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Abstract

A complete basis for the next-to-next-to leading order heavy-to-light currents in the soft-collinear

effective theory is constructed. Reparameterization invariance is imposed by deriving constraint

equations. Their solutions give the set of allowed Dirac structures as well as relations between the

Wilson coefficients of operators that appear at different orders in the power expansion. The com-

pleteness of reparameterization invariance constraints derived on a projected surface is investigated.

We also discuss the universality of the ultrasoft Wilson line with boundary conditions.
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I. INTRODUCTION

The soft-collinear effective theory (SCET) provides a systematic approach for separating
hard, soft, and collinear dynamics in processes with energetic quarks and gluons [1, 2, 3, 4].

In SCET the infrared physics is described by effective theory fields with well defined mo-
mentum scaling, which are used to build operators order by order in the power expansion.

The hard perturbative corrections are contained in the Wilson coefficients which can be
computed by matching computations order by order in perturbation theory in αs. The sym-

metries and power counting in the effective theory simplify the derivation of factorization
theorems and provide a systematic method of treating power suppressed contributions. The

construction of the complete set of allowed operators for a process is one of the first steps to-
wards deriving factorization theorems. The operators are constrained by gauge symmetry in

the effective theory, as well as by heavy quark effective theory (HQET) and SCET reparam-

eterization invariance (RPI) [5, 6, 7]. The operators and Wilson coefficients are typically
coupled by a convolution integral over the large momenta of gauge invariant products of

collinear fields. In some cases perturbative matching computations are not necessary, since
RPI gives relations between Wilson coefficients that are valid to all orders in perturbation

theory.
Heavy-to-light currents, J = q̄Γb, are important for describing a broad range of processes

with SCET, including both inclusive semileptonic and radiative decays like B → Xuℓν̄ and
B → Xsγ [1, 2, 4, 8, 9, 10, 11, 12, 13, 14], exclusive semileptonic and radiative decays such

as B → πℓν̄ and B → K∗γ [2, 6, 15, 16, 17, 18, 19, 20, 21, 22], and exclusive hadronic
decays like B → ππ [23, 24, 25, 26].

Here we will consider higher order RPI relations for heavy-to-light currents in a theory
SCETI with ultrasoft (usoft) and collinear fields. Any momentum can be decomposed as

pµ = n·p n̄µ/2+ n̄·pnµ/2+pµ⊥, where nµ, n̄µ are two light-cone vectors satisfying n2 = n̄2 = 0
and n · n̄ = 2. The vector nµ appears as a label for the collinear quarks ξn and gluons

Aµ
n, and the quantum fluctuations described by these fields are predominately about this

direction. The collinear modes have momentum scaling as (n · p, n̄ · p, p⊥) ∼ Q(λ2, 1, λ).
The usoft modes qus, A

µ
us have momenta pµus ∼ Qλ2. We also use HQET usoft fields hv for

heavy quarks, where vµ is a velocity label vector with v2 = 1 (see for example [27, 28]). The
mass of the heavy quark is denoted by m, Q is a hard energy scale ∼ m, and λ ≪ 1 is the

SCET expansion parameter. The auxiliary vectors n, n̄ and v break part of the full Lorentz
symmetry of QCD, and this symmetry is restored order by order in the power counting by

reparameterization invariance under changes in these parameters. For processes involving
heavy-to-light currents it is often convenient to work in the special frame where v⊥ = 0, so

that vµ = n̄·v nµ/2 + n·v n̄µ/2 and n·v n̄·v = 1.
In HQET it is convenient to formulate the RPI constraints [5] to all orders in 1/m by

constructing RPI invariant operators and then expanding them to generate a chain of related
operators. These operators start at some fixed order in 1/m, but once the RPI invariant

form of this operator is known, all higher terms in the chain are determined. The RPI
symmetries in SCET are richer and typically the constraints are derived order by order

in λ. In this case, higher order operators in the chain are not fully determined until the

appropriate order in λ is considered.
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Reparamaterization invariance constraints in SCET were first considered by Chay and

Kim [6]. The complete set of SCET RPI transformations were formulated in Ref. [7] and
used to prove that the leading order (LO) SCET Lagrangian is not renormalized to all

orders in perturbation theory. RPI constraints on subleading Lagrangians and tree level
currents to O(λ2) were derived in Ref. [15] (and verified in [10] for a basis with v⊥ 6= 0).

At O(λ), the extension to a complete set of heavy-to-light currents constrained by RPI
relations including currents that appear beyond tree-level was made in Ref. [17]. At this

order, all Wilson coefficients are constrained by RPI except for one scalar, four vector, and
six tensor currents, for which the one-loop matching was done in Ref. [29] and independently

in Ref. [30]. For the currents that survive for v⊥ = 0 the O(λ), RPI relations were verified
in Ref. [31]. To simplify the computation, they considered constraints restricted to the

projected v⊥ = 0 surface (from the RPI-⋆ transformation defined later) since this involves
writing down fewer operators. At O(λ2), the allowed set of field structures for the heavy-

to-light currents was determined in Ref. [12]. Four quark operator currents first appear at
this order.1 Recently the type-II RPI invariance was extended to include light quark mass

effects and provide constraints on certain mq dependent operators [14]. For heavy-to-light

currents at O(λ2) a complete basis of Dirac structures and the full set of RPI relations have
not yet been constructed.

