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Abstract

We consider the prompt photon production at high energy hadron colliders in the frame-
work of kT -factorization approach. The unintegrated quark and gluon distributions in a
proton are determined using the Kimber-Martin-Ryskin prescription. The conservative er-
ror analisys is performed. We investigate both inclusive prompt photon and prompt photon
and associated muon production rates. In Standard Model such events come mainly due
to Compton scattering process where the final heavy (charm or bottom) quark produces a
muon. The theoretical results are compared with recent experimental data taken by the
D⊘ and CDF collaborations at Fermilab Tevatron. Our analysis also covers the azimuthal
correlations between produced prompt photon and muon which can provide an important
information about non-collinear parton evolution in a proton. Finally, we extrapolate the
theoretical predictions to CERN LHC energies.

1 Introduction

It is well known that production of prompt (or direct) photons at high energies has
provided a direct probe of the hard subprocess dynamics, since produced photons are largely
insensitive to the final-state hadronization effects. Hadroproduction of prompt photons has
been studied in a number of experiments [1–5]. Usually photons are called ”prompt” if
they are coupled to the interacting quarks. In the framework of Quantum Chromodynamics
(QCD) the dominant production mechanism for the prompt photons at Tevatron and LHC
colliders is the Compton scattering gq → γq [6]. It is clear that cross section of such
processes is sensitive to the gluon distributions in a proton. Also observed final state photon
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may arise from so called fragmentation processes [7], where a quark or gluon is transformed
into γ. The cross sections of such processes involve relative poorly known parton-to-photon
fragmentation functions [8]. However, the isolation criterion which is usually introduced in
experimental analyses substantially reduces the fragmentation component (see, for example,
Ref. [9]). Therefore for the theoretical description of prompt photon production at Tevatron
the detailed knowledge of parton (quark and gluon) distributions in a proton is necessary.

Usually quark and gluon densities in a proton are described by the Dokshitzer-Gribov-
Lipatov-Altarelli-Parizi (DGLAP) evolution equation [10] where large logarithmic terms pro-
portional to lnµ2 are taken into account only. The cross sections can be rewritten in terms
of process-dependent hard matrix elements convoluted with universal quark and/or gluon
density functions. In this way the dominant contributions come from diagrams where parton
emissions in initial state are strongly ordered in virtuality. This is called collinear factor-
ization, as the strong ordering means that the virtuality of the parton entering the hard
scattering matrix elements can be neglected compared to the large scale µ.

However, at high energies (or small x ∼ µ2/s ≪ 1) effects of finite virtualities and
transverse momenta of the incoming partons may become more and more important. These
effects can be systematically accounted for in the kT -factorization QCD approach [10–14].
Just as for DGLAP, in this way it is possible to factorize an observable into a convolution of
process-dependent hard matrix elements with universal parton distributions. But as the vir-
tualities (and transverse momenta) of the emitted partons are no longer ordered, the matrix
elements have to be taken off-shell and the convolution made also over transverse momentum
kT with the unintegrated (i.e. kT -dependent) parton distributions. The unintegrated parton
distribution fa(x,k

2
T ) determines the probability to find a type a parton carrying the longi-

tudinal momentum fraction x and the transverse momentum kT . In particular, usage of the
unintegrated parton densities have the advantage that it takes into account true kinematics
of the process under consideration even at leading order.

The unintegrated parton distributions fa(x,k
2
T ) are a subject of intensive studies [15, 16].

Various approaches to investigate these quantities has been proposed. It is believed that at
assymptotically large energies (or very small x) the theoretically correct description is given
by the Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution equation [17] where large terms
proportional to ln 1/x are taken into account. Another approach, valid for both small and
large x, have been developed by Ciafaloni, Catani, Fiorani and Marchesini, and is known as
the CCFM model [18]. It introduces angular ordering of emissions to correctly treat gluon
coherence effects. In the limit of asymptotic energies, it almost equivalent to the BFKL [19–
21], but also similar to the DGLAP evolution for large x ∼ 1. The resulting unintegrated
gluon distribution depends on two scales, the additional scale q̄ is a variable related to the
maximum angle allowed in the emission and plays the role of the evolution scale µ in the
collinear parton densities.

The two-scale involved unintegrated parton distributions it is possible to obtain also from
the conventional ones using the Kimber-Martin-Ryskin (KMR) prescription [22]. In this
way the µ dependence in the unintegrated parton distribution enters only in last step of the
evolution, and single scale evolution equations can be used up to this step. Such procedure
can be applied to a proton as well as photon and is expected to account for the main part
of the conventional next-to-leading logarithmic QCD corrections. The KMR-constructed
parton densities were used, in particular, to describe the heavy quark production in γγ
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collisions at CERN LEP2 [23], prompt photon photoproduction at DESY HERA [24] (both
inclusive and associated with hadronic jet) and inclusive prompt photon hadroproduction at
Fermilab Tevatron [25].

Recently new experimental data on the p+ p̄→ γ+X process at Tevatron were obtained
by the D⊘ [1, 2] and CDF [3, 4] collaborations. It was found [1–4] that the shape of the
measured cross sections as a function of photon transverse energy Eγ

T is poorly described
by next-to-leading order (NLO) QCD calculations: the observed Eγ

T distribution is steeper
than the predictions of perturbative QCD. These shape differences lead to a significant
disagreement in the ratio of cross sections calculated at different center-of-mass energies√
s = 630 GeV and

√
s = 1800 GeV as a function of scaling variable xT = 2Eγ

T/
√
s. The

disagreement in the xT ratio is difficult to explain with conventional theoretical uncertainties
connected with scale dependence and parametrizations of the parton distributions [2, 3].
However, such discrepancy can be reduced [26, 27] by introducing some additional intrinsic
transverse momentum kT of the incoming partons, which is usually assumed to have a
Gaussian-like distribution [26]. The average value of this kT increases from 〈kT 〉 ∼ 0.5
GeV to more than 〈kT 〉 ∼ 2 GeV as the

√
s increases from UA6 to Tevatron energies [27].

