 1/(ΩL′′
st). For the

cubic term it follows then

ΩL′′′
stR

3
x ∼

√

√

√

√

(L′′′
st)2

Ω(L′′
st)3

∼
√

κ2

ΩG3
∼
√

ζ , (151)

where we have used that in the model considered here, L′′′
st ∼ κ, L′′

st ∼ G. If
the parameters of the model can be chosen in such a way that the inequality
ζ ≪ 1 is fulfilled, the cubic power of Rx yields terms that go to zero relative
to the Gaussian term as ζ → 0, and the stationary phase approximation will
be justified. Note that Ω may be written as an ultraviolet divergent integral
regularized by introducing a cutoff Λ

Ω−1 = δ4(0) ∼
∫ Λ/2

−Λ/2

d4kE
(2π)4

=
(

Λ

2π

)4

. (152)

Therefore, the inequality restrics the value of Λ from above.
Meanwhile, it is interesting to see that the inequality ζ ≪ 1 is an exact

equivalent of (150). Indeed, in the essential region, i.e., around a sharp
minimum, one has L′

st ∼ RxLst, L′′
st ∼ R2

xLst, and so on, thus

ζ ∼ (L′′′
st)

2

Ω(L′′
st)3

∼ (R3
xLst)

2

Ω(R2
xLst)3

∼ 1

ΩLst
. (153)

To summarize, the asymptotical series (141) with the ultraviolet cutoff
imposed is sensible. One deals here, actually, with a series in powers of the
dimensionless parameter ζ . The expansion is formally justified for ζ ≪ 1.

6.2 Some final comments

Several comments are in order:
(1) We believe that it is the first time that loop corrections to the effec-

tive action have been obtained at next to lowest order in the bosonization
procedure.
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(2) This is a nonrenormalizable theory; so we should expect an explicit
dependence on the cutoff in the result. This is indeed the case: the [δ(0)]2

factor is understood as an effective arbitrary parameter (Λ/(2π))8 which
together with the other coupling constants of the model, G and κ, forms a
dimensionless expansion parameter ζ ∼ κ2Λ4/G3, the latter must be small
to justify the loop expansion. This requirement restricts the value of Λ from
above.

(3) The field-dependent factor M contains all possible mesonic vertices,
including the σ-tadpole contribution to the gap equation, and contributions
to the masses of scalar and pseudoscalar nonets. These contributions might
be interesting and worth studying phenomenologically.

(4) Without future phenomenological considerations it is difficult to say
at this stage if the loop expansion is a better approximation scheme than
the ordinary perturbative theory considered above. It is certainly not worse
if κ is small, since the set of graphs with 2n loops includes, as a subset, all
graphs of κn+1th order or higher in the coupling constant. Thus, in the tree
approximation the term ∼ κ will dominate, the two-loop result will include
the κ and κ2 order contributions completely, and so on. On the other hand,
if perturbative corrections are sufficiently large, the loop expansion can be
more appropriate.

(5) We believe that techniques developed here to obtain the two-loop
contribution can be easily applied to higher orders in the loop expansion. We
also hope that some of our findings can be used in more advanced calculations
with non-local effective quark Lagrangians.

7. Summary and outlook

The purpose of this paper has been to consider several mathematical aspects
which are related with the UA(1) axial symmetry breaking by the ’t Hooft
determinant within the framework of the NJL model. Among them is the
question related to the stability of the ground state, the relevance of an
hierarchy in multi-quark interactions, and the development of techniques for
studying the effective Lagrangian beyond lowest order in UA(1) breaking
effects, so that quark – anti-quark bound-state phenomena can be examined
in detail.

We have shown that in this picture there is an apparent problem: the
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model has no ground state. This conclusion is based on the stationary phase
method applied to the generating functional of the model. This approach is a
well established technique which allows to identify straightforwardly all criti-
cal points, i.e., all solutions R(i)

A of the stationary phase equations associated
with the auxiliary bosonic variables, and obtain finally the gap equations
which are the local extrema conditions for the corresponding effective poten-
tial. It has been shown that these gap equations have no phenomenologically
acceptable solutions at leading order of the stationary phase approach.