In constructing subleading operators we combine objects that are individually collinear
and usoft gauge invariant. The logic which ensures that all subleading operators can be

organized in terms of these objects relies on the decoupling of usoft gluons from the leading
order collinear Lagrangian by a field redefinition involving a Wilson line Y [4]. In section IIB

we show that all results are independent of the choice of boundary condition for this Wilson
line. Processes described by SCET can depend on the path of Wilson lines, but this path is

determined independent of the choice of boundary condition.
Our main objective in this paper is to to derive the complete basis of currents at O(λ2)

by constructing a basis that is valid at any order in perturbation theory and including all
RPI relations. Results are derived for use in the v⊥ = 0 frame (and we take mq = 0 in all

currents). Two combinations of {SCET RPI-I, SCET RPI-II, HQET RPI} are formed which
leave v⊥ = 0, and are called RPI-⋆ and RPI-$ (section IIC). We call these transformations

on the surface v⊥ = 0 “projected RPI relations” and study their completeness in the full

space of allowed transformations in section IID. For the O(λ2) heavy-to-light currents, we
show that transformations on the projected surface give the complete set of relations for

currents defined on this surface (see section IIID). By eliminating the field operators we
show that it is convenient to consider the RPI relations as constraint equations of the form

∑

i,k

Bi(ωk) Γ
B
i =

∑

j,ℓ

Cj(ωℓ) Γ
C
j , (1)

where Bi and ΓB
i are Wilson coefficients and Dirac structures for operators that appear at

some fixed order in λ, and Cj and ΓC
i are terms that appeared in operators from lower orders.

By deriving these constraint equations in section IIIB prior to searching for their solutions,

1 In the most common decomposition the Wilson coefficients of the four quark operators start at O(α2
s), so

these operators are not needed if the basis is restricted to LO in αs(mb), such as in Ref. [10].
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it becomes easier to simultaneously consider the restrictions imposed by the five different

types of RPI invariance from both SCET and HQET, since each gives a separate constraint.
A simple counting procedure is given for determining all possible Dirac structures prior to

imposing the RPI conditions. The solution of the constraint equations in section IIIC give
relations between the Bi and Cj coefficients and determine the allowed Dirac structures ΓB

i

in terms of ΓC
j .

II. INGREDIENTS FROM SCET

A. Degrees of freedom, power counting, gauge invariance, and Wilson lines

We briefly review some basic definitions from SCET that we will need for our computa-

tions. The fields include collinear gluons Aµ
n, ultrasoft gluons A

µ
us, collinear quarks ξn, and

heavy quarks hv. An important attribute of our collinear fields is that they carry both a

large label momentum p and a coordinate x, such as ξn,p(x). The label momenta are picked
out by momentum operators, P̄ξn,p = n̄ ·p ξn,p and Pµ

⊥ξn,p = pµ⊥ξn,p (see Ref. [3]), while

derivatives i∂µ act on x and scale like ultrasoft momenta. We define collinear covariant
derivatives

in̄ ·Dc = P + gn̄ · An , iD⊥µ
c = Pµ

⊥ + gA⊥µ
n , in ·Dc = in · ∂ + gn · An, (2)

and an usoft covariant derivative

iDµ
us = i∂µ + gAµ

us. (3)

To construct gauge invariant structures, it is useful to define the collinear Wilson line

W ≡
[

∑

perms

exp
(

−
g

P
n̄ · An

)]

(4)

and an ultrasoft Wilson line

Y (xµ) ≡ P̃ exp
(

i g

∫ 0

s0

ds n·Aus(x
µ + snµ)

)

, (5)

where it is convenient to choose the reference point s0 to be s0 = −∞ with P̃ = P path
ordering for both quarks and antiquarks. We comment on the s0 independence of results in

the next section. Making the collinear field redefinitions [4]

ξn,p(x)→ Y (x)ξn,p(x) , An,q(x)→ Y (x)An,q(x)Y
†(x) , (6)

removes all couplings to usoft gluons from the leading order collinear Lagrangian and induces

factors of Y in operators (giving a simple statement of usoft-collinear decoupling).
We will use the following structures, which are both collinear and usoft gauge invariant:

χn ≡ W †ξn, Hv ≡ Y †hv, Dc ≡W †DcW , Dus ≡ Y †DusY , (7)

4



collinear quark soft quarks label operators covariant derivatives

Operator ξn hv qus P Pµ
⊥ in̄ ·Dc iD

⊥µ
c in ·Dc iD

µ
us

Scaling λ λ3 λ3 λ0 λ λ0 λ λ2 λ2

TABLE I: Power counting for effective theory operators.

as well as the Pµ
⊥ label momentum operator. The fields in Eq. (7) are all post-field redefi-

nition. It is convenient to be able to switch the collinear derivatives for field strengths, for
which we use

iD⊥µ
c = Pµ

⊥ + igBµ
⊥ , i

←−
D⊥µ

c = −P †µ
⊥ − igB

µ
⊥ ,

in·Dc = in·∂ + ign·B , in·
←−
D c = in·

←−
∂ − ign·B . (8)

Here the field strength tensors are

igBµ
⊥ ≡

[ 1

P
[in̄ · Dc, iD

⊥µ
c ]

]

, ign · B ≡
[ 1

P
[in̄ · Dc, in · Dc]

]

, (9)

where the label operators and derivatives act only on fields inside the outer square brackets.

To determine which fields appear in the heavy-to-light current at each order of λ, we need
the λ-scaling of the operators listed in Table I.