However, in this case the full kinematics of the subprocess is not taken into account, as it
was argued in Ref. [25].

The inclusive prompt photon hadroproduction at Tevatron in the kT -factorization QCD
approach was considered in Ref. [25]. The unintegrated parton distributions in a proton were
obtained using the KMR formalism. The role of the both non-perturbative and perturbative
components of partonic transverse momentum kT in describing of the observed Eγ

T spectrum
was investigated. However, the KMR unintegrated parton densities were obtained in the
double leading logarithmic approximation (DLLA) only. Also in these calculations the usual
on-shell matrix elements of hard partonic subprocesses were evaluated with precise off-shell
kinematics.

In the present paper we apply the KMR method to obtain the unintegrated quark and
gluon distributions in a proton fa(x,k

2
T , µ

2) independently from other authors. Then, we
study inclusive prompt photon hadroproduction at Tevatron in more detail. We calculate
the double differential cross sections dσ/dEγ

Tdη
γ at two different center-of-mass energies√

s = 630 GeV and
√
s = 1800 GeV and compare our theoretical results with the recent D⊘

and CDF experimental data [1–4]. In order to estimate the theoretical uncertainties of our
predictions we study the renormalization and factorization scale dependences of calculated
cross sections. Also we study the ratio of cross sections calculated at different center-of-mass
energies

√
s = 630 GeV and

√
s = 1800 GeV. After that we extrapolate our predictions

to LHC energies. In all these calculations we use the expressions for the partonic off-shell
matrix elements which were obtained in our previous paper [24].

Also we investigate here the prompt photon and associated muon production at Fermilab
Tevatron. In the Standard Model (SM) these events come mainly due to Compton scattering
process g + Q → γ + Q, where final state muon originates from the semileptonic decay of
heavy (charm or bottom) quark Q [5]. It is important that studying of such processes
possible can provide an information about new physics beyond the SM [28]. Therefore it is
necessary to have a realistic estimation of associated γ + µ production cross sections within
the QCD. Such calculations in the kT -factorization QCD approach are performed for the first
time. In order to investigate the underlying dynamics in more detail, we study the azimuthal
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correlations between the transverse momenta of produced prompt photon and muon. These
quantities are sensitive to the different production mechanisms and also are powerful tests
for the non-collinear evolution [29, 30].

The our paper is organized as follows. In Section 2 the KMR unintegrated parton densities
in a proton are obtained and their properties are discussed. In particular, we compare the
KMR gluon distributions with ones obtained from the full CCFM equation and within the
framework of the Linked Dipole Chain model [31] (which is reformulation and generalization
of the CCFM model). In Section 3 we present the basic formulas with a brief review of
calculation steps. In Section 4 we present the numerical results of our calculations. Finally,
in Section 5, we give some conclusions.

2 The KMR unintegrated partons

The Kimber-Martin-Ryskin approach [22] is the formalism to construct parton distri-
butions fa(x,k

2
T , µ

2) unintegrated over the parton transverse momenta k2
T from the known

conventional parton distributions a(x, µ2), where a = xg or a = xq. This formalism is valid
for a proton as well as photon and can embody both DGLAP and BFKL contributions. It
also accounts for the angular ordering which comes from coherence effects in gluon emission.
The key observation here is that the µ dependence of the unintegrated parton distributions
fa(x,k

2
T , µ

2) enters at the last step of the evolution, and therefore single scale evolution
equations (DGLAP or unified DGLAP-BFKL [32]) can be used up to this step. Also it was
shown [22] that the unintegrated distributions obtained via unified DGLAP-BFKL evolution
are rather similar to those based on the pure DGLAP equations. It is because the imposition
of the angular ordering constraint is more important than including the BFKL effects. Based
on this point, in our calculations we use much more simpler DGLAP equation up to the last
evolution step. In this approximation, the unintegrated quark and gluon distributions are
given [22] by

fq(x,k
2
T , µ

2) = Tq(k
2
T , µ

2)
αs(k

2
T )

2π
×

×
1

∫

x

dz
[

Pqq(z)
x

z
q
(

x

z
,k2

T

)

Θ (∆− z) + Pqg(z)
x

z
g
(

x

z
,k2

T

)]

,

(1)

fg(x,k
2
T , µ

2) = Tg(k
2
T , µ

2)
αs(k

2
T )

2π
×

×
1

∫

x

dz

[

∑

q

Pgq(z)
x

z
q
(

x

z
,k2

T

)

+ Pgg(z)
x

z
g
(

x

z
,k2

T

)

Θ (∆− z)

]

,

(2)

where Pab(z) are the usual unregulated leading order DGLAP splitting functions, and q(x, µ2)
and g(x, µ2) are the conventional quark and gluon densities. The theta functions which
appear in (1) and (2) imply the angular-ordering constraint ∆ = µ/(µ + |kT |) specifically
to the last evolution step to regulate the soft gluon singularities. For other evolution steps,
the strong ordering in transverse momentum within the DGLAP equations automatically
ensures angular ordering. It is important that parton distributions fa(x,k

