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Abstract 
 
The coupling constant of ωγ→0f  decay is calculated using 3-point sum rule and light cone QCD 

sum rules. We investigate the results within the two-models which depend on θ  angle. 
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I. Introduction 
 

 The QCD sum rules [1] is one of the powerful methods for calculation of the different 

low energy characteristics of the hadron physics. In the context of QCD sum rules method, a 

wide class of problems of hadron physics, such as, spectrum, mass, weak form factors ([1-3], 

and references therein), magnetic moments of neutron and proton [4] etc., are successfully 

explained. Application of this method to polarization operators gives a determination of 

masses and couplings of low lying mesonic [1, 5] and baryonic [6] states. The QCD sum rule 

method has been utilized to analyze many hadronic properties, and it yields an effective 

framework to investigate the hadronic observables such as decay constants and form factors 

within the nonperturbative contributions proprotional to the quark and gluon condensates. [7]. 

The main idea of the method is to calculate the correlator with the help of operator product 

expansion (OPE) in the framework of QCD and then connect them with the 

phenomenological part. The interested physical quantities are determined by matching these 

two representations of the correlator. 

 Radiative transitions between pseudoscalar (P) and vector (V) mesons have been an 

important subject in low-energy hadron physics for more than three decades. These transitions 

have been regarded as phenomenological quark models, potential models, bag models, and 

effective Lagrangian methods [8,9]. Among the characteristics of the electromagnetic 

interaction processes γVPg coupling constant plays one of the most important roles, since they 

determine the strength of the hadron interactions. In the quark models, V → P+γ decays (V = 

φ, ρ, ω)  ; P = π, η, η′) are reduced by the quark magnetic moment with transition s = 1 → s = 

0, where s is the total spin of the −qq system (in the corresponding meson). Actually these 

quantities can  be  calculated  directly  from  QCD. Low-energy  hadron  interactions  are  

governed  by nonperturbative  QCD  so that  it is very  difficult  to get the  numerical values 

of the coupling constants from the first principles. For that reason a semiphenomenological 

method of QCD sum rules can be used, which nowadays is the standart tool for studying of 

various characteristics of hadron interactions. On the other hand, vector meson-pseudoscalar 

meson-photon VPγ−vertex  also plays a role in photoproduction reactions of vector mesons on 

nucleons. It should be notable that in these decays (V→Pγ) the four-momentum of the 

pseudoscalar meson P is time-like, P′2 > 0, whereas in the pseudoscalar exchange amplitude 

contributing to the photoproduction of vector mesons it is space-like P′2 < 0. Therefore, it is of 

interest to study the effective coupling constant gVPγ from another point of view as well. In 



addition, the same model predicts amplitudes for energetically allowed γVS →  processes, 

for examples ωγ→0f , ργ→0f , ωγ→0a  and ργ→0a  etc. Black et all. [10] 

investigated  the angular dependence on these decays.  

 The light scalar mesons have been the subject of continious interest in hadron 

spectroscopy. Although the structure of these light scalar mesons have not been 

unambiguously  determined yet [11], the possibility may be suggested that these nine scalar 

mesons below 1 GeV may form a scalar SU(3) flavor nonet [12].  The nature of the meson 

)980(0f is particularly debated. One of the oldest suggestions, there is the proposal that quark 

confinement could be explained through the existence of a state with vacuum quantum 

numbers and mass close to the proton mass [13]. After having  followed the quark model and 

considered the strong coupling to kaons, )980(0f could be interpreted as an ss  state [14-17]. 

On the other hand, it does not explain the mass degeneracy between )980(0f  and )980(0a  

interpreted as a 2/)( dduu ±  state. A four quark qqqq  state definition has also been 

offered [18]. In this case, )980(0f could either be nucleon-like [19], i.e., a bound state of 

quarks with symbolic quark structure 2/)(0 dduussf += , the )980(0a being 

2/)(0 dduussa −= , or deuteron-like, i.e., a bound state of hadrons. The identification of 

the 0f and of the other lightest scalar mesons with the Higgs nonet of a hidden 

)3(U symmetry has also been proposed [20]. On the other hand, they are relevant hadronic 

degrees of freedom, and therefore  the role they play in hadronic processes should also be 

studied besides the questions of theire nature. In this work, we calculated the coupling 

constant  ωγ0f
g  by applying 3-point QCD sum rule and light-cone sum rule as well, which 

provide an efficient and model-independent method to study many hadronic observables,  

such as decay constants and form factors in terms of non-perturbative contributions 

proportional to the quark and gluon condensates [7].  

 

II. Calculation  

a) In the three-point QCD sum rules: 

 According to the general strategy of QCD sum rules method, the coupling constants 

can be calculated by equating the representations of a suitable correlator calculated in terms of 

hadronic and quark-gluon degrees of freedom. In order to do this we consider the following 

correlation function by using the appropriately chosen currents 
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is the electromagnetic current with ue  and de  being the quark charges. 

