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Abstract

We make use of the chiral two–loop representation of the πK scattering amplitude
[J. Bijnens, P. Dhonte and P. Talavera, JHEP 0405 (2004) 036] to investigate the
isospin odd scattering length at next-to-next-to-leading order in the SU(3) expan-
sion. This scattering length is protected against contributions of ms in the chiral
expansion, in the sense that the corrections to the current algebra result are of or-
der M2

π . In view of the planned lifetime measurement on πK atoms at CERN it is
important to understand the size of these corrections.
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1 Introduction

In the sixties and seventies a set of experiments was performed on πK scat-
tering [1]. To obtain predictions for the low–energy parameters, the measured
πK phases had to be extrapolated using dispersion relations and crossing
symmetry [2], since the region of interest is not directly accessible by scat-
tering experiments. The most precise values for the πK scattering lengths
were obtained only recently from an analysis of Roy-Steiner equations [3,4].
Alternatively, particular combinations of πK scattering lengths may be ex-
tracted from experiments on πK atoms [5,6,7]. The πK atom decays due to
the strong interactions into π0K0 and a lifetime measurement will allow one to
determine the isospin odd S-wave πK scattering length a−0 = 1/3(a

1/2
0 − a

3/2
0 ).

Such a measurement is planned at CERN [8]. Particularly interesting about
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the isospin odd πK scattering length is that there exists a low–energy the-
orem due to Roessl [9]. Based on SU(2) chiral perturbation theory (CHPT)
[9,10,11,12], where the strange quark mass is treated as a heavy partner, it is
valid to all orders in powers of ms. It states that Weinberg’s current algebra
result [13,14] receives corrections of order M2

π only,

a−0 =
MπMK

8πF 2
π (Mπ +MK)

{

1 +O(M2
π)

}

. (1)

Here Mπ, MK and Fπ denote the physical meson masses and the physical
pion decay constant. In view of this low–energy theorem, one would expect
higher order corrections to the scattering length to be relatively small. These
days, the πK scattering amplitude is available at next-to-next-to-leading order
[15,16,17,18] in SU(3) CHPT [19]. The one–loop corrections [15,16,17] to a−0
turn out as expected, they change the current algebra value at the 11% percent
level. Surprisingly, for the two–loop corrections this seems not to be the case.
According to the numerical study performed in Ref. [18], the scattering length
a−0 receives at order p6 a 14% correction. The aim of the present article is
to understand the nature of these rather substantial contributions at two–
loop order. Other recent work on πK scattering makes use of resonance chiral
Lagrangian predictions [20] together with resummations [21]. There were also
earlier attempts at unitarisation of current algebra for this process, see Ref.
[22] and references therein.

We use the chiral two–loop representation for the πK amplitude [18] to inves-
tigate the order p6 corrections to a−0 . In Section 2, we extract the contributions
from the low–energy constants and determine the double chiral logs as well
as the log×Lr

i terms by means of the renormalization group equations for the
renormalized coupling constants [23]. Further, we specify the 1-loop×Lr

i terms
in an expansion in powers of Mπ/MK. The numerical analysis is carried out in
Section 3 and the results for the partial two–loop contributions are collected
in Table 2.

2 ‘Low cost’ terms at two–loop order

The SU(3) chiral expansion of the isospin odd πK scattering length looks as
follows

a−0 =
MπMK

8πF 2
π (Mπ +MK)

{

1 + δ(2) + δ(4) +O(p6)
}

, (2)

where O(p6) = {m̂3, m̂2ms, m̂m2
s}. The scattering length is expressed in terms

of the physical meson massesMπ andMK and the physical pion decay constant
Fπ [24]. The next-to-leading order contribution δ(2) [16,17] depends on one
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single low–energy constant Lr
5 [19] only,

δ(2) =
M2

π

32π2F 2
π

[

256π2Lr
5 − 3 ln

M2
K

µ2
− 3(2M2

K
−M2

π)

M2
K
−M2

π

ln
M2

π

M2
K

− 4M2
K
−M2

π

2(M2
K
−M2

π)
ln

4M2
K
−M2

π

3M2
π

]

+
MπMK

3F 2
π

×
[

J̄(sthr,M
2
K
, 1
3
(4M2

K
−M2

π))− J̄(uthr,M
2
K
, 1
3
(4M2

K
−M2

π))
]

, (3)

where sthr = (Mπ +MK)
2, uthr = (MK −Mπ)