2
T , µ

2) extended
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now into the k2
T > µ2 region. This fact is in the clear contrast with the usual DGLAP

evolution1.
The virtual (loop) contributions may be resummed to all orders by the quark and gluon

Sudakov form factors

lnTq(k
2
T , µ

2) = −
µ2

∫

k2

T

dp2
T

p2
T

αs(p
2
T )

2π

zmax
∫

0

dzPqq(z), (3)

lnTg(k
2
T , µ

2) = −
µ2

∫

k2

T

dp2
T

p2
T

αs(p
2
T )

2π



nf

1
∫

0

dzPqg(z) +

zmax
∫

zmin

dzzPgg(z)



 , (4)

where zmax = 1 − zmin = µ/(µ+ |pT |). The form factors Ta(k
2
T , µ

2) give the probability of
evolving from a scale k2

T to a scale µ2 without parton emission. In according with (3) and
(4) Ta(k

2
T , µ

2) = 1 in the k2
T > µ2 region.

Note that such definition of the fa(x,k
2
T , µ

2) is correct for k2
T > µ2

0 only, where µ0 ∼ 1
GeV is the minimum scale for which DGLAP evolution of the collinear parton densities
is valid. Everywhere in our numerical calculations we set the starting scale µ0 to be equal
µ0 = 1 GeV. Since the starting point of this derivation is the leading order DGLAP equations,
the unintegrated parton distributions must satisfy the normalisation condition

a(x, µ2) =

µ2

∫

0

fa(x,k
2
T , µ

2)dk2
T . (5)

This relation will be exactly satisfied if we define [22]

fa(x,k
2
T , µ

2)|k2

T
<µ2

0
= a(x, µ2

0)Ta(µ
2
0, µ

2). (6)

Then, we have obtained the unintegrated parton distributions in a proton. In Figure 1 we
show these densities fa(x,k

2
T , µ

2) at scale µ2 = 100GeV2 as a function of x for different
values of k2

T , namely k2
T = 2GeV2 (a), k2

T = 5GeV2 (b), k2
T = 10GeV2 (c) and k2

T =
20GeV2 (d). The solid, dashed, short dashed, dotted, dash-dotted and short dash-dotted
lines correspond to the unintegrated gluon (divided by factor 10), u+ū, d+d̄, s, c and b quark
distributions, respectively. We have used here the standard leading-order Glück-Reya-Vogt
(GRV) parametrizations [33] of the collinear quark and gluon densities a(x, µ2). Note that
unintegrated c and b quark distributions at k2

T = 2GeV2 are very similar and cannot be
really resolved in Figure 1. Also we have checked numerically that normalization condition
(5) is correctly satisfied for all unintegrated parton distributions fa(x,k

2
T , µ

2).
It is interesting to compare the KMR-constructed unintegrated parton densities with the

distributions obtained in other approaches. Recently the full CCFM equation in a proton
was solved numerically using a Monte Carlo method, and new fits of the unintegrated gluon
distributions (J2003 set 1 — 3) have been presented [34]. The input parameters were fitted

1We would like to note that cut-off ∆ can be taken ∆ = |kT |/µ also [25]. In this case the unintegrated
parton distributions given by (1) — (2) vanish for k2

T
> µ2 in accordance with the DGLAP strong ordering

in k
2

T
.
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to describe the proton structure function F2(x,Q
2). These unintegrated gluon densities were

used also in analysis of the forward jet production at HERA, charm and bottom production
at Tevatron [34], and charm and J/ψ production at LEP2 energies [35]. Also three different
versions of the unintegrated gluon distributions obtained in the framework of the Linked
Dipole Chain (LDC) model have been presented [36]. These gluon densities has been fitted
to the inclusive F2 data at HERA and already were used, in particular, in analysis [37] of
the charm and beauty hadroproduction at Tevatron. In Figure 2 we plot the KMR (as a
solid lines), the J2003 set 1 (as a dashed lines) unintegrated gluon distributions and so called
standard version of the LDC unintegrated gluon distribution (as a dash-dotted lines) at scale
µ2 = 100GeV2 as a function of x for different values of gluon k2

T , namely k2
T = 2GeV2 (a),

k2
T = 10GeV2 (b), k2

T = 20GeV2 (c) and k2
T = 50GeV2 (d). One can see that behaviour of

different unintegrated parton distributions in the small k2
T region (which essentially drives

the total cross sections) is very different. At the same time the differences between these
distributions tends to be small when gluon transverse momentum k2

T is large. Therefore the
dependence of our predictions on the evolution scheme possible may be rather large, and
further theoretical attempts are necessary to reduce this uncertainty.

3 Calculation details

3.1 The subprocesses under consideration

The main contribution to the prompt photon production in proton-antiproton collisions at
Tevatron and LHC colliders comes from quark-gluon and quark-antiquark induced partonic
subprocesses:

q(k1) + g(k2) → γ(pγ) + q(p′), (7)

q(k1) + q̄(k2) → γ(pγ) + g(p′), (8)

where the particles four-momenta are given in parentheses. Additionally, photons can be
produced through the fragmentation of a partonic jet into a single photon carrying a large
fraction z of the jet energy [7]. These processes are described in terms of quark-to-photon
Dq→γ(z, µ

2) and gluon-to-photon Dg→γ(z, µ
2) fragmentation functions [8]. The main feature

of the fragmentation contribution in leading order is fact that produced jet is balanced by a
photon on the opposite side of the event and accompanied by collinear photon on the same
side of the event.

