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Gluonic phase in neutral two-flavor dense QCD
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In the Ginzburg-Landau approach, we describe a new phase in neutral two-flavor quark matter
in which gluonic degrees of freedom play a crucial role. We call it a gluonic phase. In this phase
gluonic dynamics cure a chromomagnetic instability in the 2SC solution and lead to spontaneous
breakdown of the color gauge symmetry, the electromagnetic U(1), and the rotational SO(3). In
other words, the gluonic phase describes an anisotropic medium in which the color and electric
superconductivities coexist. Because most of the initial symmetries in this system are spontaneously
broken, its dynamics is very rich.

PACS numbers: 12.38.-t, 11.15.Ex, 11.30.Qc

I. INTRODUCTION

It is natural to expect that cold quark matter may exist in the interior of compact stars. This fact motivated
intensive studies of this system over the past few years (for a review, see Ref. [1]). While these studies firmly
established that the cold and dense quark matter is a color superconductor, they also revealed a remarkably rich
phase structure in this system, consisting of many different phases. The question which phase is picked up by nature
is still open.
In this Letter we will describe a new phase in neutral and β-equilibrated two-flavor quark matter. We call it a

gluonic phase. The name reflects a crucial role of gluonic degrees of freedom in the structure of its ground state. More
precisely, besides the usual color superconducting condensate of quarks, there exist (vector) condensates of gluons
in this phase. These vector condensates cure a chromomagnetic instability in the two-flavor superconducting (2SC)
solution [2] and lead to a dramatic rearrangement of the 2SC ground state, most notably, to spontaneous breakdown of

SU(2)c× Ũ(1)em×SO(3)rot symmetry down to SO(2)rot. Here SU(2)c and Ũ(1)em are the color and electromagnetic
gauge symmetries in the 2SC medium, and SO(3)rot is the rotational group (recall that in the 2SC solution the color
SU(3)c is broken down to SU(2)c). In other words, the gluonic phase describes an anisotropic medium in which
the color and electric superconductivities coexist. As we will discuss below, there may exist a class of solutions with
vector condensates of gluons. The solution described in this Letter is similar to that found in the gauged σ-model
with a chemical potential for hypercharge [3], although physics in the present system is much richer. In particular, as
will be shown in Sec. V, exotic hadronic states play an important role in its dynamics.
The framework of the present study is the Ginzburg-Landau (GL) approach. The basic point in our analysis is the

inclusion of light gluonic degrees of freedom in the GL effective action. This leads us to revealing the gluonic phase
in neutral two-flavor quark matter.

II. EFFECTIVE POTENTIAL WITH VECTOR CONDENSATES

We study dense two-flavor quark matter in β-equilibrium. For our purpose, it is convenient to use a phenomenolog-
ical Nambu-Jona-Lasinio (NJL) model, more precisely, a gauged NJL model including gluons. Although usually the
NJL model is regarded as a low-energy effective theory in which massive gluons are integrated out, we introduce glu-
onic degrees of freedom because the gluons of the unbroken SU(2)c subgroup of the color SU(3)c are left as massless,
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and, under certain conditions considered below, some other gluons can be also very light. As discussed in Ref. [4],
the confinement scale Λ′

QCD in the two-flavor color 2SC phase is estimated as O(10 MeV) or smaller. Thus it is not
peculiar to consider gluonic degrees of freedom at energies less than the quark gap ∆.
We neglect the current quark masses and, as usual in studying the 2SC phase, assume that the color superconducting

condensate does not break parity. The Lagrangian density is then given by

L = q̄(i /D + µ̂γ0)q +G∆

[

(q̄Ciεǫaγ5q)(q̄iεǫ
aγ5q

C)

]

+ Lg, (1)

where

Lg = −1

4
Fα
µνF

αµν (2)

and

Dµ ≡ ∂µ − igAα
µT

α, Fα
µν ≡ ∂µA

α
ν − ∂νA

α
µ + gfαβγAβ

µA
γ
ν . (3)

Here Aα
µ are gluon fields, Tα are the SU(3) matrices in the fundamental representation, and εij and ǫacd are the

antisymmetric tensors in the flavor and color spaces, respectively. In β-equilibrium, the elements of the diagonal
chemical potential matrix µ̂ for up (u) and down (d) quarks are