2 and the function J̄ is defined
as follows

J̄(p2, m2
1, m

2
2) = J(p2, m2

1, m
2
2)− J(0, m2

1, m
2
2),

J(p2, m2
1, m

2
2) = −i

∫

ddq

(2π)d
(m2

1 − q2)−1(m2
2 − (p+ q)2)−1. (4)

Note that at the order considered it makes a difference whether we represent
δ(2) as a function of the physical pion, kaon and η masses or express one of
them through the other two 1 . In Eq. (3), we choose to describe δ(2) in terms
of the physical pion and kaon mass only, because this ensures that both δ(2)

and δ(4) are independently scale invariant.

The two–loop order correction can be decomposed as

δ(4) = δ
(4)
Li=Ci=0 + δ

(4)
1−loopLi

+ δ
(4)
LiLj

+ δ
(4)
Ci
. (5)

The first term contains the two–loop functions, the second one–loop functions
with insertions of O(p4) coupling constants and the last two terms consist

of counter term contributions. Some of the two–loop functions in δ
(4)
Li=Ci=0

are very demanding to analyze analytically. For the moment, we thus restrict
ourselves to the chiral double logs,

δ
(4)
Li=Ci=0 = δ

(4)

log2
+ δ(4)rem, (6)

and neglect the remainder δ(4)rem which is given numerically in Table 2. In a
first step, we extract the contributions from the p6 low–energy constants (Cr

i )
[23,25] from the representation of the πK scattering amplitude in Ref. [18],

δ
(4)
Ci

=
16M2

π

F 2
π

[

−2M2
K
(Cr

1 − 2Cr
3 − 4Cr

4 − Cr
14 − Cr

15 + 2Cr
22

−2Cr
25 − Cr

26 + 2Cr
29) +M2

π (C
r
15 + 2Cr

17)
]

, (7)

1 This will generate a correction proportional to ∆GMO ≡ (4M2
K − M2

π −
3M2

η )/(M
2
η −M2

π) [19] which contributes to δ(4).
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as well as products of two p4 constants (Lr
i × Lr

j),

δ
(4)
LiLj

=
64M2

πL
r
5

F 4
π

{

M2
K
[2(Lr

4 − 2Lr
6)− Lr

5] +M2
π [L

r
4 − 2Lr

6 + 2(Lr
5 − Lr

8)]
}

.

(8)
In order to determine the chiral double logs and the log×Lr

i terms, we consider
the renormalization group equations of the renormalized order p4 and p6 low–
energy constants [23],

µ
dLr

i (µ)

dµ
= − 1

(4π)2
Γi, µ

dCr
i (µ)

dµ
=

1

(4π)2

[

2Γ
(1)
i + Γ

(L)
i (µ)

]

. (9)

The coefficients Γ
(L)
i are linear combinations of p4 constants which satisfy the

following differential equations,

µ
dΓ

(L)
i (µ)

dµ
= −Γ

(2)
i

8π2
, (10)

in accordance with Weinberg’s consistency conditions [10]. The coefficients

Γ
(1)
i , Γ

(2)
i and Γ

(L)
i (µ) are listed in Table II of Ref. [23]. The solutions of the

renormalization group equations read [26]

Lr
i (µ) = Lr

i (µ0)−
Γi

2
L(µ/µ0),

Cr
i (µ) = Cr

i (µ0)−
1

4
Γ
(2)
i L(µ/µ0)

2 +
1

2

[

2Γ
(1)
i + Γ

(L)
i (µ0)

]

L(µ/µ0), (11)

with the chiral logarithm

L(µ/µ0) =
1

(4π)2
ln

µ2

µ2
0

. (12)

As a two–loop order quantity δ(4) consists of

δ(4) = â(µ) +
∑

i

biC
r
i (µ) +

∑

i,j

bijL
r
i (µ)L

r
j(µ), (13)

where â(µ) is scale dependent and contains one–loop functions with insertions
of p4 constants as well as two–loop functions. In order to extract the dou-
ble log and log × Lr

i contributions from â(µ), we insert the solutions for the
renormalized coupling constants into the latter equation,

δ(4) = â(µ0) +
∑

i

biC
r
i (µ0) +

∑

i,j

bijL
r
i (µ0)L

r
j(µ0),

â(µ0) = â(µ)− 1

4
L(µ/µ0)

2
[

biΓ
(2)
i − bijΓiΓj

]

+
1

2
L(µ/µ0)

[

bi
(

2Γ
(1)
i + Γ

(L)
i (µ0)

)

− 2bijΓiL
r
j(µ0)

]

. (14)
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Now, the scale dependence of â(µ0) becomes apparent and we may read off
the wanted log2 and log×Lr

i terms. The solutions of the renormalization group
equations thus allow us to determine the double log and log×Lr

i contributions
from Eqs. (7) and (8).