For convenience we will also use the shorthand notation

χ̄n,ω ≡
[

χ̄n δ(ω−n · vP
†
)
]

,

(igBµ
⊥)ω ≡

[

igBµ
⊥ δ(ω−n · vP

†
)
]

,

(ign · B)ω ≡
[

ign · B δ(ω−n · vP
†
)
]

, (10)

so that χ̄n,ω corresponds to the gauge invariant combination of fields (ξ̄nW ) carrying large
O(λ0) momentum ω. An operator built out of several of these components then has multiple

labels, J(ω1, ω2, . . .), and the Wilson coefficient for the operator will be a function of the
same ωi momentum labels, C(ω1, ω2, . . .).

We will use a T subscript or superscript to denote objects transverse to vµ, and a ⊥ to

denote those perpendicular to nµ and n̄µ,

Rµ
T = Rµ − vµv ·R , Rµ

⊥ = Rµ −
nµ

2
n̄·R−

n̄µ

2
n·R . (11)

The effective theory fields satisfy the projection relations Pnχn = χn, χ̄nPn̄ = χ̄n, and
PvHv = Hv where the matrices are

Pn =
/n/̄n

4
, Pn̄ =

/̄n/n

4
, and Pv =

1

2

(

1 + /v
)

. (12)

The number of independent Dirac structures in a current is reduced by these relations. For
χ̄nΓHv, we can project the Dirac structure onto a four dimensional basis {1, γ5, γα⊥} using

Γ
.
= tr [Pn̄ΓPv] + γ5 tr

[

γ5Pn̄ΓPv

]

+ γ⊥α tr [γα⊥Pn̄ΓPv] , (13)
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where
.
= indicates that the relation is true between χ̄n and Hv. Similarly, between collinear

quark fields, χ̄nΓχn, we can project the Dirac structure onto the basis {/̄n, /̄nγ5, /̄nγα⊥} using

Γ
.
=
/̄n

8
tr [/nPn̄ΓPn] +

/̄nγ5

8
tr
[

γ5/nPn̄ΓPn

]

+
/̄nγ⊥α
8

tr [γα⊥/nPn̄ΓPn] . (14)

Finally we define ǫµν⊥ = n̄ρnσǫ
µνρσ/2 where ǫ12⊥ = +1, and note that the tensor identity,

g
α[µ
⊥ ǫ

ν]β
⊥ = −gαβ⊥ ǫµν⊥ , (15)

will be useful.

B. Comments on boundary conditions for Y (x)

It is worth making a few comments on the path and s0 dependence of the ultrasoft Wilson

lines used in Eq. (6). This field redefinition is universal and should apply equally well for
any physical process. We define

Y (xµ) = P̃ exp
(

ig

∫ 0

s0

ds n·Aus(x
µ
s )
)

, (16)

Y †(xµ) = P̃
′
exp

(

−ig

∫ 0

s0

ds n·Aus(x
µ
s )
)

,

where xµs = xµ + snµ. With respect to the equation of motion, n ·DusY = 0, the point s0
implements a boundary condition at infinity, and P̃ denotes path ordering P or anti-path

ordering P. If Y † is to be the hermitian conjugate of Y one requires that s0 = s†0 and P̃
′
= P̃.

This ensures that Y †Y = 1 and that the field redefinition in Eq. (6) causes the usoft gluons
to decouple in the collinear Lagrangian. The following definitions will also be useful

Y+ = Pexp
(

ig

∫ 0

−∞

ds n·Aus(x
µ
s )
)

, Y− = Pexp
(

−ig

∫ ∞

0

ds n·Aus(x
µ
s )
)

, (17)

Y †
− = Pexp

(

−ig

∫ 0

−∞

ds n·Aus(x
µ
s )
)

, Y †
+ = Pexp

(

ig

∫ ∞

0

ds n·Aus(x
µ
s )
)

.

Here (Y±)
† = Y †

∓, and the subscript on Y †
± should be read as (Y †)± rather than (Y±)

†.

A common choice for s0 is the one made in Ref. [4],

s0 = s0 = −∞ , P̃ = P , P̃′ = P , (18)

where Y = Y+ and Y † = Y †
−. In Ref. [32] the choice s0 = +∞ with P̃

′
= P was made in

order to correspond with particle production, Y † = Y †
+. A third possible choice is [16]

s0 = −∞ sign(P̄) , s0 = −∞ sign(P̄†) ,

{

P̃=P , P̃
′
=P for P̄ , P̄† > 0

P̃=P , P̃
′
=P for P̄ , P̄† < 0

. (19)
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k

i
n·k+iǫ k

i
−n·k+iǫ k

i
−n·k−iǫ k

i
n·k−iǫ

(Y+ ξ+n ) (ξ̄+n Y
†
+) (ξ̄−n Y

†
−) (Y− ξ−n )

FIG. 1: Eikonal iǫ prescriptions for incoming/outgoing quarks and antiquarks and the result that

reproduces this with an ultrasoft Wilson line and sterile quark field.

Eq. (19) still satisfies s†0 = s0 but corresponds to a different choice for particles and antipar-

ticles.2 Here Y = Y+, Y
† = Y †

− for particles, while Y = Y−, Y
† = Y †

+ for antiparticles. To
see this recall that

ξn,p = ξ+n,p + ξ−n,−p , (20)

and that if the label momentum is positive n̄·p > 0 we get the field for particles, ξ+n , and if

the label is negative n̄·p < 0 we get the field operator for antiparticles, ξ−n [3]. Although it
is important to make some choice for s0, if one is careful then in any physical problem the

dependence on s0 cancels. Any path dependence exhibited by a final result can be derived

independently of the choice of s0 that one makes in the field redefinition.
Since the dependence on s0 sometimes causes confusion, we explore some of the subtleties

in this section, in particular, why it is important to remember that factors of Y , Y † can
also be induced in the interpolating fields for incoming and outgoing collinear states, and

why a common choice for s0 = s †0 is sufficient to properly reproduce the iǫ prescription in
perturbative computations. In many processes (examples being color allowed B → Dπ and