µur = µug = µ̃− δµ, µdr = µdg = µ̃+ δµ, (4a)

µub = µ̃− δµ− µ8, µdb = µ̃+ δµ− µ8, (4b)

with

µ̃ ≡ µ− δµ

3
+

µ8

3
, δµ ≡ µe

2
. (5)

Here the subscripts r, g, and b correspond to red, green and blue quark colors, µ is the quark chemical potential (the
baryon chemical potential µB is given by µB ≡ 3µ), µe is the chemical potential for the electric charge, and µ8 is
the color chemical potential. The latter is simply connected with the vacuum expectation value (VEV) of the time
component of the 8-th gluon [5]:

g〈A8
0〉 =

2√
3
µ8. (6)

By using the auxiliary field ∆a ∼ iq̄Cεǫaγ5q, the Lagrangian density (1) can be rewritten as

L = q̄(i /D + µ̂γ0)q − 1

2
∆a[iq̄εǫaγ5q

C ]− 1

2
[iq̄Cεǫaγ5q]∆

∗a − |∆a|2
4G∆

+ Lg. (7)

We now introduce the Nambu-Gor’kov spinor,

Ψ =

(

q
qC

)

. (8)

The inverse propagator S−1
g of Ψ including gluons is written as

S−1
g =

(

[G+
0,g]

−1 ∆−

∆+ [G−
0,g]

−1

)

, (9)

with

[G+
0,g]

−1 ≡ (p0 + µ̃− δµτ3 − µ81b)γ
0 − ~γ · ~p+ g /AαTα, (10)
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[G−
0,g]

−1 ≡ (p0 − µ̃+ δµτ3 + µ81b)γ
0 − ~γ · ~p− g /AαTαT (11)

and

∆− ≡ −iǫbεγ5∆, ∆+ ≡ −iǫbεγ5∆
∗. (12)

Here the diquark condensate is chosen along the blue color direction, the constant fields Aα
µ represent possible vector

gluonic condensates in the model, and we introduced matrices τ3 ≡ diag(1,−1) and 1b ≡ diag(0, 0, 1) acting in the
flavor and color spaces, respectively. The effective potential in this model includes both gluons and the scalar field
∆. It is:

Veff =
|∆|2
4G∆

+
g2

4
fαβγfαδσAβ

µA
γ
νA

δ µAσ ν − 1

2

∫

d4p

i(2π)4
ln detS−1

g . (13)

We will utilize the hard dense loop approximation, in which only the dominant one-loop quark contribution is taken
into account, while the contribution of gluon loops is neglected. On the other hand, we keep the tree contribution of
gluons in the effective potential (13). This is because we want to compare this contribution with that of hard dense
loops in order to check the consistency of the hard dense loop approximation.

III. DYNAMICS OF GLUONS IN THE GINZBURG-LANDAU APPROACH

Let us consider dynamics of light gluonic degrees of freedom in this model. The two point function of gluons can be
calculated from Lagrangian density (7). In Refs. [2, 6], the Debye and Meissner screening masses of the gluons in the
2SC phase were explicitly calculated. For the gluons of the unbroken SU(2)c, i.e., A

(1), A(2), and A(3), both Debye
and Meissner masses vanish in the region δµ < ∆ (henceforth, for clarity, we will put color indices of gluon fields in
parentheses). For the gluons A(4)−(7), the Meissner mass is approximately

m2
M,4 =

g2µ̃2

6π2

(

1− 2δµ2

∆2

)

, δµ < ∆. (14)

Thus, near the critical point δµ = ∆/
√
2, the Meissner mass for A(4)−(7) is very small. As δµ exceeds the value ∆/

√
2,

m2
M,4 becomes negative, thus signalizing a chromomagnetic instability in the 2SC solution [2]. On the other hand,

around the critical point δµ = ∆/
√
2, the SU(2)c singlet gluon A(8) is heavy. Actually, it has nonvanishing Debye

and Meissner screening masses in the whole region δµ < ∆. This fact allows us to pick up the gluons A(1)−(7) as
relevant light degrees of freedom in the low energy effective theory around the critical point δµ = ∆/

