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We explore, using a Ginzburg-Landau expansion of the free energy, the Larkin-Ovchinnikov-Fulde-
Ferrell (LOFF) phase of QCD with three flavors, using the NJL four-fermion coupling to mimic gluon
interactions. We find that, below the point where the QCD homogeneous superconductive phases
should give way to the normal phase, Cooper condensation of the pairs u− s and d− u is possible,
but in the form of the inhomogeneous LOFF pairing.

PACS numbers: 12.38.Aw, 12.38.Lg

I. INTRODUCTION

At high quark density and small temperatures Quantum-Chromo-Dynamics (QCD) predicts Cooper pairing of
quarks due to the existence of an attractive quark interaction in the color antisymmetric channel, see [1, 2, 3] and
for reviews [4, 5]. At extreme densities the energetically favored phase is the Color-Flavor-Locking (CFL) phase,
characterized by a spin 0 diquark condensate antisymmetric in both color and flavor [6]; at intermediate densities the
situation is much more involved, because one cannot neglect the strange quark mass and the differences δµ in the
quark chemical potentials induced by β equilibrium. Several ground states have been considered in the literature,
from the 2SC phase [2], to the gapless phases g2SC [7] and gCFL [8, 9]. The gapless phases are instable as shown
by imaginary gluon Meissner masses (for g2SC see [10], for gCFL see [11] and [12]). This seems to be connected to
the existence of gapless modes in these phases [13]. An instability is present also in the 2SC phase [10]. Though
this phase has no gapless mode, imaginary gluon masses are present when the gap ∆ and δµ satisfy the condition
∆/

√
2 ≤ δµ ≤ ∆.

Another superconductive state discussed in the literature is the Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) [14]
phase. The relevance of this phase is based on the possibility that, for appropriate values of δµ, it can be advantageous
for quarks to form pairs with non-vanishing total momentum: p1 + p2 = 2q 6= 0, see [15, 16] and for a review [17].
As far as instability is concerned, the authors in [18] have shown that, with two flavors, the instability of 2SC implies
that the LOFF phase is energetically favored. Moreover, in the LOFF phase with two flavors the gluon Meissner
masses are real [19].
Thus far only the case of two species for the LOFF phase has been studied. This is not justified in QCD. At

intermediate densities all the three quarks: u, d and s should be considered. The three flavor problem is however
much more involved and difficult to work out. We present here a first attempt to study the three flavor LOFF phase
of QCD. Our approach is based on a Ginzburg-Landau (GL) expansion of the free energy. Differently from the CFL
phase, where quark matter is in β equilibrium while being also electrically and color neutral, here we should impose
these conditions. We shall consider in the sequel only β-equilibrated and electrically neutral quark matter, while
assuming that the color-chemical potentials vanish. This is an approximation we discuss below.

II. GAP EQUATION

To get the gap equation in the Ginzburg Landau approximation, we start with the Lagrangean density for three
flavor ungapped quarks:

L = ψ̄iα

(

iD/ αβ
ij −Mαβ

ij + µαβ
ij γ0

)

ψβj . (1)

Mαβ
ij = δαβ diag(0, 0,Ms) is the mass matrix and Dαβ

ij = ∂δαβδij + igAaT
αβ
a δij ; µ

ij
αβ is a diagonal color-flavor matrix

depending in general on µ (the average quark chemical potential), µe (the electron chemical potential), and µ3, µ8,
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related to color [8]. We do not require color neutrality and we work in the approximation µ3 = µ8 = 0, which might
be justified by the results of Ref. [8] for the gCFL phase showing that µ3 and µ8 assume in general small values (at
least in the region of interest, see later). Therefore in this paper

µαβ
ij = (µδij − µeQij)δ

αβ = µi δijδ
αβ , (2)

where Q is the quark electric-charge matrix.
We treat the strange quark mass at the leading order in the 1/µ expansion; this corresponds to a shift in the

chemical potential of the s quark: µs → µs−
M2

s

2µ
. This is the same approximation used in Refs. [8], [11] for the study

of the gCFL phase. Therefore:

µu = µ− 2

3
µe , µd = µ+

1

3
µe , µs = µ+

1

3
µe −

M2

s

2µ
. (3)

Another approximation we employ is the High Density Effective Theory (HDET), see [20, 21, 22] and, for a
review, [5]. Here one decomposes the quark momentum into a large component, proportional to µ, and a residual
small component: p = µn + ℓ; n is a unit vector and ℓ is the small residual momentum. Moreover one introduces
n-dependent fields ψn and Ψn by the Fourier decomposition

ψ(x) =

∫

dn

4π
ei µn·x (ψn(x) + Ψn(x)) ; (4)

ψn and Ψn correspond to positive and negative energy solutions of the Dirac equation.
Substituting the expression (4) in the Eq. (1) one gets at the leading order in 1/µ

L =

∫

dn

4π
ψ†
n,iα

(

iV ·Dαβ
ij + µ̄iδ

αβδij

)

ψn,βj , (5)

where V µ = (1,n), Ṽ µ = (1,−n) and µ̄i = µi − µ.
It is convenient to change the basis for the spinor fields by defining ψA = (ψur, ψdg, ψbs, ψdr, ψug, ψsr, ψub, ψsg, ψdb).