It is important that in order to reduce the huge background from the secondary photons
produced by the decays of π0 and η mesons the isolation criterion is introduced in the
experimental analyses. This criterion is the following. A photon is isolated if the amount of
hadronic transverse energy Ehad

T , deposited inside a cone with aperture R centered around
the photon direction in the pseudo-rapidity and azimuthal angle plane, is smaller than some
value Emax

T :
Ehad

T ≤ Emax
T ,

(η − ηγ)2 + (φ− φγ)2 ≤ R2.
(9)

The both D⊘ and CDF collaborations take R ∼ 0.4 and Emax
T ∼ 1 GeV in the experiment [1–

5]. Isolation not only reduces the background but also significantly reduces the fragmentation
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components. It was shown [38] that after applying the isolation cut (9) the contribution
from the fragmentation subprocesses is about 10% of the total cross section. Since the
dependence of our results on the non-collinear parton evolution scheme may be rather large
(as it was demonstrated in Section 2), in our further analysis we will neglect the relative
small fragmentation contribution and consider only the q + g → γ + q and q + q̄ → γ + g
subprocesses. We would like to note that photon produced in these processes is isolated from
the quark or gluon jet by requiring a non-zero transverse momentum of a photon or jet in
the pp̄ center-of-mass frame.

3.2 Kinematics

Let p1 and p2 be the four-momenta of the incoming protons. The initial off-shell par-
tons have the four-momenta k1 and k2. In our analysis below we will use the Sudakov
decomposition, which has the following form:

pγ = α1p1 + β1p2 + pγT , p′ = α2p1 + β2p2 + p′T ,

k1 = x1p1 + k1T , k2 = x2p2 + k2T ,
(7)

where k1T , k2T , p
γ
T and p′T are the transverse four-momenta of the corresponding particles.

It is important that k2
1T = −k21T 6= 0 and k2

2T = −k22T 6= 0. In the pp̄ center-of-mass frame
we can write

p1 =
√
s/2(1, 0, 0, 1), p2 =

√
s/2(1, 0, 0,−1), (8)

where s = (p1 + p2)
2 is the total energy of the process under consideration and we neglect

the masses of the incoming protons. The Sudakov variables are expressed as follows:

α1 =
Eγ

T√
s
exp(yγ), α2 =

m′

T√
s
exp(y′),

β1 =
Eγ

T√
s
exp(−yγ), β2 =

m′

T√
s
exp(−y′),

(9)

where Eγ
T and m′

T are the transverse enegy and transverse mass of produced photon and
outgoing parton, respectively, and yγ and y′ are their rapidities (in the pp̄ center-of-mass
frame). The photon pseudo-rapidity ηγ is defined as ηγ = − ln tan(θγ/2), where θγ is the
polar angle of the prompt photon with respect to the proton beam. From the conservation
laws we can easily obtain the following conditions:

x1 = α1 + α2, x2 = β1 + β2, k1T + k2T = p
γ
T + p′

T . (10)

The scaling variable xT = 2Eγ
T/

√
s is also often used in analysis of the prompt photon

production.

3.3 Cross section for prompt photon production

The total cross section for prompt photon hadroproduction at high energies in the kT -
factorization QCD approach can be written as

dσ(p+ p̄→ γ +X) =
∑

a,b

∫

dx1
x1

fa(x1,k
2
1T , µ

2)dk2
1T

dφ1

2π
×

×
∫ dx2

x2
fb(x2,k

2
2T , µ

2)dk2
2T

dφ2

2π
dσ̂(ab→ γc),

(11)
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where a . . . c = q and/or g, σ̂(ab → γc) is the cross section of the photon production in
the corresponding parton-parton interaction. Here initial partons a and b have longitudinal
momentum fractions x1 and x2, non-zero transverse momenta k1T and k2T and azimuthal
angles φ1 and φ2. From the expression (11) we can easily obtain the formula:

σ(p + p̄→ γ +X) =
∑

a,b

∫

Eγ
T

8π(x1x2s)2
|M̄|2(ab→ γc)×

×fa(x1,k2
1T , µ

2)fb(x2,k
2
2T , µ

2)dk2
1Tdk

2
2TdE

γ
Tdy

γdyc
dφ1

2π

dφ2

2π

dφγ

2π
,

(12)

where |M̄|2(ab → γc) is the hard partonic squared off-mass shell matrix element which
depends on the transverse momenta k2

1T and k2
2T , y

c is the rapidity of the parton c in the pp̄
center-of-mass frame, φ1, φ2 and φγ are the azimuthal angles of the initial partons a, b and
produced prompt photon, respectively. The analytic expression for the |M̄|2(ab → γc) was
obtained in our previous paper [24]. We would like to note that if we average the expression
(12) over k1T and k2T and take the limit k2

1T → 0 and k2
2T → 0, then we obtain well-known

expression for the prompt photon hadroproduction in leading-order (LO) perturbative QCD.
The multidimensional integration in (12) has been performed by means of the Monte

Carlo technique, using the routine VEGAS [39]. The full C++ code is available from the
authors on request2.

4 Numerical results

We now are in a position to present our numerical results. First we describe our theoret-
ical input and the kinematical conditions. After we fixed the unintegrated parton distribu-
tions in a proton fa(x,k

2
T , µ

2), the cross section (12) depends on the energy scale µ. As it
often done [38] for prompt photon production, we choose the factorization and renormaliza-
tion scales to be equal µF = µR = µ = ξEγ

T . In order to estimate the theoretical uncertainties
of our calculations we will vary the scale parameter ξ between 1/2 and 2 about the default
value ξ = 1. Also we use LO formula for the strong coupling constant αs(µ

2) with nf = 3
active (massless) quark flavours and ΛQCD = 232 MeV, such that αs(M

2
Z) = 0.1169. In our

analysis we not neglect the charm and bottom quark masses and set them to be mc = 1.5
GeV and mb = 4.75 GeV, respectively.