√
2. Our goal is

to describe the dynamics near this critical point in the GL approach.
The quark gap ∆ 6= 0 breaks the QCD symmetry SU(3)c down to SU(2)c. With respect to SU(2)c, the adjoint

representation of SU(3)c is decomposed as

8 = 3⊕ 2⊕ 2̄⊕ 1, (15)

i.e.,

{A(α)
µ } = (A(1)

µ , A(2)
µ , A(3)

µ )⊕Kµ ⊕K†
µ ⊕A(8)

µ , (α = 1, 2, · · · , 8). (16)

Here we defined the complex doublet of the “matter” field describing color vector “kaons”:

Kµ ≡ 1√
2





A
(4)
µ − iA

(5)
µ

A
(6)
µ − iA

(7)
µ



 . (17)

We also define

f (l)
µν ≡ ∂µA

(l)
ν − ∂νA

(l)
µ + gǫlmnA(m)

µ A(n)
ν , (l,m, n = 1, 2, 3) (18)
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and

Dµ ≡ ∂µ − igA(l)
µ

σl

2
. (19)

Then the building blocks of the effective action are the following six,

K0, Kj , D0, Dj , f0j, fjk. (20)

The effective action should be of course invariant under all initial symmetries, in particular, under the color SU(2)c
and the rotational SO(3)rot.

Because of the chromomagnetic instability at δµ > ∆/
√
2, it is natural to study a spontaneous breakdown of the

SU(2)c via the formation of a vector condensate 〈Kµ〉 6= 0. Because the instability is chromomagnetic, we assume
that a spatial component of Kµ has a VEV. By using the rotational symmetry SO(3)rot, one can take 〈K3〉 6= 0. And

because of the SU(2)c symmetry, without loss of generality, we can choose 〈A(6)
3 〉 6= 0. This VEV breaks both the

SU(2)c and the SO(3)rot.
The following remarks are in order. The complex doublet K3 plays here the role of a Higgs field responsible

for spontaneous breakdown of the SU(2)c. The situation is similar to that taking place in the electroweak theory.
The essential difference however is that now the Higgs field is a spatial component of the vector field leading also
to spontaneous breakdown of the rotational symmetry. In this paper, the unitary gauge will be used in which

KT
3 = 1√

2
(0, 〈A(6)

3 〉+a
(6)
3 ) where the real field a

(6)
3 describes quantum fluctuations. The important point is that in the

unitary gauge all auxiliary (gauge dependent) degrees of freedom are removed. Therefore in this gauge the vacuum

expectation values of vector fields are well-defined physical quantities.

With a broken SU(2)c, the SU(2)c gluons could have VEVs. A similar situation takes place in the gauged σ-model
with a chemical potential for hypercharge, where the gauge SU(2)L is broken [3]. Motivating by that model, we
assume

〈A(1)
3 〉, 〈A(3)

0 〉 6= 0, (21)

and use the following notation,

B ≡ g〈A(6)
3 〉, C ≡ g〈A(1)

3 〉, D ≡ g〈A(3)
0 〉 (22)

(note that g〈A(3)
0 〉 can be considered as a chemical potential µ3 related to the third component of the color isospin).

As will be shown in Sec. IV, such a solution with nonzero B,C and D vector condensates exists in this model indeed.
We now describe a general symmetry breaking structure in this model. In the presence of µe, the chiral symmetry

is explicitly broken. Then the initial symmetry is

[SU(3)c]local × [U(1)em × U(1)τ3
L
× U(1)τ3

R
]global × SO(3)rot, (23)

where U(1)τ3
L,R

are U(1)-part of the chiral symmetry SU(2)L,R (note that there is no photon field in the model). The

baryon charge is incorporated in the subgroup,

B =
1

3
1f ⊗ 1c = 2(Q− I3), (24)

where Q = diag(2/3,−1/3) and I3 = diag(1/2,−1/2) acting on the flavor space. The quark gap ∆ breaks both SU(3)c
(down to SU(2)c) and U(1)em but a linear combination of T 8 and Q remains unbroken. The new electric charge of

the unbroken Ũ(1)em is

Q̃ = Q− 1√
3
T 8. (25)

The baryon charge is also changed to

B̃ = 2(Q̃− I3). (26)
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The VEV 〈A(6)
3 〉 breaks SU(2)c, but a linear combination of the generator T 3 from the SU(2)c and Q̃,

˜̃Q = Q̃− T 3 = Q− 1√
3
T 8 − T 3, (27)

determines the unbroken ˜̃U(1)em (the new baryon charge is ˜̃B = 2( ˜̃Q− I3)). However, because T 1 does not commute

with T 3, the VEV 〈A(1)
3 〉 breaks ˜̃Uem(1). The baryon charge is also broken.