The double chiral logs (log2) amount to

δ
(4)

log2
=

M2
π

F 4
π

[

37M2
K

8
+

59M2
π

24

]

L(Mχ/µ)
2, (15)

while the single logarithms times p4 constants (log × Lr
i ) yield

δ
(4)
logLi

=
−2M2

π

3F 4
π

{

M2
K
[84Lr

1 + 114Lr
2 + 53L3 − 96Lr

4 − 28Lr
5

+48 (3Lr
6 + L7 + 2Lr

8)]−M2
π [12L

r
1 + 30Lr

2

+19L3 − 64Lr
5 + 24(2L7 + Lr

8)]}L(Mχ/µ). (16)

Here Mχ stands for a characteristic meson mass.

In the remaining part of this section, we investigate Roessl’s low–energy the-
orem [9] at next-to-next-to-leading order in SU(3) CHPT . More precisely, we
specify the order M2

π and order M4
π corrections to Eq. (1). To approach the

SU(2) chiral expansion, we regard the kaon mass as heavy and expand a−0 in
powers of Mπ/MK ,

a−0 =
MπMK

8πF 2
π (Mπ +MK)

{

1 +M2
πc2 +M4

πc4 +O(M6
π)

}

. (17)

Again, the quantities Mπ, MK and Fπ stand for the physical masses and the
physical pion decay constant [24]. At next-to-leading order in SU(3) CHPT ,
the coefficient c2 depends on Lr

5 [16,17],

c2 |1−loop =
1

F 2
π

{

8Lr
5 −

1

32π2

[

3 ln
M2

K

µ2
+ 4 ln

M2
π

M2
K

]

+
1

144π2

[

−12 + 10
√
2 arctan

√
2− 7 ln

4

3

]}

, (18)

while the one–loop contributions to c4 do not contain any low–energy constants
and can safely be neglected numerically. At next-to-next-to-leading order in
the chiral SU(3) expansion, the contributions from counter terms, double chiral
logs and log×Lr

i terms to the coefficients c2 and c4 are specified in Eqs. (7),
(8), (15) and (16). In addition, we list the expansion of the one–loop functions
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CA SU(2) [9] p4 SU(3) [16] p6 SU(3) [18] Ref. [4]

Mπa
−
0 0.071 0.077 ± 0.003∗ 0.0793 ± 0.0006 0.089 0.090 ± 0.005

Table 1
Isospin odd scattering length a−0 : CA current algebra value, SU(2) prediction [9],
chiral SU(3) prediction at order p4 [16] and order p6 [18], dispersive analysis from
Roy-Steiner equations [4]. *Note that in Ref. [9] Mπ = 137.5 MeV and MK = 495.5
MeV, while all other references use Mπ

.
= Mπ+ and MK

.
= MK+ for the pion and

kaon masses in the isospin symmetry limit.

with insertions of p4 couplings in powers of Mπ/MK. We have

c2 |1−loopLi
=

M2
K

12π2F 4
π

{

−1

2
[84Lr

1 + 114Lr
2 + 53L3 − 96Lr

4 − 28Lr
5

+48 (3Lr
6 + L7 + 2Lr

8)] ln
M2

K

µ2

− 4

27
L3

[

56
√
2 arctan

√
2− 5 ln

4

3

]

− 1

3
[Lr

5 − 6(2L7 + Lr
8)]

[

13
√
2 arctan

√
2 + 2 ln

4

3

]

+ 93Lr
1

+
189

2
Lr
2 +

2045

36
L3 − 16 [Lr

5 + 6(Lr
4 − Lr

6 + L7)]

}

, (19)

and

c4 |1−loopLi
=

1

8π2F 4
π

{

1

3
[12Lr

1 + 30Lr
2 + 19L3 − 64Lr

5

+24(2L7 + Lr
8)] ln

M2
K

µ2
+ 4[8Lr

1 + 12Lr
2 + 6L3 − 8Lr

4

− 9Lr
5 + 6(2Lr

6 + Lr
8)] ln

M2
π

M2
K

−
√
2

8

[

1840

81
L3 −

1415

18
Lr
5

+ 45(2L7 + Lr
8)