4.1 Inclusive prompt photon production at Tevatron

Experimental data [1–4] for the inclusive prompt photon hadroproduction p+ p̄→ γ+X
come from both the D⊘ and CDF collaborations. The D⊘ [1, 2] data were obtained in the
central and forward pseudo-rapidity regions for two different center-of-mass energies, namely√
s = 630 GeV and

√
s = 1800 GeV. The central pseudo-rapidity region is defined by the

requirement |ηγ| < 0.9, and the forward one is defined by 1.6 < |ηγ| < 2.5. The more
recent CDF data [3] refer to the same central kinematical region |ηγ| < 0.9 for both beam
energies

√
s = 630 GeV and

√
s = 1800 GeV. Also very recently the CDF collaboration has

2lipatov@theory.sinp.msu.ru
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presented a new measurement [4] of the prompt photon cross section at
√
s = 1800 GeV.

This measurement is based on events where the photon converts into an electron-positron
pair in the material of inner detector, resulting in a two track event signature (”conversion”
data). These data refer only to the central kinematical region. Actually, there are two
different datasets, which were used in the CDF measurement with conversions, namely 8 GeV
electron data and 23 GeV photon data3. In all these measurements the double differential
cross sections dσ/dEγ

Tdη
γ as a function of the transverse energy Eγ

T are determined.
The results of our calculations are shown in Figs. 3 — 9. So, Figs. 3 and 4 confront the

cross sections dσ/dEγ
Tdη

γ calculated at
√
s = 630 GeV in different kinematical regions with

the D⊘ [2] and CDF [3] data. The solid lines are obtained by fixing both the factorization
and renormalization scales at the default value µ = Eγ

T whereas upper and lower dashed
lines correspond to the µ = Eγ

T/2 and µ = 2Eγ
T scales, respectively. One can see that our

predictions agree with the experimental data within the scale uncertainties. However, the
results of calculation with the default scale tend to underestimate the data in the central
kinematical region and agree with the D⊘ data in the forward ηγ region. The collinear NLO
QCD calculations [38] give the similar description of the data: the results of measurement are
higher than the NLO prediction at low Eγ

T in the central ηγ range but agree at all Eγ
T in the

forward pseudo-rapidity region. Then, one can see that the scale dependence of our results is
rather large: the variation in µ as it was described above changes the cross sections by about
20 — 30%. The theoretical uncertainties of the collinear NLO calculations are similar (about
20%) [2]. However, one should keep in mind that additional dependence of our results on
the evolution scheme may be also rather large (as it was discussed in Section 2), and overall
agreement with the experimental data can be improved when unintegrated quark and gluon
distributions in a proton will be studied more detail. At the same time the use of different
sets of the parton distributions in NLO calculations changes the cross sections by less than
5% [2, 3].

The double differential cross sections dσ/dEγ
Tdη

γ compared with the experimental data at√
s = 1800 GeV in different pseudo-rapidity regions are shown in Figs. 5 — 7. All curves here

are the same as in Fig. 3. We find that our predictions agree well with the D⊘ [1] and CDF [3,
4] data both in normalization and shape. There are only rather small overestimation of the
data at low Eγ

T values in Figs. 6 and 7. Again, the scale dependence of our calculations
is about 20 — 30%. The theoretical uncertainties of the collinear NLO predictions are
much smaller, about 6% [1]. Note that now NLO calculations agree with the data more
qualitatively. So, the shape of the measured cross sections is generally steeper than that of
the NLO predictions. It was shown [3, 4] that this shape difference is difficult to explain
simply by changing the renormalization/factorization scales in the collinear calculation, or
the set of parton distribution functions.

Also the disagreement between data and NLO calculations is visible [2, 3] in the ratio of
the cross sections at different energies. This quantity is known as a very informative subject
of investigations and provides a precise test of the QCD calculations. It is because many
factors which affect the absolute normalization, as well as many theoretical and experimental
uncertainties partially or completely cancel out [2, 3]. In particular, the cross section ratio
provides a direct probe of the matrix elements of the hard partonic subprocesses since the

3See Ref. [4] for more details.
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theoretical uncertainties due to the quark and gluon distributions are reduced.
So, the D⊘ collaboration has published the results of measurement [2] for the ratio of

630 GeV and 1800 GeV dimensionless cross sections σD as a function of scaling variable xT .
The measured cross section σD averaged over azimuth is defined as

σD =
1

2π
(Eγ

T )
3 dσ

dEγ
Tdη

γ
. (13)

The ratio σD(630GeV)/σD(1800GeV) compared with the D⊘ experimental data [2] in dif-
ferent pseudo-rapidity ηγ regions is shown in Figs. 8 and 9. The solid lines represent the
kT -factorization predictions at default scale µ. For comparison we show also the results of
the collinear leading-order (LO) QCD calculations with the GRV parton densities [33] of
a proton (as a dashed lines). Note that when we perform the LO QCD calculations we
take into account the partonic subprocesses (7) and (8) and neglect the small fragmenta-
tion contributions, as it was done in the kT -factorization case. It is clear that although the
experimental points have large errors they tend to support the kT -factorization predictions.
We would like to point out again that now sensitivity of our results to the non-collinear
evolution scheme is minimized. In the collinear approach, the NLO corrections improve the
description of the data and then sum of LO and NLO contributions practically coincides with
our results at xT > 0.05 [2]. This fact is clear indicates that the main part of the collinear
high-order corrections is already included at leading-order level in the kT -factorization for-
malism4. Nevertheless, the experimental data at the lowest xT are systematically higher [2]
than NLO QCD predictions in both central and forward pseudo-rapidity regions, and it was
claimed [3] that ratio of the two cross sections as a function of the xT is difficult to reconcile
with the NLO QCD calculations.