After all, we have:

[SU(3)c]local × [U(1)em × U(1)τ3
L
× U(1)τ3

R
]global × SO(3)rot

∆−→ [SU(2)c]local × [Ũ(1)em × U(1)τ3
L
× U(1)τ3

R
]global × SO(3)rot (28)

〈A(6)
3 〉−→ [ ˜̃U(1)em × U(1)τ3

L
× U(1)τ3

R
]global × SO(2)rot (29)

〈A(1)
3 〉−→ [U(1)τ3

L
× U(1)τ3

R
]global × SO(2)rot. (30)

Thus, this system describes an anisotropic medium in which both the color and electric superconductivities coexist.
Let us apply the GL approach to this system near the critical point δµ ≃ ∆/

√
2. The SU(2)c and SO(3)rot

symmetries dictate that the general GL effective potential, made from building blocks (20) and including operators
up to the mass dimension four, is

Veff = V∆ +
1

2
M2

BB
2 + TDB2 +

1

2
λBCB

2C2 +
1

2
λBDB2D2 +

1

2
λCDC2D2 +

1

4
λBB

4, (31)

where V∆ is the 2SC part of the effective potential. Here, while the coefficients λB, λBC , λBD, and λCD are
dimensionless, the dimension (in mass units) of the coefficient T in the triple vertex is one. Expanding the potential
(13) with respect to B, C, and D, we can determine the potential (31). Amazingly, the structure of the gluonic part of
effective potential (31) is quite similar to that of the potential in the gauged σ-model with the hypercharge chemical
potential [3], although the present system is much richer.
Before realizing explicit calculations, we clarify the behavior of the effective potential (31) near the critical point.

The stationary point of the effective potential (31) is given by equations

∂Veff

∂B
= B

[

M2
B + λBB

2 + 2TD+ λBCC
2 + λBDD2

]

= 0, (32)

∂Veff

∂C
= C

[

λBCB
2 + λCDD2

]

= 0, (33)

∂Veff

∂D
= TB2 + λBDDB2 + λCDC2D = 0, (34)

and

∂Veff

∂µe

= 0,
∂Veff

∂µ8
= 0,

∂Veff

∂∆
= 0. (35)

We can expand µe, µ8, and ∆ around B = C = D = 0,

µe = µ̄e + ξe, (36)

µ8 = µ̄8 + ξ8, (37)

∆ = ∆̄ + ξ∆, (38)

where the bar-quantities are the 2SC solution, when B = C = D = 0.
Let us assume that the origin (bifurcation point) of the solution with nonzero B, C, and D corresponds to a

second order phase transition (as will become clear in a moment, this assumption is self-consistent). Then, taking an
infinitesimally small B near the critical point, we easily find that

ξe, ξ8, ξ∆ ∼ O(B2). (39)
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It implies that the difference of V∆ in the new solution and that in the 2SC one is

V∆(∆
sol, µsol

e , µsol
8 )− V∆(∆̄, µ̄e, µ̄8) ∼ O(B4). (40)

This fact will be useful in our analysis below.
From Eqs. (32)–(34), we find that when the 2SC solution becomes unstable (M2

B < 0), a new solution occurs, if
the parameters λBC and λCD satisfy

λBC > 0, λCD < 0 (41)

(in the next section, it will be shown that this constraint is satisfied indeed). The new solution is:

Bsol =
−M2

B

3|T |

√

−λCD

λBC

, Csol =

√

−M2
B

3λBC

, Dsol =
−M2

B

3T
, (42)

where we neglected higher order terms of M2
B. In Eq. (42) the conventions B > 0 and C > 0 are chosen.