B → Xsγ) the s0 dependence of the Wilson lines cancels and the following considerations
are not crucial. In other processes, however, the path for the Wilson line is important for

the final result, particularly when these Wilson lines do not entirely cancel. An example of
this is jet event shapes as discussed in Refs. [32, 33, 34]. See also the discussion of path

dependence in eikonal lines in Refs. [35, 36, 37, 38, 39, 40, 41, 42].
First consider the perturbative computation of attachments of usoft gluons to incoming

and outgoing quark and antiquark lines. The results for the eikonal factors for one gluon
are summarized in Fig. 1, and can be computed directly with the SCET collinear quark

Lagrangian (or from an appropriate limit of the QCD propagator). These attachments seem

to force one to make a particular choice for s0 and s0, see for example the recent detailed
study in Ref. [42]. In our notation it is straightforward to show that this choice corresponds

to

s0 = −∞ sign(P̄) , s0 = +∞ sign(P̄†) ,

{

P̃=P̃
′
=P , for P̄ , P̄† > 0

P̃=P̃
′
=P , for P̄ , P̄† < 0

. (21)

To see this take a quark with label n̄·p > 0 and an antiquark with label n̄·p′ < 0, and note

2 Note that in this case s0 = −∞ sign(P̄), is an operator.
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that

Y ξn,p = P̃ exp
(

ig

∫ 0

−∞

ds n·Aus(x
µ
s )
)

ξ+n,p = Pexp
(

ig

∫ 0

−∞

ds n·Aus(x
µ
s )
)

ξ+n,p ≡ Y+ξ
+
n,p , (22)

ξ̄n,pY
†= ξ̄+n,pP̃

′
exp

(

−ig

∫ 0

∞

ds n·Aus(x
µ
s )
)

= ξ̄+n,pP exp
(

ig

∫ ∞

0

ds n·Aus(x
µ
s )
)

≡ ξ̄+n,pY
†
+ ,

Y ξn,p′= P̃ exp
(

ig

∫ 0

∞

ds n·Aus(x
µ
s )
)

ξ−n,p′ = Pexp
(

−ig

∫ ∞

0

ds n·Aus(x
µ
s )
)

ξ−n,p′ ≡ Y−ξ
−
n,p′ ,

ξ̄n,p′Y
†= ξ̄−n,p′P̃

′
exp

(

−ig

∫ 0

−∞

ds n·Aus(x
µ
s )
)

= ξ̄−n,p′P exp
(

−ig

∫ 0

−∞

ds n·Aus(x
µ
s )
)

≡ ξ̄−n,p′Y
†
− .

This is in agreement with the Ỹ = Y−, Y
† = Y †

−, Y = Y+, Ỹ
† = Y †

+ used in [42] for the
production and annihilation of antiparticles and the annihilation and production of parti-

cles respectively. The results in Eq. (22) reproduce the natural choice of having incoming
quarks/antiquarks enter from −∞, while outgoing quarks/antiquarks extend out to +∞.

Although the choice in Eq. (21) agrees with the iǫ’s in Fig. 1 it causes complications in
the attachments of usoft gluons to internal collinear propagators. With Eq. (21) we have

s†0 6= s0. Now the field redefinition still induces factors of Y †
+Y− = 1 and Y †

−Y+ = 1 in
production and annhilation terms in the collinear Lagrangian, but it also induces factors of

Y †
+Y+ = Y∞ and Y †

−Y− = Y †
∞ in quark-quark and antiquark-antiquark terms in the action,

where

Y∞ = Pexp
(

ig

∫ +∞

−∞

ds n·Aus(x
µ
s )
)

. (23)

When usoft gluons attach to a collinear propagator with endpoints x and y we must end

up with a finite Wilson line Y (x, y). In the original collinear Lagrangian (prior to the field

redefinition) this finite Wilson line is generated by the time ordering of fields in the usoft
gluon interaction vertices. If a field redefinition is made with boundary conditions satifying

s†0 = s0 then the vertices bordering a collinear propagator induce Wilson lines whose s0
dependence cancels, leaving this same finite Wilson line. For example, with s0 = −∞,

Y (−∞, x)Y (−∞, 0)† = Y (0, x). A choice like that in Eq. (21) is more complicated since
it violates hermiticity: (ξn)

† = ξ†n prior to the field redefinition, but this is no longer true

for the ξn and ξ̄n fields after the field redefinition. Correspondingly, the term in the action
determining the free propagator depends on Y∞. Thus, in this case there are Y factors in

both the propagators and vertices which must be taken into account in order for the path
ordering not to conflict with the result from time ordering, and give the same finite Wilson

line.
Let’s adopt the choice in Eq. (18) rather than Eq. (21) and check that the theory with

the field redefinition in Eq. (6) still correctly reproduces the results in Fig. 1 for this case.
Here we have Y = Y+, Y

† = Y †
− for particles and antiparticles. Thus, the correct iǫ’s are

obviously reproduced for the incoming collinear lines as well as intermediate propagator

states. On the other hand, the result for an outgoing quark seems to have the wrong factor
since ξ̄+n comes with a Y †

− rather than a Y †
+. However, with the standard definition of an

outgoing state there is actually an extra Y∞ induced by the field redefinition on the out-
state itself. When we take this factor into account we have Y∞Y