4.2 Associated prompt photon and muon production at Tevatron

Now we investigate the prompt photon and associated muon production at Tevatron.
These events are assumed to come from associated prompt photon and heavy (charm or
bottom) quark production with the heavy quark decaying into a muon [5]. To calculate
muon production from heavy quarks we first convert charm (bottom) quarks into D (B)
hadrons using the Peterson fragmentation function [40] and then simulate their semileptonic
decay according to Standard Model. Our default set of the fragmentation parameters and
branching rations is ǫc = 0.06, f(c → µ) = 10.2% and ǫb = 0.06, f(b → µ) = 10.8%.
Of course, muon transverse momenta spectra are sensitive to the fragmentation functions.
However, this dependence is expected to be small as compared with the scale uncertainties
and the uncertainties connected with unintegrated parton densities. On the other hand, the
variations of ǫc and ǫb do not affect on the azimuthal angle distribution (which is one of the
main subject of our study) because a fragmentation does not change the direction of the
quark or hadron momentum.

The experimental data for the γ+µ cross section at Tevatron come from CDF collabora-
tion [5]. The differential cross section dσ/dpγT at

√
s = 1800 GeV was obtained. The photon

pseudo-rapidity is required to be within |ηγ| < 0.9 region whereas the muon transverse
momentum and pseudo-rapidity are required to be pµT > 4 GeV and |ηµ| < 1.0.

4See Refs. [15, 16] for more details.
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The transverse momentum distribution dσ/dpγT in comparison to experimental data [5]
is shown in Fig. 10. All curves here are the same as in Fig. 3. One can see that the
shape of this distribution is well described by our calculations. However, the theoretical
results slightly overestimate the data in absolute normalization. This fact can be connected
with the GRV [33] parametrization of charm and bottom collinear densities of a proton
(which are one of the basic ingredients of our derivation). Note, however, that in general
the experimental points still lie within scale uncertainties (about 30%) of our calculations.
It is important also that our predictions practically coincide with the results of collinear
NLO QCD calculations [41], which are much larger than LO ones [5]. This fact clearly
demonstrates again that the main part of the standard high-order corrections is already
effectively included in the kT -factorization approach.

Further understanding of the process dynamics and in particular of the high-order effects
may be obtained from the angular correlation between the transverse momenta of the final
state particles. It was shown [30] that investigation of these correlations is a powerful test for
the non-collinear parton evolution dynamics. This is because such quantities are sensitive
to relative contributions of different production mechanisms to the total cross section. So,
in the collinear LO approximation, the prompt photon and heavy quark Q are produced
back-to-back. Therefore distribution over the azimuthal angle difference ∆φγQ must be
simply a delta function at ∆φγQ = π. Taking into account the non-vanishing initial parton
transverse momenta k1T and k2T leads to the violation of this back-to-back kinematics in
the kT -factorization approach.

The differential cross section dσ/d∆φγµ calculated at pµT > 4 GeV, |ηµ| < 1.0 and |ηγ| <
0.9 is shown in Fig. 11. The solid and both dashed lines here are the same as in Fig. 3. The
LO QCD contribution also shown (as a dash-dotted line). One can see a clear difference
in shape between kT -factorization results and collinear LO QCD ones. As it was expected,
the LO QCD predicts only a peak at ∆φγµ = π. The small broadering of ∆φγµ distribution
illustrates the effect of Q → µ decays. Unfortunately, the predictions of the NLO QCD
for this distribution are still unknown. The direct comparison between NLO calculations
and our results should give a number of interesting insighs. In particular, it can provide
an important information about high-order terms which are missed in the leading-order kT -
factorization approach. In any case, the future theoretical and experimental study of such
processes will be important check of non-collinear parton evolution.

4.3 Inclusive prompt photon production at LHC

We can conclude from Figs. 3 — 11 that our calculations in general agree well with
experimental data [1–5] taken by the D⊘ and CDF collaborations at Tevatron. Based on
this point, now we can try to extrapolate our theoretical predictions to LHC energies. We
perform the calculation for both central and forward pseudo-rapidities ηγ. As a representative
example, we will define the central and forward kinematical regions by the requirements
|ηγ| < 2.5 and 2.5 < |ηγ| < 4, respectively.

The transverse energy Eγ
T distributions of the inclusive prompt photon production in

different ηγ ranges at
√
s = 14 TeV are shown in Figs. 12 and 13. All curves here are the

same as in Fig. 3. One can see that variation in scale µ changes the estimated cross sections by
about 20 — 30%. However, as it was already discussed above, there are additional theoretical
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uncertainties due to the non-collinear parton evolution, and these uncertainties are not well
studied up to this time. Also the extrapolation of the available parton distribution to the
region of lower x is a special problem at the LHC energies. In particular, one of the problem
is connected with the correct treatment of saturation effects in small x region5. Therefore
much more work needs to be done until these uncertainties will be reduced.

5 Conclusions

We present calculations of the prompt photon hadroproduction at high energies in the
kT -factorization QCD approach. In order to obtain the unintegrated quark and gluon dis-
tributions in a proton we have used the Kimber-Martin-Ryskin prescription. We have in-
vestigated both inclusive prompt photon and associated with muon production rates. The
associated γ+µ events come primarily due to the Compton scattering process g+Q→ γ+Q,
with the final state heavy (charm or bottom) quark Q producing a muon. The calculations
of such cross sections in the kT -factorization approach were performed for the first time.