Near the critical point M2
B = 0, the solution behaves as

Bsol ∝ −M2
B, Csol ∝

√

−M2
B, Dsol ∝ −M2

B. (43)

These scaling relations are quite remarkable. While the scaling relation for C is of engineering type, those for B and
D are not (the origin of this is of course in the presence of the dimensional coefficient T in Eq. (42)). Such a scaling
behavior implies that the B4 and B2D2 terms in the effective potential are irrelevant near the critical point M2

B = 0.
Omitting them, we arrive at the reduced effective potential:

Ṽeff = V∆ +
1

2
M2

BB
2 + TDB2 +

1

2
λBCB

2C2 +
1

2
λCDC2D2. (44)

Notice that (Ṽeff − V∆) ∼ O(B3). This fact and Eq. (40) imply that in the leading approximation one can use the
bar-quantities, defined in Eqs. (36)-(38), in calculating V∆, M

2
B, T , λBC , and λCD in the reduced potential. In other

words, the effective potential can be decomposed into the “constant” 2SC part V∆, with frozen fermion parameters,
and the dynamical gluonic part:

Ṽeff → Ṽeff(∆̄, µ̄e, µ̄8;B,C,D) = V∆(∆̄, µ̄e, µ̄8) +
1

2
M2

BB
2 + TDB2 +

1

2
λBCB

2C2 +
1

2
λCDC2D2. (45)

Then Eq. (42) is the exact solution of the potential (45) and the energy density at the stationary point is found as

Ṽeff(∆̄, µ̄e, µ̄8;Bsol, Csol, Dsol) = V∆ +
1

6
M2

BB
2
sol = V∆ − (−M2

B)
3

54T 2

(

−λCD

λBC

)

< V∆. (46)

Therefore the gluonic vacuum is more stable than the 2SC one.
By using the Gauss’s law constraint

TB2 + λCDC2D = 0, (47)

we find the true effective potential without the non-dynamical degree of freedom A
(3)
0 :

Ṽ Gauss
eff = V∆ +

1

2
M2

BB
2 +

1

2
λBCB

2C2 − T 2B4

2λCDC2
. (48)

It is easy to show that solution (42) is a minimum by analyzing the curvature of Ṽ Gauss
eff .

In the next section, we will calculate M2
B, T , λBC , and λCD. In particular, it will be shown that constraint (41) is

satisfied near the critical point.
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IV. DYNAMICS IN ONE-LOOP APPROXIMATION

In this section, we determine the GL effective potential (45) in one-loop approximation and determine the dispersion
relations for quarks in the gluonic phase. The 2SC V∆ part of the potential is known [7],

V∆(∆, µe, µ8) =
∆2

4G∆
− µ4

e

12π2
− µ4

ub

12π2
− µ4

db

12π2
− µ̃4

3π2

−∆2

π2

[

µ̃2 − 1

4
∆2

]

ln
4Λ2

∆2
− ∆2

π2

[

Λ2 − 2µ̃2 +
1

8
∆2

]

, (δµ < ∆). (49)

Here Λ is the ultraviolet cutoff in the NJL model and µub, µdb, and µ̃ are given in Eqs. (4) and (5). For clarity of
the presentation, the bars in ∆, µe and µ8 were omitted (O(µ̃2/Λ2) and O(∆2/Λ2) and higher terms are neglected in
this expression). Note that the color and electrical charge neutrality conditions in the 2SC solution yield [7]

δµ =
3

10
µ− 1

5
µ8, (50)

and

(µ̃2 + δµ2)µ8 = −µ̃∆2

(

ln
2Λ

∆
− 1

)

+ µ̃(δµ2 + µ2
8)−

1

3
µ3
8, (51)

which is consistent with the result of Ref. [5], µ8 ∼ O(∆2/µ), in the case of δµ = 0. The size of ∆ is essentially
determined by tuning the NJL coupling constant G∆ and cutoff Λ.
After straightforward but tedious calculations of relevant one-loop diagrams from the fermion determinant in

Eq. (13), we find the following relations in the region δµ < ∆:

M2
B = −µ2

8

g2
+

µ̃2

6π2

(

1− 2δµ2

∆2

)

, (52)

λBC =
1

80π2

µ̃2

∆2

[

−1 + 8
δµ2

∆2

(

1− δµ2

∆2

)]

, (53)

λCD = − 1

g2
− 1

18π2

µ̃2

∆2
, (54)