]

arctan
√
2 +

4

9

[

2

9
L3 − 17Lr

5

+ 18(2L7 + Lr
8)

]

ln
4

3
− 1

4

[

8Lr
1 + 4Lr

2 −
410

27
L3

+
323

6
Lr
5 − 67(2L7 + Lr

8)
]

}

, (20)

where we have checked that the log×Lr
i terms agree with Eq. (16). Here both

the contributions to M2
πc2 and M4

πc4 are numerically sizeable, see Table 2.
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a δ
(4)
a M2

πc2 |a M4
πc4 |a β |a

Li = Ci = 0 0.05⋆ - - -

log2 0.010 0.010 0.0004 3.7

1-loopLi 0.013 0.007 0.006 2.9

LiLj −0.004 −0.004 0.0002 −1.5

Ci 0.08† 0.08 0 30.6

rem 0.04 - - -

Table 2
Numerical results for the p6 contributions at the scale µ = 770 MeV: ⋆ pure loop
contributions and † resonance estimate are taken from Ref. [18]. The notation is
understood as in Eq. (5). For instance the contributions of the 1-loop×Lr

i terms to

δ(4) is given by δ
(4)
1−loopLi

= 0.013.

3 Numerical analysis

In the following, we present the numerical results for the partial p6 corrections
to δ(4). The pion and kaon mass in the isospin symmetry limit are identified
with their charged masses Mπ

.
= Mπ+ and MK

.
= MK+ . To be consistent

with the numerical analysis performed in Ref. [18], we use for the pion decay
constant 2 Fπ = 92.4 MeV. In Table 1, we list the various numerical results for
a−0 available in the literature. The first row contains the current algebra value,
the next number is the SU(2) prediction at next-to-leading order [9], row three
and four display the order p4 [16] and order p6 [18] SU(3) predictions and the
last value is based on a phenomenological analysis from Roy-Steiner equations
[4]. As can be read off, the SU(3) prediction at order p6 is in good agreement
with the Roy-Steiner value. The SU(3) chiral expansion of the scattering length
a−0 looks as follows

8πF 2
π (Mπ +MK)

MKMπ
a−0 = 1 + δ(2) + δ(4) + · · ·

= 1 + 0.11 + 0.14 + · · · (21)

The one–loop contribution δ(2) changes the current algebra result at the 11%
level, while the two–loop contributions δ(4) amount to a 14% correction. The
aim was to understand this rather large order p6 correction and our insights are
collected in Table 2 which contains a splitting up of the various contributions
at two–loop order.

For the low–energy constants Lr
i at the scale µ = 770 MeV (Mρ), we use fit

2 Recently, a new value was obtained Fπ = 92.2 ± 0.2 MeV [27].
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Li = Ci = 0 1-loopLi LiLj Ci

∆δ
(4)
a −0.03 0.02 −0.01 0.02

Table 3
Variations of the partial p6 contributions to δ(4) for Mη ≤ µ ≤ 770MeV (Mρ). More

precisely, we display the difference ∆δ
(4)
a = δ

(4)
a |µ=Mη −δ

(4)
a |µ=Mρ . For the notation,

see Table 2.

10 of Ref. [28]. The double chiral logs are evaluated for a characteristic meson
mass 3 Mχ = MK and the size of the remainder δ(4)rem is estimated by the use of
Eq. (6). Row two and three of Table 2 contain the partial order p6 corrections
to the coefficients c2 and c4, respectively. Note that for the double chiral logs
as well as for the products of p4 constants their contribution to c4 can be
neglected while for the one–loop functions with insertions of Lr

i ’s, both M2
πc2

and M4
πc4 are numerically sizeable. The enhancement of the coefficient c4 is

mainly due the contributions proportional to lnMπ/MK, see Eq. (20).

As one can read off from Table 2, more than half of the contributions to
δ(4) = 0.14 stem from the resonance estimate for the p6 constants which in-
cludes effects of the lowest-lying vector and scalar resonances [18]. We checked
that with this procedure the meson resonance exchange contributions to Cr

15

and Cr
17 vanish which implies that c4 |Ci

is equal to zero. Further, for the
combination of p6 constants occurring in c2 |Ci

, the contributions from scalar
resonances do not play a dominant role: They amount to 0.03 of the 0.08
generated by the Cr

i ’s in total. It would be instructive to see whether these
features persist in an improved estimate for the p6 constants which respects
the constraints that follow by imposing the proper asymptotic behaviour for
massless QCD [29].