We have found that our predictions for the inclusive prompt photon production agree well
with experimental data taken by the D⊘ and CDF collaborations at Tevatron in both central
and forward pseudo-rapidity regions. It is very important that perfect agreement was found
also in the ratio of two cross sections calculated at

√
s = 630 GeV and

√
s = 1800 GeV. This

ratio provides a direct probe of the QCD matrix elements since in this case the theoretical
uncertainties connected to the parton distributions are significantly reduced. We have also
demonstrated that the main part of the standard high-order corrections is already included
in the kT -factorization formalism at LO level. Additionally, we present our predictions for
the inclusive prompt photon production at LHC.

At the same time our results for associated γ + µ production tend to overestimate the
CDF data but still agree with data within the scale uncertainties. We have demonstrated
also the significant deviation from back-to-back kinematics in prompt photon and associated
muon production. We can expect that further theoretical and experimental study of such
processes will give an important information about non-collinear parton evolution dynamics.

In order to investigate the theoretical uncertainties of our results we have studied the
sensitivity of our predictions to the renormalization and factorization scales. We have found
that this dependence is about 20 — 30% in wide center-of-mass energy range. There are,
of course, also additional uncertainties due to unintegrated parton distributions in a proton.
Therefore much more work needs to be done before these uncertainties will be reduced.
Finally, in our analysis we neglect the contribution from the fragmentation processes. We
plan to investigate these problems in more detail in the forthcoming publications.

6 Acknowledgements

The authors are very grateful to S.P. Baranov for encouraging interest and helpful dis-
cussions. This research was supported in part by the FASI of Russian Federation (grant
NS-1685.2003.2).

5See also Ref. [16] for more information

12



References

[1] B. Abbott et al. (D⊘ Collaboration), Phys. Rev. Lett. 84, 2786 (2000).

[2] V.M. Abazov et al. (D⊘ Collaboration), Phys. Rev. Lett. 87, 251805 (2001).

[3] D. Acosta et al. (CDF Collaboration), Phys. Rev. D65, 112003 (2002).

[4] D. Acosta et al. (CDF Collaboration), Phys. Rev. D70, 032001 (2004).

[5] T. Affolder et al. (CDF Collaboration), Phys. Rev. D65, 012003 (2002).

[6] W. Vogelsang and A. Vogt, Nucl. Phys. B453, 334 (1995).

[7] K. Koller, T.F. Walsh and P.M. Zerwas, Z. Phys. C2, 197 (1979).

[8] A. Gehrmann-De Ridder, G. Kramer and H. Spiesberger, Eur. Phys. J.C11, 137 (1999).

[9] M. Fontannaz, J.Ph. Guillet and G. Heinrich, Eur. Phys. J. C21, 303 (2001).

[10] V.N. Gribov and L.N. Lipatov, Yad. Fiz. 15, 781 (1972);
L.N. Lipatov, Sov. J. Nucl. Phys. 20, 94 (1975);
G. Altarelly and G. Parizi, Nucl. Phys. B126, 298 (1977);
Y.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977).

[11] V.N. Gribov, E.M. Levin and M.G. Ryskin, Phys. Rep. 100, 1 (1983).

[12] E.M. Levin, M.G. Ryskin, Yu.M. Shabelsky and A.G. Shuvaev, Sov. J. Nucl. Phys. 53,
657 (1991).

[13] S. Catani, M. Ciafoloni and F. Hautmann, Nucl. Phys. B366, 135 (1991).

[14] J.C. Collins and R.K. Ellis, Nucl. Phys. B360, 3 (1991).

[15] B. Andersson et al. (Small-x Collaboration), Eur. Phys. J. C25, 77 (2002).

[16] J. Andersen et al. (Small-x Collaboration), Eur. Phys. J. C35, 67 (2004).

[17] E.A. Kuraev, L.N. Lipatov and V.S. Fadin, Sov. Phys. JETP 44, 443 (1976);
E.A. Kuraev, L.N. Lipatov and V.S. Fadin, Sov. Phys. JETP 45, 199 (1977);
I.I. Balitsky and L.N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978).

[18] M. Ciafaloni, Nucl. Phys. B296, 49 (1988);
S. Catani, F. Fiorani, and G. Marchesini, Phys. Lett. B234, 339 (1990);
S. Catani, F. Fiorani, and G. Marchesini, Nucl. Phys. B336, 18 (1990);
G. Marchesini, Nucl. Phys. B445, 49 (1995).

[19] J.R. Forshaw and A. Sabio Vera, Phys. Lett. B440, 141 (1998).

[20] B.R. Webber, Phys. Lett. B444, 81 (1998).

[21] G.P. Salam, JHEP 03, 009 (1999).

13



[22] M.A. Kimber, A.D. Martin and M.G. Ryskin, Phys. Rev. D63, 114027 (2001).

[23] L. Motyka and N. Timneanu, Eur. Phys. J. C27, 73 (2003).

[24] A.V. Lipatov and N.P. Zotov, hep-ph/0506044.

[25] M.A. Kimber, A.D. Martin and M.G. Ryskin, Eur. Phys. J. C12, 655 (2000).

[26] H.-L. Lai and H.-N. Li, Phys. Rev. D58, 114020 (1998).

[27] L. Apanasevich et al., Phys. Rev. D59, 074007 (1999).