†
− = Y †

+ as expected. To see
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this, recall that an outgoing collinear quark state out〈~p| is generated by a suitably weighted

integral over 〈0|ξ+n (xT ), in the large time limit T →∞ for xT = (T, ~x). When we make the
field redefinition this field, ξ+n (xT ) generates an usoft Wilson line which extends from our

reference point s0 = −∞ to the n̄·x point for our asymptotic outgoing state (which is +∞
for T → ∞), namely a factor of Y∞. A similar argument applies for outgoing antiquark

states, where we get Y+Y
†
∞ = Y−. The same considerations must also be made for hadronic

bound states where they apply to the interpolating quark/antiquark fields used along with

the LSZ formula to define the outgoing state. The factors of Y∞ are universal, independent
of which out-state we choose. There are no additional factors for our incoming states since

our reference point and T = −∞ coincide, Y (−∞,−∞) = 1. Once the Y∞ factors are taken
into account, the choice in Eq. (18) correctly reproduces the path for outgoing quark and

antiquark lines. If we had instead made the choice for s0 in Eq. (19) (which also satisfies

s†0 = s0) then we would have Y
(†)
∞ factors for incoming antiquark states and outgoing quark

states, but the final outcome is the same. Thus the complete result is independent of the s0
choice.

The above discussion covers usoft interactions from the collinear Lagrangian, but it is also

worth remarking on the interactions induced by the field redefinition in (possibly non-local)
operators that are not time ordered. We continue to use Eq. (18). Here again, the identity

Y †Y = 1 is important in order to prove the cancellation of usoft gluon attachments. It is

convenient to adopt a convention where one collects the extra factors of Y∞ induced from
outgoing states together with the Y †’s from production fields in these operators. In this

case if we consider J(x) = ξ̄+n n̄/ ξ
−
n for the production of a collinear quark and antiquark,

then instead of writing only the Y †
− and Y+ from the fields we write J → ξ̄+n Y

†
+ n̄/ Y− ξ

−
n =

ξ̄+n n̄/ ξ
−
n which includes the Y ’s from any out-state this current could produce. Here the usoft

interactions in the Y and Y † lines extend from x to∞ and cancel. For the annihilation of a

quark and antiquark the lines extend from−∞ to x and also cancel, namely Y †
−Y+ = 1. These

two cancellations are often sufficient to ensure the decoupling of usoft gluons. For example,

in exclusive processes we must have color singlet combinations to connect to incoming or
outgoing collinear hadrons and so we can typically pair up ξ̄±n and ξ∓n fields in the hard

scattering operator and make the cancellations manifest.
If we instead consider an inclusive process like DIS then we have a quark scattered to a

quark (we consider generic Bjorken x < 1 in the Breit frame). In this case including the Y∞
from one outgoing quark in the final state gives ξ̄+n n̄/ ξ

+
n → ξ̄+n Y

†
+ n̄/ Y+ξ

+
n where the Wilson

lines do not seem to cancel. Here in order for the cancellation of usoft gluons to take place it

is important to either a) take into account all factors of Y∞ from the outgoing proton state,
or b) include the Y∞ from one outgoing quark state but note that we are only matching

cut diagrams for this inclusive process. The choice a) or b) depends on whether we want to
take the imaginary part at the very end, or from the beginning. For b) the effective theory

computation has the imaginary part of the hard computation, but the imaginary part also
effects the collinear operator, where we can denote the cut by a vertical line,

∣

∣. With our

initial state for the T -matrix taken on the RHS of the cut, the signs are as in Fig. 1, but on
the LHS we have the complex conjugate of these expressions, and the above computation

becomes

(ξ̄n)
∣

∣(n̄/ξn)→ (ξ̄nY
†
−)
∣

∣(n̄/Y+ξn) = ξ̄n n̄/ ξn . (24)
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Thus, the usoft gluon interactions also cancel in this case. Alternatively, with a) one must

keep track of all the lines in the full forward scattering calculation including Y
(†)
∞ factors

from all initial and/or final state quarks, and then the Y ’s in the low energy theory again

all cancel. Both ways we arrive at the same final result, (ImC)ξ̄nn̄/ξn (see Refs. [43, 44] for

a discussion of DIS in SCET). Similar considerations can be applied to B → Xsγ in the
endpoint region. The s0 dependence cancels, and for this process we are left with a finite

usoft Wilson line, h̄v(x)Y (x, 0)hv(0).
To summarize, keeping careful track of the boundary condition s0 dependence in the

usoft Wilson line Y , a choice satisfying s0 = s†0 appears to be the most natural (even though
there will be additional Y∞ factors from states). Physical results are independent of the

choice made for the s0 reference point. They may still depend on the path of Wilson lines
in the final result, but this is determined by the universal class of processes described by

the operator rather than the choice of s0 in the field redefinition. Similar conclusions hold
for the path dependence in collinear Wilson lines W . We note that with respect to the

definitions of the gauge invariant structures made in Eq.(10), the remaining allowed global
color rotations simply correspond to color rotations at the reference point. We will pick

the same reference point in W and Y factors. For example, the gauge invariant product of
fields (Y †hv) carries a color index in the 3 representation, which by convention is acted on

by global rotations U(s0), via (Y †hv) → U(s0)(Y
†hv). These color rotations still connect

invariant products of collinear and usoft fields.