The splitting of the order p6 contributions in Table 2 is scale dependent.
Table 3 displays the scale dependence of the various contributions to δ(4).
The values for the 1-loop×Lr

i , L
r
i × Lr

j and Cr
i terms at the scales µ = 770

MeV and µ = Mη allow us to read off the scale dependence of the pure loop

contributions δ
(4)
Li=Ci=0.

Finally, we sum up the various SU(3) one- and two–loop contributions to c2
and c4 and get for the expansion of a−0 in powers of Mπ/MK,

8πF 2
π (Mπ +MK)

MπMK

a−0 = 1 +M2
πc2 +M4

πc4 + · · ·

= 1 + 0.2 + 0.01 + δ(4)rem + · · · (22)

3 The choice Mχ =
√
MπMK leads to an unnatural large number for the double logs

δ
(4)

log2
= 0.058, to be compared with the full pure loop corrections δ

(4)
Li=Ci=0 = 0.05

[18]. For Mχ = Mπ the value becomes even more unreasonable.
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Note that this decomposition is valid up to the contribution of δ(4)rem = 0.04
only. Compared to the chiral SU(3) expansion in Eq. (21), the series inMπ/MK

converges much more rapidly. The correction M2
πc2 consists of

M2
πc2 =

M2
π

(4πFπ)2

[

α+
M2

K

(4πFπ)2
β + · · ·

]

, (23)

where the coefficients α and β contain the one–loop and two–loop contribu-
tions, respectively. Numerically, we have α = 7.6, where the dominant part
stems from the term proportional to lnMπ/MK in Eq. (18). The contributions
from double logs, 1-loop×Li terms and p6 constants to β are listed in Table
2. Here the bulk part comes from the resonance estimate for the p6 constants
[18].

4 Conclusions

In the present work, we used the chiral two–loop representation for the πK
amplitude available in the literature [18] to investigate the isospin odd S-
wave scattering length a−0 . This scattering length differs from other low–energy
parameters in πK scattering in the sense that contributions of ms in the chiral
expansion are suppressed by powers of m̂. Based on SU(2) CHPT [9], there
exists a low–energy theorem (1) which states that the current algebra result
for a−0 receives corrections of order M2

π only. It was therefore expected that
the one–loop result [15,16,17] in SU(3) CHPT represents a decent estimate
for the scattering length. However, the dispersive analysis from Roy-Steiner
equations [4] and the chiral two–loop calculation [18] are not in agreement
with this expectation. In fact, the numerical analysis performed in Ref. [18]
showed that the two–loop order corrections to a−0 are of the same order of
magnitude as the one–loop contributions.

In order to understand this rather substantial next-to-next-to-leading order
correction, we determined analytically the contributions containing p6 con-
stants (7), products of two p4 constants (8), double chiral logs (15) and single
logarithms times p4 constants (16). We further expanded the one–loop func-
tions with insertions of p4 constants in powers of Mπ/MK, see Eqs. (19) and
(20). The expansion of the pure two–loop functions in powers of Mπ/MK was
beyond the scope of this work. The numerical values of the partial p6 contri-
butions are collected in Table 2.

In the remaining part of this work, we investigated the low–energy theorem
for a−0 at next-to-next-to-leading order in the SU(3) expansion. While it is
true that the corrections are of order M2

π , the chiral expansion of the accom-
panying coefficient proceeds in powers of MK and is not protected against

9



sizeable contributions. At two–loop accuracy in the SU(3) expansion, the or-
der M2

π correction roughly amounts to about 20%, see Eq. (22). Note that
this number depends on the resonance estimate [18] for the p6 constants. If
we compare this result with Roessl’s value [9], the SU(2) prediction for the
scattering length a−0 seems to be underestimated. At first surprisingly, we have
to keep in mind that the numerical estimates for the low–energy constants in
SU(2) CHPTwere obtained through matching the scattering amplitude with
the corresponding SU(3) CHPTresult at one–loop order. It would be very in-
teresting to estimate these low–energy constants using a resonance saturation
approach in the context of SU(2) CHPT with strangeness number 1.
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