[28] T. Affolder et al. (CDF Collaboration), Phys. Rev. D65, 052006 (2002).

[29] M.G. Ryskin, Yu.M. Shabelski and A.G. Shuvaev, Phys. Atom. Nucl. 64, 1995 (2001).

[30] S.P. Baranov, N.P. Zotov and A.V. Lipatov, Phys. Atom. Nucl. 67, 824 (2004).

[31] B. Andersson, G. Gustafson and J. Samuelson, Nucl. Phys. B467, 443 (1996);
B. Andersson, G. Gustafson and H. Kharraziha, Phys. Rev. D57, 5543 (1998).

[32] J. Kwiecinski, A.D. Martin and A.M. Stasto, Phys. Rev. D56, 3991 (1997).

[33] M. Glück, E. Reya and A. Vogt, Phys. Rev. D46, 1973 (1992);
M. Glück, E. Reya and A. Vogt, Z. Phys. C67, 433 (1995).

[34] H. Jung, Mod. Phys. Lett. A19, 1 (2004).

[35] A.V. Lipatov and N.P. Zotov, Eur. Phys. J. C41, 163 (2005).
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Figure 1: The unintegrated parton distributions fa(x,k
2
T , µ

2) at scale µ2 = 100GeV2 as
a function of x for different values of k2

T , namely k2
T = 2GeV2 (a), k2

T = 5GeV2 (b),
k2
T = 10GeV2 (c) and k2

T = 20GeV2 (d). The solid, dashed, short dashed, dotted, dash-
dotted and short dash-dotted lines correspond to the unintegrated gluon (divided by factor
10), u+ ū, d+ d̄, s, c and b quark distributions, respectively.

15



Figure 2: The unitegrated gluon distributions fg(x,k
2
T , µ

2) at scale µ2 = 100GeV2 as a
function of x for different values of k2

T , namely k2
T = 2GeV2 (a), k2

T = 10GeV2 (b), k2
T =

20GeV2 (c) and k2
T = 50GeV2 (d). The solid, dashed and dash-dotted lines correspond

to the KMR, J2003 set 1 and standard version of the LDC unintegrated gluon densities,
respectively.

16



Figure 3: The double differential cross section dσ/dEγ
Tdη

γ for inclusive prompt photon
hadroproduction at |ηγ| < 0.9 and

√
s = 630 GeV. The solid line corresponds to the de-

fault scale µ = Eγ
T , whereas upper and lower dashed lines correspond to the µ = Eγ

T/2 and
µ = 2Eγ

T scales, respectively. The experimental data are from D⊘ [2] and CDF [3].
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Figure 4: The double differential cross section dσ/dEγ
Tdη

γ for inclusive prompt photon
hadroproduction at 1.6 < |ηγ| < 2.5 and

√
s = 630 GeV. All curves are the same as in

Figure 3. The experimental data are from D⊘ [2].
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Figure 5: The double differential cross section dσ/dEγ
Tdη

γ for inclusive prompt photon
hadroproduction at |ηγ| < 0.9 and

√
s = 1800 GeV. All curves are the same as in Fig-

ure 3. The experimental data are from D⊘ [1] and CDF [3].
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Figure 6: The double differential cross section dσ/dEγ
Tdη

γ for inclusive prompt photon
hadroproduction at 1.6 < |ηγ| < 2.5 and

√
s = 1800 GeV. All curves are the same as

in Figure 3. The experimental data are from D⊘ [1].
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Figure 7: The double differential cross section dσ/dEγ
Tdη

γ for inclusive prompt photon
hadroproduction at |ηγ| < 0.9 and

√
s = 1800 GeV. All curves are the same as in Fig-

ure 3. The experimental data are from CDF [4].
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Figure 8: The ratio of the dimensionless cross sections σD(630GeV)/σD(1800GeV) as a func-
tion of scaling variable xT at |ηγ| < 0.9. The solid line was obtained in the kT -factorization
approach whereas dashed line corresponds to the collinear leading-order QCD calculations
with the GRV parton densities of the proton. The renormalization and factorization scales
are µ = Eγ

T . The experimental data are from D⊘ [2].
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Figure 9: The ratio of the dimensionless cross sections σD(630GeV)/σD(1800GeV) as a
function of scaling variable xT at 1.6 < |ηγ| < 2.5. All curves are the same as in Figure 8.
The experimental data are from D⊘ [2].
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Figure 10: The differential cross section dσ/dpγT for associated prompt photon and muon
hadroproduction at |ηγ| < 0.9, |ηµ| < 1.0, pµT > 4 GeV and

√
s = 1800 GeV. All curves are

the same as in Figure 3. The experimental data are from CDF [5].
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Figure 11: Azimuthal correlations in associated prompt photon and muon hadroproduction
at |ηγ| < 0.9, |ηµ| < 1.0, pµT > 4 GeV and

√
s = 1800 GeV. The solid line corresponds to

the default scale µ = Eγ
T , whereas upper and lower dashed lines correspond to the µ = Eγ

T/2
and µ = 2Eγ

T scales, respectively. The dash-dotted line correspond to the sole LO QCD
calculations at µ = Eγ

T .
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Figure 12: The differential cross section dσ/dEγ
T for inclusive prompt photon hadroproduc-

tion at |ηγ| < 2.5 and
√
s = 14 TeV. All curves are the same as in Figure 3.
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Figure 13: The differential cross section dσ/dEγ
T for inclusive prompt photon hadroproduc-

tion at 2.5 < |ηγ| < 4 and
√
s = 14 TeV. All curves are the same as in Figure 3.
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