This change of basis is performed by unitary matrices FA, whose explicit expression can be found in Ref. [11]. To the
Lagrangean in Eq. (5) we add a Nambu-Jona Lasinio four fermion coupling treated in the mean field approximation.
This corresponds to the same coupling and the same approximation used in Ref. [9]. The gap term in the resulting
Lagrangean is conveniently treated by introducing the Nambu-Gorkov field

χA =
1√
2

(

ψn

C ψ∗
−n

)

A

(6)

so that the Lagrangean reads

L =
1

2

∑

A,B

∫

dn

4π

∫

dE dξ

(2π)2
χ†
A

(

(E − ξ + µ̄A) δAB −∆AB(r)
−∆∗

AB(r) (E + ξ − µ̄A) δAB

)

χB (7)

where E is the energy, ξ ≡ ℓ · n is the component of the residual momentum along n and satisfies: |ξ| < δ, with δ an
ultraviolet cutoff. Moreover (µ̄)A = (µ̄u, µ̄d, µ̄s, µ̄d, µ̄u, µ̄s, µ̄u, µ̄s, µ̄d).
We assume the pairing ansatz

< ψiα C γ5 ψβj >=

3
∑

I=1

∆I(r) ǫ
αβI ǫijI (8)

with

∆I(r) = ∆I exp (2iqI · r) . (9)

In other words, for each inhomogeneous pairing we assume a Fulde-Ferrell ansatz; 2qI represents the momentum of
the Cooper pair. The gap matrix ∆AB in (7) can be expressed in terms of the three independent functions ∆1(r),
∆2(r), ∆3(r) describing respectively d− s, u − s and u − d pairing. The explicit expression of ∆AB can be found in
[8], [11].
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To write down the gap equation it is useful to introduce the following components of the free quark propagator

[

S11

0

]

AB
≡ δAB

E − ξ + µ̄A

,
[

S22

0

]

AB
≡ δAB

E + ξ − µ̄A

. (10)

The quark propagator is the matrix

SAB =

(

S11 S12

S21 S22

)

AB

(11)

whose components satisfy the Gorkov equations

S11 = S11

0
+ S11

0
∆(r)S21 , S21 = S22

0
∆∗(r)S11 . (12)

S21 is the anomalous propagator involved in the gap equation.
The wave vectors qI should be derived by minimizing the free energy. We will fix the norms |qI| by a minimization

procedure. As to their directions, we will limit the analysis to four structures, choosing among them the one with
the smallest value of the energy. The first structure has all qI along the positive z−axis. The structures 2, 3, 4 have,
respectively, q1, q2, q3 along the positive z−axis (the remaining two momenta along the negative z−axis). This is
obviously a limitation. It is justified by our final results that show the existence of a range of values of the strange
quark mass where the LOFF phase, even with these limitations, is favored in comparison with other QCD phases.
The gap equation in the HDET formalism can be written as follows [5]

∆∗
AB(r) = i 3GV µṼ ν

9
∑

C,D=1

h∗AaChDbB

∫

dn

4π

∫

d3 ℓ

(2π)3

∫

dE

2π
S21(E, ℓ)CD gµν δab , (13)

where S21 is given in Eq. (12); in the above equation hDbB is a Clebsch-Gordan coefficient. It is expressed by the

formula hDbB = Tr[F †
DTbFB] in terms of the unitary matrices FA used to write the quark fields as in (6), i.e. in the

basis A = 1, · · · , 9. G is the Nambu-Jona Lasinio coupling constant, of dimension mass−2. In what follows, we shall
get rid of G introducing the value of the CFL gap parameter ∆0 as a measure of the strength of the interaction (see
below, Eq. (18)).