T =
µ8

2g2
+

µ8

24π2

µ̃2

∆2

(

−1 + 8
δµ4

∆4

)

+
µ̃

48π2

(

−1 + 4
δµ2

∆2
+ 8

δµ4

∆4

)

. (55)

Here the tree contribution of gluons

Vg ≡ −Lg = −1

2
F

(α)
0j F

(α)
0j = − 1

2g2
µ2
8B

2 +
1

2g2
µ8DB2 − 1

8g2
B2D2 − 1

2g2
C2D2 (56)

was also taken into account.
We see that the coefficient λCD is definitely negative. The parameter M2

B, which is expressed through the Meissner
mass (14), is negative when

δµ > δµcr, δµcr =
∆√
2

√

1− 3π

2αs

µ2
8

µ̃2
, αs ≡

g2

4π
. (57)

Relation (50) and Eq. (5) yield

µ̃ =
9

10
µ+

2

5
µ8, (58)
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and, at the critical point, we find from Eqs. (50), (51) and (57), (58) that µ8 is approximately

µ8 =
3− ln 200Λ2

9µ2

12 + 4
9

(

ln 200Λ2

9µ2 − 2
) µ. (59)

For realistic values Λ = (1.5− 2.0)µ and αs = 0.75− 1.0, we obtain numerically

3π

2αs

µ2
8

µ̃2
= 0.03–0.1 . (60)

This implies that the tree gluon contribution decreases the value of δµcr by 1.5%–5% in comparison to its value in the
(non-gauged) NJL model. The smallness of this correction is in accordance with the dominance of hard-dense-loop
diagrams.
Let us now turn to the coefficient λBC (53). At the critical point δµ = δµcr, it is:

λBC =
1

80π2

µ̃2

∆2

(

1− 9π2

2α2
s

µ4
8

µ̃4

)

. (61)

Because the µ4
8/µ̃

4-term is negligibly small, we conclude that the coefficient λBC is positive near the critical point.
Thus, constraint (41) is satisfied indeed.
Utilizing Eqs. (52)–(55) in Eq. (42), one can obtain the solutions for B, C, and D in the near-critical region. Indeed,

neglecting higher order terms in µ8/µ in (52)–(55), we get the approximate relations

M2
B ≃ µ̃2

6π2

(

1− δµ2

δµ2
cr

)

, λBC ≃ 9

160π2
, λCD ≃ − 1

4παs

− 1

4π2
, T ≃ µ̃

16π2
+

µ8

16π2

(

3 +
2π

αs

)

, (62)

which lead us to the near-critical solution:

Bsol =
δµ2 − δµ2

cr

δµ2
cr

16 µ̃

√

10
(

1 + π
αs

)

27
[

1 + µ8

µ̃

(

3 + 2π
αs

) ] , (63)

Csol =

√

δµ2 − δµ2
cr

δµcr

4
√
5 µ̃

9
, (64)

Dsol =
δµ2 − δµ2

cr

δµ2
cr

8 µ̃

9
[

1 + µ8

µ̃

(

3 + 2π
αs

) ] . (65)

It is noticeable that this solution describes nonzero field strengths F
(α)
µν which correspond to the presence of non-

abelian constant chromoelectric-like condensates in the ground state:

E
(2)
3 = F

(2)
03 =

1

g
CsolDsol , (66)

E
(7)
3 = F

(7)
03 =

1

2g
Bsol ( 2µ8 −Dsol ) . (67)

We emphasize that while an abelian constant electric field in different media always leads to an instability, 1 non-
abelian constant chromoelectric fields do not in many cases: For a thorough discussion of the stability problem for

1 In metallic and superconducting media, such an instability is classical in its origin. In semiconductors and insulators, this instability is
manifested in an creation of electron-hole pairs through a quantum tunneling process.
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constant SU(2) non-abelian fields in theories with zero baryon density, see Ref. [8]. On a technical side, this difference
is connected with that while a vector potential corresponding to a constant abelian electric field depends on spatial
and/or time coordinates, a constant non-abelian chromoelectric field is expressed through constant vector potentials,
as takes place in our case, and therefore momentum and energy are good quantum numbers in the latter.
In order to illustrate the stability issue in the gluonic phase, let us consider the dispersion relations for quarks there.