If the theory has no ground state, the theory is useless for phenomenology.
This fact, however, can be used to obtain some constraints with a clear
phenomenological content. Indeed, let us assume for a moment that the ’t

Hooft coupling κ scales as N
1−Nf
c . It would mean that the Lagrangian density

LH scales with Nc, being comparable to LNJL. We already know that such
theory has no ground state and must be rejected, thus this counting for κ is
not acceptable. Indeed, all phenomenological facts related with the known
solution of the UA(1) problem provide for abundant evidence in favour of a

different large Nc identification: κ ∼ 1/N
Nf
c .

There are several alternatives to save the situation. We have considered
here the way based on the perturbative treatment of the multi-quark system.
Two new results have been obtaind in Sec.3 in this connection:

(1) We have shown that the perturbative approach is related to a one
critical point result of the stationary phase calculations: both represent the
same function, giving different series developments for it.

(2) We have shown that this function, if one would find it, is not equal
to the starting integral (21), and is also not an asymptotical series of it.

Both these findings are new to our knowledge and serve to understand
better the approximations used. They probably cannot be rigorously proven
for the functional case, but definitely solve the problem in the following
way: by removing the destructive effect of the singular critical point in the
generating functional, the system can be treated perturbatively around the
stable ground state of the NJL model. Therefore, this is a reasonable step
for qualitative phenomenological considerations at least.

Two series expansions have been discussed in this context. We have cal-
culated the first order corrections to both of them and gave the complete
classification of the terms of the series, separating contributions to the effec-
tive meson Lagrangian from the ones to the measure. We have shown that
loop corrections serve to obtain approximately (i.e., in the framework of the
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local model which has been considered here) the less divergent or even finite
contributions which would originate within a more refined consideration with
non-local multi-quark vertices.

The new corrections, on which we report, are the direct consequence of
the ’t Hooft term in the Lagrangian and in this sense they are interesting
by themselves and will survive even if theory and experiment disagree. Were
this the case, it would only mean that some essential details in the multi-
quark effective Lagrangian are still missing, thus stimulating work in this
direction. In the opposite case, if the predictions are close to the data, our
findings would put the model on firmer grounds.

Another commonly used technique is the mean-field method [16]. It is
easy to see that the gap equations that one gets within this approach are
equivalent to the ones of the stationary phase method, when the latter is
considered at leading order and the contribution of the singular critical point
is omitted. Therefore, the effective potentials coincide in this case. It is clear
from this comparison that the loop corrections found in our work can be also
considered as a step beyond the leading order mean-field result.

There is another way, which yields a rigorous mathematical solution of
the ground state problem above: one can take into account the eight-quark or
higher order interactions with hope to stabilize the vacuum. This approach
will be considered elsewhere [28].
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Appendix

The Airy function

The Airy function Ai(x) is defined as

Ai(x) =
1

2π

+∞
∫

−∞

dt exp

(

i

(

t3

3
+ xt

))

, (154)

at real values of x and can be analytically continued to the whole complex
plane x → z as an entire function of z.
(a) It is real, if z is real.
(b) It decreases exponentially for |arg z| < π/3.
(c) It increases exponentially for π/3 < arg z < π, and −π < arg z < −π/3.
(d) It oscillates at arg z = ±π/3, π.
(e) On the real axis the function has the following asymptotics

Ai(x) ∼ x−1/4

2
√
π

exp
(

−2

3
x3/2

)

(x → +∞). (155)

Ai(x) ∼ (−x)−1/4

√
π

[

cos
(

2

3
(−x)3/2 − π

4

)

+O(x−3/2)
]

(x → −∞).

(156)
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