III. GINZBURG-LANDAU EXPANSION

Performing the Ginzburg-Landau expansion of the propagator

S21 = S22

0 ∆∗S11

0 + S22

0 ∆∗S11

0 ∆S22

0 ∆∗S11

0 +O(∆5) (14)

we get

∆I = ΠI ∆I +
∑

J

JIJ ∆I ∆
2

J + O(∆5) , I = 1, 2, 3 . (15)

Let us comment on the functions ΠI and JIJ appearing in this expansion. ΠI are defined as follows: Π1 =
Π(q1, δµds) , Π2 = Π(q2, δµus) , Π3 = Π(q3, δµud) , with

δµud ≡ µ̄d − µ̄u

2
=
µe

2
, δµus ≡

µ̄s − µ̄u

2
=
µe

2
− M2

s

4µ
, δµds ≡

µ̄s − µ̄d

2
= −M

2
s

4µ
. (16)

and

Π(q, δµ) = 1 +
2Gµ2

π2

(

1− δµ

2q
log

∣

∣

∣

∣

q + δµ

q − δµ

∣

∣

∣

∣

− 1

2
log

∣

∣

∣

∣

4(q2 − δµ2)

∆2

0

∣

∣

∣

∣

)

. (17)

We note that Π is analogous to the function determining the behavior of the free energy in the GL approximation of
the LOFF phase with two flavors. We have introduced the parameter ∆0 to get rid of the ultraviolet cutoff δ. It is
defined by

∆0 ≡ 2δ exp

{

− π2

2Gµ2

}

. (18)
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∆0 is equal to the CFL gap for Ms = 0 and µe = 0 in the weak coupling limit, with no sextet condensation. As for
JIJ , we have, for the diagonal components: J11 ≡ J1 ≡ J(q1, δµds), J22 ≡ J2 ≡ J(q2, δµus), J33 ≡ J3 ≡ J(q3, δµud),
with

J(q, δµ) = −Gµ
2

2π2

1

q2 − δµ2
. (19)

The off-diagonal term J12 is

J12 =
Gµ2

π2

∫

dn

4π

1

(2q1 · n+ µs − µd − iǫ) (2q2 · n+ µs − µu − iǫ)
; (20)

J13 is obtained from J12 in (20) by the exchange q2 → q3 and µs ↔ µd; J23 from J12 by q1 → q3 and µs ↔ µu.

IV. FREE ENERGY

Let us now consider the free energy Ω. It is obtained by integrating the gap equation. The result is

Ω = Ωn +

3
∑

I=1





αI

2
∆2

I +
βI
4

∆4

I +
∑

J 6=I

βIJ
4

∆2

I∆
2

J



 + O(∆6) (21)

with

Ωn = − 3

12π2

(

µ4

u + µ4

d + µ4

s

)

− µ4

e

12π2
(22)

where the chemical potentials for quarks are defined in Eq. (3) and the coefficients are given by

αI =
2 (1−ΠI)

G
, βI = −2 JI

G
, βIJ = −2 JIJ

G
. (23)

Electric neutrality is obtained by imposing the condition

− ∂Ω

∂µe

= 0 , (24)

which, together with the gap equations, gives, for each value of the strange quark mass, the electron chemical potential
µe and the gap parameters ∆I . Moreover one should determine qI by searching for the energetically favored solution.
This is a complex task as it would require the simultaneous solution of the previous equations (24) and (15) together
with:

0 =
∂Ω

∂qI
= ∆I

∂αI

∂qI
+∆I

3
∑

J=1

∆2

J

∂βIJ
∂qI

, I = 1, 2, 3 . (25)

Moreover one should look for the most energetically favored orientations of the three vectors qI in space. A complete
analysis is postponed to a future paper; as discussed above we have limited the analysis to the four structures
characterized by all vectors qI parallel or antiparallel to the same axis. Even with this limitation we are able to prove
that there exists a window of values ofMs where the LOFF phase is favored in comparison with other phases of QCD,
as it will be seen below. As to the norms |qI|, since we work in the GL approximation, we can neglect the O(∆2)

terms in (25). As a consequence we simply get
∂αI

∂qI
= 0, which, being identical to the condition for two flavors, gives

the result qI = 1.1997|δµI| [14, 15].

V. RESULTS AND DISCUSSION

Our results are summarized in Figs. 1-4. In Fig. 1 we give ΩLOFF − Ωnorm (in units 106 MeV4) as a function of
M2

s /µ (in MeV).
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We report only the energetically favored solution. It corresponds to ∆1 = 0,∆2 = ∆3 and q2, q3 parallel (structure
1, which is identical in this case to the structure 2). We do not report the other solutions corresponding to local
minima of Ω. We also found a solution with ∆1 6= 0 and ∆2 6= ∆3 but it can only exist in a kinematical range where
the LOFF phase is energetically disfavored in comparison with the CFL or the gCFL phases. The structures 3 and 4
(q2, q3 antiparallel) have almost vanishing gaps and correspond only to local minima of the free energy. The results
in this figure and in the subsequent ones are obtained for µ = 500 MeV (for µ = 400 MeV the results are qualitatively
similar). The value of the CFL gap for zero strange quark mass is fixed at ∆0 = 25 MeV. This is the same value
used in Ref. [9]. This choice, as well as the same form of the NJL coupling, with the same approximation, allows a
comparison between our results and those of Ref. [9], see the discussion below.