C. Reparameterization invariance

The structure of the currents is constrained by reparameterization invariance, which is
an invariance that appears due to the ambiguity in the decomposition of momenta in terms

of basis vectors and in terms of large and small components. The total momentum P µ of a
heavy quark is decomposed as

P µ = mQv
µ + kµ,

where mQ is the quark’s mass, vµ is its velocity, and kµ is a residual momentum of order
mQλ

2. Then the simultaneous shifts

vµ → vµ + βµ and kµ → kµ −mQβ
µ, (25)

where the infinitesimal βµ ∼ λ2, can have no physical consequences [5]. We refer below to this

reparameterization invariance as HQET-RPI. The transformation of the fieldHv →Hv+δHv

induces terms at O(λ0) and O(λ2),

δ(λ
0)Hv = (imβ · x)Hv , δ(λ

2)Hv =
β/

2
Hv. (26)

There are also reparameterization invariances associated with ambiguities in the decom-

position of the momenta of collinear fields. Here the total momentum P µ of a collinear parti-
cle is decomposed into the sum of a collinear momentum pµ, with (n·p, n̄·p, p⊥) ∼ Q(λ2, 1, λ),

and an ultrasoft momentum kµ, with (n · k, n̄ · k, k⊥) ∼ Q(λ2, λ2, λ2):

P µ = pµ + kµ (27)

=
nµ

2
n̄ · (p+ k) +

n̄µ

2
n · k + (p⊥ + k⊥). (28)
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This decomposition has two types of ambiguity. The first comes from splitting P µ into large

(p) and small (k) components. Thus operators must be invariant under a transformation
that takes

P → P + n̄ · ℓ , in̄ · ∂ → in̄ · ∂ − n̄ · ℓ ,

Pµ
⊥ → P

µ
⊥ + ℓµ⊥ , i∂µ⊥ → i∂µ⊥ − ℓ

µ
⊥, (29)

where all operators and derivatives act on one or more collinear fields, and ℓµ is O(λ2). We
refer to this reparameterization invariance as SCET RPI-a. Examples of an infinitesimal

transformation on fields and operators are

δ(λ
0)

a χn = (iℓ · x)χn , δ(λ
1)

a Pα
⊥ = ℓα⊥ , δ(λ

2)
a P̄ = n̄·ℓ , (30)

where n·ℓ = 0. Note that (iℓ · x) terms only effect ultrasoft derivatives acting on the fields

since the overall current is evaluated at x = 0.
The second ambiguity in the decomposition of the momentum of the collinear particles

comes from choosing the light-cone vectors n and n̄. An infinitesimal change in these vectors
which preserves the relations n2 = 0, n̄2 = 0, and n·n̄ = 2, can have no physical consequences.

The most general infinitesimal transformations of n and n̄ that preserve these conditions

along with the collinear power counting are [7]

(I)

{

nµ → nµ +∆⊥
µ

n̄µ → n̄µ

(II)

{

nµ → nµ

n̄µ → n̄µ + ε⊥µ
(III)

{

nµ → (1 + α)nµ

n̄µ → (1− α) n̄µ

, (31)

where {∆⊥
µ , ǫ

⊥
µ , α} ∼ {λ

1, λ0, λ0} are five infinitesimal parameters, and n̄ · ǫ⊥ = n · ǫ⊥ =

n̄ ·∆⊥ = n ·∆⊥ = 0.
If we start in the frame v⊥ = 0, then transformations (I) or (II) or (HQET-RPI) take us

out of this frame. A certain combined type I and type II transformation, however, leaves
v⊥ = 0 [31]. We refer to this transformation as RPI-⋆. We can also form a combined

HQET and type II transformation that leaves v⊥ = 0 which we refer to as RPI-$. These
transformations are

(⋆)











nµ → nµ +∆⊥
µ

n̄µ → n̄µ −
∆⊥

µ

(n·v)2

vµ → vµ

, ($)







vµ → vµ + βµ
T

n̄µ → n̄µ + 2
n·v

βµ
⊥

nµ → nµ

, (32)

where ∆⊥ ∼ λ, β ∼ λ2, and β⊥ is the ⊥-part of βT . In defining the $-transformation

we found that it is more convenient to leave v⊥ = 0 by making a transformation on v
simultaneously with n̄, rather than simultaneously with n. Under the ⋆-transformation the

components of a generic four-vector Vµ transform as

n · V
⋆
−→ n · V +∆⊥ · V ⊥ ,

n̄ · V
⋆
−→ n̄ · V −

∆⊥ · V ⊥

(n·v)2
,

V ⊥
µ

⋆
−→ V ⊥

µ +∆⊥
µ

(

−
n̄

2
+

n

2(n·v)2

)

· V +
(

−
n̄µ

2
+

nµ

2(n·v)2

)

∆⊥ · V ⊥ . (33)
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To the order we are working we need the following terms from an RPI-⋆ transformation:

δ(λ
0)

⋆ Pµ
⊥ = −

∆µ
⊥

2
P̄ , δ(λ

0)
⋆ (ign·B) = ∆⊥ · (igB⊥) , (34)

δ(λ
0)

⋆ (igBµ
⊥) = 0 , δ(λ

0)
⋆ χ̄n = 0 ,

δ(λ
1)

⋆ Pµ
⊥ = (n̄·v)2nµ

T ∆⊥ ·P⊥ , δ(λ
1)

⋆ χ̄n = χ̄n

n̄/∆/⊥

4
,

δ(λ
1)

⋆ (igBµ
⊥) = (n̄·v)2nµ

T ∆⊥ ·(igB⊥) , δ(λ
2)

⋆ P̄ = −(n̄·v)2∆⊥ · P⊥ ,

δ(λ
2)

⋆ χ̄n = −χ̄n

(

igB/⊥ + P/⊥†
) 1

P̄†

∆/⊥

2(n·v)2
+ χ̄n

[ 1

(n·v)2P̄
igB⊥ ·∆⊥

]

,

where nT is the transverse part of n,

nµ
T = nµ − n·v vµ =

nµ

2
− (n·v)2

n̄µ

2
. (35)

We will also need the transformation

δ(λ
2)

⋆ δ(ω − n·vP̄†) =
1

n·v
∆⊥ ·P

†
⊥ δ

′(ω − n·vP̄†) . (36)

For the RPI-$ transformation at the order we are working we need the following terms:

δ
(λ0)
$ Hv = (imβT · x)Hv , δ

(λ2)
$ Hv =

β/T
2
Hv , (37)

δ
(λ2)
$ δ(ω − n·vP̄†) = −n·βT P̄

† δ′(ω − n·vP̄†) .