 The theoretical part of the sum rule in terms of the quark-gluon degrees of freedom for 

the coupling constant ωγ0f
g is calculated by considering the perturbative contribution and the 

power corrections from operators of different dimensions to the three-point correlation 

function µνΠ . For the perturbative contribution we study the lowest order bare-loop diagram. 

Moreover, the power corrections from the operators of different dimensions 

,., ><>< Gqqqq σ  and >< 2)( qq  are considered in the work. Since it is estimated to be 

negligible for light quark systems, we did not consider the gluon condensate contribution 

proportional to .2 >< G  We performe the calculations of the power corrections in the fixed 

point gauge [22]. We also work in the limit 0=qm  and in this limit the perturbative bare-loop 

diagram does not make any contribution. In fact, by considering this limit only operators of 

dimensions d=3 and d=5 make contributions which are proportional to >< qq and 

>< Gqq .η , respectively. The relevant Feynman diagrams for power corrections are given in 

Fig 1.  

 On the other hand, in order to calculate the phenomenological part of the sum rule in 

terms of hadronic degrees of freedom, a double dispersion relation satisfied by the vertex 

function µνΠ  is considered [1, 2, 5]: 
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where we ignore possible substruction terms since they will not make any contributions after 

Borel transformation. For our purpose we choose the vector and pseudoscalar channels and 

saturating this dispersion relation by the lowest lying meson states in these channels the 

physical part of the sum rule is obtained as 
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where the contributions from the higher states and the continuum are given by dots. The 

overlap amplitudes for vector and pseudscalar mesons are ω
µω

ω
µ ελω >=< ||0 J , where ω

µε is 

the polarization vector of the vector meson and 
0

0||0 fsJf λ>=< , respectively. The matrix 

element of the electromagnetic current is given by 
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where 'ppq −=  and )( 2qK  is a form factor with 1)0( =K . This matrix element defines the 

coupling constant ωγ0f
g  by means of  the effective Lagrangian 
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describing the −ωγ0f vertex [23]. 

 After performing the double Borel transform with respect to the variables 22 pQ −=  

and 22 '' pQ −= ,  and by considering the gauge-invariant structure ( )νµµν qppqg +− )( , we 

obtain the sum rule for the coupling constant  as 
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where we used the relation .. 2
0 ><>=< qqmqGq µνµνσ  

b) In the light-cone sum rules:  

 In order to derive the light cone QCD sum rule for the coupling constants ωγ0f
g , we 

consider the following two point correlation function 
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where γ  denotes the external electromagnetic field, and ω
νj  and 

0aj  and  are the interpolating 

current for the ω  meson and 0f , respectively.  

 We therefore sature the dispersion relation satisfied by the vertex function µT  by these 

lowest lying meson states in the vector and the scalar channels, and in this way we obtain for 

the physical part at the phenomenological level the Eq. (1) can be expressed as 
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 In this calculation the full light quark propagator with both perturbative and 

nonperturbative contribution is used, and it is given as [24]  
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where the terms proportional to light quark mass um or dm  are neglected. After a 

straightforward computation we have 
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where 
422 x

i
A

π
= , and higher twist corrections are neglected since they are known to make a 

small contribution [25] . In order to evaluate the two point correlation function further, we 

need the matrix elements 0)0()()( qxqq τρσγ . This matrix element can be expanded in the 

light cone photon  wave function [26, 27] 
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Where qe  is the corresponding quark charge, χ  is the magnetic susceptibility, )(uϕ  is 

leading twist two and )(1 ug and )(2 ug are the twist four photon wave functions. The main 

difference between the tradiational QCD sum rules and light cone QCD sum rule is the 

appearence of these wave function. Light cone QCD sum rules corresponds to summation of 

an infinite set of terms in the expansion of this matrix element on the tradiational sum rules. 

The  price one pays for this is the appearence of a priori unknown photon wave functions. 

After evaluating the Fourier transform for the M1 structure and then performing the double 

Borel transformation with respect to the variables 22
1 pQ −=  and 22

2 'pQ −= , we finally 

obtain the following sum rule for the coupling constant ωγ0f
g   
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where the function  
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is the factor used to subtract the continuum, 0s being the continuum threshold, and  
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with 2
1M and 2

2M  are the Borel parameters in the ω  and  0f channels. 

 

III. Numerical Calculation 

  

 From the 3-point QCD sum rules view, in our calculations we use the numerical 
values 014.0−>=< uu GeV3,  98.0