Because the vacuum expectation values (63)-(65) are small near the critical point and because red and green quarks
are gapped in the 2SC phase, the dispersion relations for gapless blue up and down quarks are of the most interest.
From Eq. (9) we find that up to the first order in B2 they are

p0ub = |~p| − µub +
B2

sol

4

1

2|~p|+ µ8 +
∆2

2µ̃−µ8

− B2
sol

4

(p3)2

~p 2

(

1

2|~p|+ µ8 +
∆2

2µ̃−µ8

+
2(|~p| − µ̃) + µ8

∆2 − µ2
8 − 2µ8(|~p| − µ̃)

)

, (68)

p0db = |~p| − µdb +
B2

sol

4

1

2|~p|+ µ8 +
∆2

2µ̃−µ8

− B2
sol

4

(p3)2

~p 2

(

1

2|~p|+ µ8 +
∆2

2µ̃−µ8

+
2(|~p| − µ̃) + µ8

∆2 − µ2
8 − 2µ8(|~p| − µ̃)

)

. (69)

The B2-terms in Eqs.(68) and (69) lead to non-spherical Fermi surfaces determined by the following equations:

|~p| = µub −
B2

sol sin
2 θ

4

1

2µub + µ8 +
∆2

2µub+µe+µ8

− B2
sol cos

2 θ

4

µe + µ8

∆2 + µ8µe + µ2
8

, (blue up) (70)

|~p| = µdb −
B2

sol sin
2 θ

4

1

2µdb + µ8 +
∆2

2µdb−µe+µ8

+
B2

sol cos
2 θ

4

µe − µ8

∆2 − µ8µe + µ2
8

, (blue down) (71)

where we neglected higher order terms of B2 and defined the angle θ,

p3 ≡ |~p| cos θ. (72)

The dispersion relations (68) and (69) clearly show that there is no instability in the quark sector in this problem.
As to bosonic degrees of freedom (gluons and composite bosons), because it is very involved to derive their derivative

terms from the fermion loop in the gluonic phase, this issue is beyond the scope of this letter. It is however noticeable
that there are no instabilities for bosons in a phase with vector condensates in the gauged σ-model with a chemical
potential for hypercharge [3]. Although that model is much simpler than the present one, its phase with vector
condensates has many common features with the gluonic phase and this fact is encouraging.
We emphasize that these constant color condensates in the gluonic phase do not produce long range color forces

acting on quasiparticles. This can be seen from the dispersion relations (68) and (69) for quarks in this model. They
show that momentum and energy are conserved numbers. It would be of course impossible in the presence of long
range forces. The role of these condensates is actually more dramatic: They change the structure of the ground
state, making it anisotropic and (electrically) superconducting. Only in this sense, one can speak about a long range
character of the condensates.

V. MORE ABOUT DYNAMICS IN THE GLUONIC PHASE

In this section, we will describe some additional features of the gluonic phase. In particular, we will point out that
a condensation of exotic vector mesons takes place in this dense medium.
The gluonic vector condensates are mostly generated at energy scales between the confinement scale in the 2SC

state, which is <∼ 10 MeV, and the baryon chemical potential, which is about 300-500 MeV. It is the same region
where the chromomagnetic instability in the 2SC phase is created and where the hard dense loop approximation is
(at least qualitatively) reliable. At such scales, gluons are still appropriate dynamical degrees of freedom and utilizing
the Higgs approach with color condensates in a particular gauge is appropriate and consistent: It is a region of hard
physics. Because the gluonic phase occurs as a result of a conventional second order phase transition, the vector
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condensates are very small only in the immediate surroundings of the critical point δµ = ∆/
√
2. Outside that region,

their values should be of the order of the typical scale δµ ∼ ∆ ∼ 100 MeV.
These condensates represent hard dynamics connected with the appearance of a new parameter, chemical potential

for the electric charge µe ∼ 100 MeV. As a result, the SU(2)c gauge symmetry becomes completely broken and the
strong coupling (confinement) dynamics presented in the 2SC solution at the scale of order 10 MeV is washed out.
In other words, a conventional Higgs mechanism is realized in the gluonic phase. In this respect, the gluonic phase
is similar to the color-flavor locked (CFL) phase, where the constant color condensates (although not vector ones)
completely break the SU(3)c color gauge symmetry [1].