For the last identity it is straightforward to see that the $-transformation on n̄ does not

enter until one higher order. We chose to define the RPI-$ transformation to be for v and n̄
rather than v and n because of the property that terms with n̄ are often pushed to higher

order, making the relations derived with RPI-$ more orthogonal to those from RPI-⋆. For
example, in order to have a simple form for the δ$Γ’s in Eq. (70) below it is important that it

is n̄ and not n that transforms. Finally, we note that since all Dirac structures are O(1), all
RPI transformations of Dirac structures have the same power counting as the transformation

parameter, in particular, δ⋆Γ ∼ O(λ
1) and δ$Γ ∼ O(λ

2).

Finally, note that we will consider the RPI tranformations of all currents prior to making
the field redefinition in Eq. (6) so that we do not have to transform Y . However, in order not

to have to switch our notation back and forth we will write all equations with the operators
obtained after the field redefinition. This implies that results quoted for the transformation

of objects involving Hv should be though of as being made for hv, with the field redefinition
which induces Hv made only afterwards.

D. Completeness of Projected RPI

It is natural to ask if for v⊥ = 0 the transformations RPI-$ and RPI-⋆ in Eq. (32) are

sufficient to give the complete set of constraints that arise from the original SCET type-I,
SCET type-II, and HQET RPI transformations. The set { RPI-$, RPI-⋆, SCET-II } forms

12



v = 0
O1

O2

O3

O4

O5

FIG. 2: Transformation of operators on and off the v⊥ = 0 surface. Here O1,2 exist for v⊥ = 0,

while O3,4,5 vanish on the v⊥ = 0 surface.

an equivalent complete grouping related by linear combinations. To address this question,
consider splitting all possible operators into two sets, a set {Oi} which do not vanish on the

v⊥ = 0 surface and a set {Oi} which do. An example is pictured in Fig. 2.
Constraints are derived by requiring cancellations among the resulting post-

transformation set of operators. If we consider an operator Oi then under one of the
projected RPI transformations, RPI-$ or RPI-⋆, it transforms into the set {Oj,Ok}. On

the other hand an operator Oi only transforms back into the set {Oj}. This is a special
feature of the projected transformations and ensures that relations derived on the v⊥ = 0

surface can not be spoiled by operators which appear away from the surface. It appears that
we can neglect the Oi operators since they vanish when we project on the v⊥ = 0 plane.

However it is still possible that we will miss an additional relation between operators on the
surface, so that the surface analysis will not be complete.

There are two possible sources that could lead to additional relations beyond those derived

from projected RPI on the surface. First, under the SCET RPI-II transformation ǫ⊥ ∼ λ0 is
allowed, while in the RPI-⋆ and RPI-$ transformations we only have smaller transformations

of n̄ of O(λ1) and O(λ2). Thus we could miss relations from the more restrictive ǫ⊥ ∼
λ0 allowed by SCET RPI-II. Note that an SCET RPI-II transformation takes us off the

projected surface. Second if we project onto v⊥ = 0 then constraints are derived only
by enforcing cancellations within the set {Oj}. It is possible that an operator O4 exists

that is obtained from the transformation of two operators O1 and O2 that are not related

by transformations on the surface. Enforcing the cancellation of O4 then relates O1 and

O2. This is pictured by the star in Fig. 2. A related alternative is an operator like O5

pictured with the box which is obtained from transformations of O1,2 and O3. If O3 is

otherwise constrained then this would also constrain O1,2. In cases with multiple operators
appearing and multiple transformations we must of course consider the linear independence

of combinations of operators. If an Oi contributes and it is not otherwise constrained then
this is not of concern, since in the end we discard Oi by projecting onto the v⊥ = 0 surface

anyway. We will call an operator that vanishes for v⊥ = 0 but that generates a relation
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between operators on the surface a “supplementary projected operator” (SPO).3 To check

for the existence of an SPO we might in general need the full set of v⊥ 6= 0 operators. At
O(λ) the comparison of the results derived in Ref. [17] in the full space, to those derived in

Ref. [31] on the surface v⊥ = 0 shows that there are no SPO’s at this order.
For the O(λ2) heavy-to-light operators considered here we show that there also no SPO’s

in section IIID. This is done by a careful choice of our Dirac basis which makes it simpler
to demonstrate that there are no further type-II RPI relations, and by explicit construction

for other possible SPO’s. Thus, the analysis on the v⊥ = 0 surface is complete for our
computation.