0
=fm GeV, 02.018.0

0
±=fλ GeV2 [28], 

782.0=ωm GeV.  We note that neglecting the electron mass the −+ee  decay width of ω  

meson is given as 
22

33
4

)( �
�

�
�
�

�=→Γ −+ ωλπαω ee . Then using the value from the experimental 

leptonic decay width 02.060.0)( ±=→Γ −+eeω of keV for ω  [29], we obtain the value 
)002.0108.0( ±=ωλ  GeV2  for the overlap amplitude ω  meson. In order to examine the 

dependence of ωγ0f
g  on the Borel masses 2

1M  and 2
2M , we choose 22

2
2

1 MMM == . Since 

the Borel mass 2M  is an auxiliary parameter and the physical quantitites should not depend 

on it, one must look for the region where ωγ0f
g  is practically independent of 2M . We 

determined that this condition is satisfied in the interval 0.1 GeV2 4.12 ≤≤ M GeV2. The 

variation of the coupling constant ωγ0f
g  as a function of Borel parameter 2M  at different θ  

values are shown in figure 2. Examination of this figure shows that the sum rule is rather 
stable with these reasonable variations of 2M . In the 3-point  QCD sum rules calculation, we 
then choose the middle value 2.12 =M GeV2 for the Borel parameter in its interval of 
variation and obtain the coupling constant of ωγ0f

g for various θ  angles as between 

02.068.0
0

±=ωγfg  and 02.025.1
0

±=ωγfg , where only the error arising from the numerical 
analysis of the sum rule is considered. 
 From the light-cone  sum rules view, we use the numerical values mentioned above as 

well as for the magnetic susceptibility 15.3−=χ GeV-2 [30]. Using the conformal invariance 

of QCD up to one loop order, the photon wave functions can be expanded in terms of 

Gegenbauer polynomials; each term corresponding to contributions from operators of various 

conformal spin. Due to conformal invariance of QCD up to one loop, each term in this 

expansion is renormalized separately and the form of these wave functions at a sufficiently 

high scale is well known. In [26,27] it is shown that even at small scales, the wave functions 

do not deviate considerably from their asymptotic form [31, 32] and hence we will use the 

asymptotic forms of the photon wave function given by: 
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Since ωmm f ≈
0

, we will set 22
2

2
1 2MMM ==  which sets 2/10 =u . Note that in this 

approximation, we only need the value of the wave functions at a single point; namely at 

2/10 =u  and hence the functional forms of the photon wave functions are not relevant.  

 In Fig. 3, we showed the dependence of the coupling constant ωγ0f
g  on parameter 2M  

at constant value of the continuum threshold as 0.20 =s  at different θ  values. In this case, 

we have coupling constant as between 02.078.0
0

±=ωγfg  and 02.030.1
0

±=ωγfg . In Fig. 4, 

we also showed the dependence of the coupling constant ωγ0f
g  on parameter 2M  at some 

different values of the continuum threshold as 0.2,8.10 =s  and 2.2 GeV2 at �30=θ . Since 

the Borel masses 2
1M  and 2

2M   are the auxiliary parameters and the physical quantities should 

not depend on them, one must look for the region where ωγ0f
g  is practically independent of 

2
1M  and 2

2M . We determined that this condition is satisfied in the interval  

2.1 GeV2 4.12
1 ≤≤ M GeV2. Choosing the middle value 3.12 =M GeV2 for the Borel 

parameter in this interval of variation and we have the coupling constant of ωγ0f
g for different 

0s values as between 02.069.0
0

±=ωγfg  and 02.071.0
0

±=ωγfg  in the calculation of light-

cone sum rules.  The variation of the coupling constant ωγ0f
g  as a function of different values 

2M  and θ  are given in Fig. 5. Examination of this figure points out that the sum rule is rather 

stable with these reasonable variations of 2M .  

 

 IV.  Conclusions  

 In this study we calculated coupling constant ωγ0f
g in the two different ways in which 

we took account u - and d -quark contribution. If  our results are not agreed with the 

experimental ones, in this case one pays attention to s-quark contribution. In order to compare 

and to find the relation between the two models, we investigated the coupling constant within 

both approaches. In spite of lacking experimental data on ωγ0f
g , we found estimated values 

for the coupling constant ωγ0f
g  in three-point QCD sum rules and light-cone sum rules. The 

results depend on mixing angle θ  and  0s  parameter. When one is used reasonable data 

respect to analytical expressions, it is clear that one has beter agreement to experimental 



results. For the time being there is no experimental data on −ωγ0f vertex, then our 

calculations behave only a theoretical suggestion. However we offer that −ωγ0f vertex in the 

related energy scala is very important such as γφ 0f  decay.  
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Figure 1. Feynman diagrams for the ωγ0f -vertex: a) bare loop diagram, b) d=3 operator 

corrections, and c) d=5 operator corrections. The dotted lines denote gluons.  
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Figure 2. The variation of the coupling constant ωγ0f
g  as a function of Borel parameter 2M  at 

different θ  values in the calculation of  3-point QCD sum rules. 
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Figure 3. The dependence of the coupling constant ωγ0f
g  on parameter 2M  at constant value 

of the continuum threshold as 0.20 =s  in the light-cone sum rules calculation. 
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Figure 4. The dependence of the coupling constant ωγ0f
g  on parameter 2M  at some different 

values of the continuum threshold as 0.2,8.10 =s  and 2.2 GeV2 at �30=θ  in the 

light-cone sum rules calculation. 
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    Figure 5. Coupling constant ωγ0f
g as function of 2M  and θsin . 

 

 

 

 
 