It is easy to check that the electric charge ˜̃Q and the baryon number ˜̃B introduced in Section 3 are integer both
for gluons and quarks. Do they describe hadronic-like excitations? We believe that the answer is “yes”. The point
is that in models like this one, with a Higgs field in the fundamental representation of the gauge group, there is no
phase transition between Higgs and confinement phases [9]. These two phases provide dual, and physically equivalent,
descriptions of dynamics (the complementarity principle). In particular, they provide two complementary descriptions
of a spontaneous breakdown of global symmetries, such as the rotational SO(3) and the electromagnetic U(1) in the
present case. Following Ref. [9], one can apply the dual gauge invariant approach in this model and show that all the
gluonic and quark fields can be replaced by colorless composite fields. The flavor numbers of these fields are described

by the conventional electric and baryon charges Q and B. They are integer and coincide with those the operators ˜̃Q

and ˜̃B yield for gluonic and quark fields.
While these issues will be considered in more detail elsewhere, here we would like to point out the following

noticeable feature of these states: some of them are exotic. For example, the electric and baryon charges ˜̃Q and ˜̃B of

A
(+)
µ = A

(1)
µ + iA

(2)
µ gluons are equal to +1 and +2, respectively. Because A

(+)
3 gluons are condensed in the gluonic

phase, we conclude that in the dual gauge invariant description this corresponds to a condensation of exotic vector
mesons. In this regard, it is appropriate to mention that some authors speculated about a possibility of a condensation
of vector ρ mesons in dense baryon matter [10]. The dynamics in the gluonic phase yield a scenario even with a more
unexpected condensation.

VI. SUMMARY AND DISCUSSIONS

The gluonic phase whose existence was shown in this paper is very different from all known phases in dense quark
matter discussed in the literature. Also, to the best of our knowledge, no phase like that has been considered in
condensed matter physics. One of its features is the presence of non-abelian constant chromoelectric condensates in
the ground state. They make the dynamics of the gluonic phase to be manifestly non-abelian. 2

Because most of the initial symmetries in this system (including the rotational SO(3)rot and the electromagnetic
U(1)) are spontaneously broken, the spectrum of excitations in the gluonic phase should be very rich. In particular,
there should be two gapless Nambu-Goldstone (NG) modes connected with the two broken generators of the rotational
group and one NG mode corresponding to the broken electric charge (the latter mode will be absorbed into photon field
neglected in our model). 3 Another interesting feature of the gluonic phase is that there are excitations corresponding
to exotic hadrons. We are planning to return to this issue elsewhere.
The solution (63)–(65) described in this paper corresponds to a minimum of the effective potential. Whether or

not this minimum is global is an open question. We suspect that there may exist a class of solutions with vector
condensates. In this regard, it is instructive to describe the Larkin–Ovchinnikov–Fulde–Ferrell (LOFF) phase [12]
from this point of view. It is easy to show that the LOFF solution with one plane wave along, say, third spatial
coordinate can be gauge transformed into a solution with a usual (homogeneous) diquark condensate and a vector

2 The role of constant chromomagnetic non-abelian fields in the dynamics of color superconductivity was studied in Ref. [11]. It was shown
that they could enhance the value of a diquark condensate. Unlike the gluonic phase, where non-abelian chromoelectric condensates are
solutions of dynamical equations, the chromomagnetic fields in [11] are external.

3 The spectrum of excitations in the gauged σ-model with hypercharge chemical potential [3], where vector condensates also occur, strongly
supports these expectations.
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condensate 〈A(8)
3 〉. [Note that there is no such a transformation in the case of the LOFF solution with two or more

plane waves [13].] Unlike the present gluonic solution, there are no non-abelian chromoelectric condensates in that
case, and, therefore, the LOFF dynamics is not genuinely non-abelian. Still, because the LOFF solution has been
recently used to cure a chromomagnetic instability in the neutral 2SC phase [14], it would be worth to study a

possibility of extending the present solution by including the VEV 〈A(8)
3 〉. 4

Last but not least, it would be interesting to check the possibility of the existence of a gluonic phase in three-flavor
dense quark matter. It is especially interesting because a chromomagnetic instability has been recently revealed also
in that case [16].
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