20 40 60 80 100 120 140

-15

-10
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0

M  /   [MeV]s
2 µ

Ω
Ω

L
O
F
F
-

n
o
r
m

FIG. 1: Free energy difference ΩLOFF − Ωnorm in units of 106 MeV4 plotted versus M2

s /µ (in MeV). The result is obtained
for µ = 500 MeV and ∆0 = 25 MeV. The line corresponds to the structures 1 and 2 with ∆1 = 0,∆2 = ∆3.

In Fig. 2 we give the gaps ∆I/∆0 as functions of M2

s /µ (in MeV). The line represents the solution ∆2 = ∆3 for
the structures 1 and 2 (in this case ∆1 = 0).

M  /   [MeV]s
2 µ

∆I/ 0
∆

20 40 60 80 100 120 140

0.2

0.4

0.6

0.8

1

FIG. 2: Gaps ∆I/∆0 as functions of M2

s /µ (in MeV) for the structures 1 and 2; the curve represents ∆I = ∆2 = ∆3 whereas
∆1 = 0.

In Fig. 3 we present results for the electron chemical potential µe. The line correspond to the energetically favored
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solution (structure 1≡2; we have neglected terms suppressed in the 1/µ expansion, consistently with the HDET
scheme). A glance at eq. (16) shows that µe is given by µe ≈ M2

s /(4µ), which corresponds to a symmetric splitting
of the s and d Fermi surfaces around the u Fermi surface. Therefore in this kinematical region we have us and du
pairings, with

pu + ps = 2q2 , pu + pd = 2q3 = 2q2 .

The gaps ∆2 (us pairing) and ∆3 (ud pairing) have to be almost equal since they depend only on the absolute values
of the splittings, see Fig. 2. Since the separation between the d and s Fermi surfaces is higher, one does not expect
ds pairing, which is confirmed by the result ∆1 = 0 in the region where LOFF prevails.

M / [MeV]s
2 µ

20 40 60 80 100120140

10

20

30

40

eµ  [MeV]

FIG. 3: The electron chemical potential µe as a function of M2

s /µ. Units are MeV. The line corresponds to ∆2 = ∆3, ∆1 = 0.

In Fig. 4 we present comparison of different phases of QCD. In order to comment this figure, let us start assuming that
all the other phases are stable, meaning that in some way it is possible to cure the instability due to the imaginary
gluon masses. In this case, following the graph for decreasing values of M2

s /µ, we see that at about M2
s /µ = 150

MeV the LOFF phase has a free energy lower than the normal one. This is a second order transition as it can be
seen from Fig. 2. Then the LOFF state is energetically favored till the point where it meets the gCFL line at about
M2

s /µ = 128 MeV. This is a first order transition since all the gaps are different in the two phases (for the gCFL case,
see [8]). Then the system stays in the gCFL phase up to M2

s /µ ≈ 48 MeV where it turns into the CFL phase via a
second order transition (see [8]).
However, if the gapless phases are unstable, then they should not be considered, and the LOFF phase is the stable

phase from M2

s /µ = 150 MeV down to about M2

s /µ = 90 MeV where the LOFF line meets the CFL line, with a first
order transition (this can be seen by comparing our gaps with the ∆CFL ≈ 23 MeV at this value of M2

s /µ).
We should also add that at the moment it is still unknown if the LOFF phase with three flavors suffers of chromo-

magnetic instabilities. This problem is left to future investigations.

VI. CONCLUSION AND OUTLOOK

We have explored in the framework of the Ginzburg-Landau expansion the LOFF phase of QCD with three flavors,
using the NJL four-fermion coupling to mimic the gluon interactions. We have worked on the ansatz of a single
plane wave behaviour for each quark pairing, which is the simplest generalization of the gCFL phase that takes into
account the possibility of anisotropic condensation. We found that near the point where the CFL phase should give
way to the normal phase, Cooper condensation takes place in the form of the LOFF pairing. Our analysis has some
limitations. First, we have assumed vanishing color chemical potentials µ3, µ8. The results of Ref. [9] show that
in the region where the LOFF state dominates the color chemical potential have rather small values, in particular
smaller than µe. However non vanishing values of µ3 and µ8 are expected to increase the LOFF free energy and
therefore a more complete calculation is necessary. Second, we have considered the three possible momenta qI along
the same direction. Third, more than one plane wave might be present in each condensate. Finally we have treated
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FIG. 4: Free energy differences ΩLOFF −Ωnorm in units of 106 MeV4 plotted versus M2

s /µ (in MeV) for various QCD phases.

the strange quark mass at its leading effect, i.e. by a shift in its chemical potential, which is also an approximation
[22]. We plan to address all these issues by a more refined study in the future.
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