III. HEAVY-TO-LIGHT CURRENTS TO O(λ2)

To order λ2, the operators and Wilson coefficients for the heavy-to-light currents can be

written as

J = J (0) + J (1) + J (2) (38)

=
∑

j

∫

dω Cj(ω,m, µ)J
(0)
j (ω, µ) +

∑

x,j

∫

[dωi]Bxj(ωi, m, µ)J
(1x)
j (ωi, µ)

+
∑

x,j

∫

[dωi]Axj(ωi, m, µ)J
(2x)
j (ωi, µ),

where J (kx)(ωi) represents the O(λk) terms with dependence on convolution parameters
ωi. Here the subscript x distinguishes distinct field structures at a given order, and j

sums over distinct Dirac structures. At O(λ) we know that there are at most two relevant

convolution parameters i = 1, 2, while we will see below that at O(λ2) there are at most
three. We will consider both scalar, vector, and tensor currents (and the simple extension

to the pseudoscalar and axial vector cases). When necessary we add an (s), (v), or (t)

superscript to the Wilson coefficients in order to distinguish these cases, e.g. B
(v)
a1 .

We begin in section IIIA by constructing all consistent field structures for the NNLO

currents. In section IIIB we use reparameterization invariance to derive the constraint
equations for these currents under different types of RPI invariance on the v⊥ = 0 surface.

In section IIIC we solve the constraint equations to find the allowed Dirac structures and
obtain relations among the Wilson coefficients. Finally, in section IIID we show that the

results from the v⊥ = 0 surface are equivalent to those obtained if all relations in the full
space were projected onto this plane.

A. Current field structures at O(λ2)

We first construct a basis of currents that is consistent with gauge invariance and power

counting and eliminate structures that are redundant by the equations of motion and Bianchi

3 In the case of type-II transformations, operators like O4 and O5 need not be in the {Oj} class.
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identity. At LO and NLO the currents are

J (0)(ω) = χ̄n,ωΓHv , (39)

J (1a)(ω) =
1

ω
χ̄n,ωP

⊥†
α Θα

(a)Hv

J (1b)(ω1,2) =
1

m
χ̄n,ω1

(igB⊥
α )ω2

Θα
(b)Hv .

At NNLO we find that a convenient basis for the set of field structures for the bilinear quark

operators is

J (2a)(ω) =
1

2m
χ̄n,ωΥ

σ
(a)iD

T
us σHv , (40)

J (2b)(ω) = −
n·v

ω
χ̄n,ω in̄ ·

←−
DusΥ(b)Hv ,

J (2c)(ω) = −
1

ω
χ̄n,ωi

←−
D⊥

usα Υ
α
(c)Hv ,

J (2d)(ω) =
1

ω2
χ̄n,ωP

⊥†
α P

⊥†
β Υαβ

(d)Hv ,

J (2e)(ω1,2) =
1

m(ω1 + ω2)
χ̄n,ω1

(igB⊥
α )ω2
P⊥†

β Υαβ

(e)Hv ,

J (2f)(ω1,2) =
ω2

m(ω1 + ω2)
χ̄n,ω1

(

P⊥
β

ω2

+
P⊥†

β

ω1

)

(igB⊥
α )ω2

Υαβ

(f)Hv ,

J (2g)(ω1,2) =
1

mn·v
χ̄n,ω1

{

(ign · B)ω2
+ 2(igB⊥)ω2

· P†
⊥

1

P̄†

}

Υ(g)Hv ,

J (2h)(ω1,2,3) =
1

m(ω2 + ω3)
χ̄n,ω1

(igB⊥
β )ω2

(igB⊥
α )ω3

Υαβ

(h)Hv ,

J (2i)(ω1,2,3) =
1

m(ω2 + ω3)
Tr[(igB⊥

β )ω2
(igB⊥

α )ω3
] χ̄n,ω1

Υαβ

(i)Hv .

For a basis of four quark operators we take

J (2j)(ω1, ω2, ω3) =
∑

f=u,d,s

[

χ̄f
n,ω2

Υ(jχ)χ
f
n,ω3

][

χ̄n,ω1
Υ(jH)Hv

]

,

J (2k)(ω1, ω2, ω3) =
∑

f=u,d,s

[

χ̄f
n,ω2

TAΥ(kχ)χ
f
n,ω3

][

χ̄n,ω1
TAΥ(kH)Hv

]

(41)

where the matrices TA are generators of SU(3) with an implied sum on A and χf
n has a

collinear quark with flavor f , whereas χn carries the flavor of quark from the full theory
current. We impose the RPI type-III invariance in Eq. (31) on all operators by multiplying

by an appropriate power of n·v. The basis in Eqs. (39,40,41) is valid whether or not we take
v⊥ = 0. The v⊥ = 0 choice only effects the basis of Dirac structures.

The 11 operators in Eqs. (40,41) can be compared with the 15 field structures in the

basis of Ref. [12]. We have no analog of their J
(2)
1,2,3,7 currents which have an explicit xµ

because with momentum labels the multipole expansion is performed directly in momentum

space [45]. Correspondingly, our J (2b) and J (2c) currents have no analogs in their basis.
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There is a correspondence, J (2a,2d) ↔ J
(2)
4,6 , J (2e,2f,2g) ↔ J

(2)
8,9,10, J (2i,2j,2k) ↔ J

(2)
13,14,15, and

our J (2h) encodes their J
(2)
12 and J

(2)
13 currents.

In arriving at Eq. (40) we have used Eq. (8) to switch to a basis with P⊥’s, in ·∂, and
field strengths rather than collinear covariant derivatives in order to give simpler constraints

from RPI. The basis with covariant derivatives is more natural from the point of view of tree
level matching and the relation between the two is discussed in section IV. The prefactors

in J (2a−2i) have been chosen with these relationships in mind, in order to make the matching
coefficients for the operators simple. The combinations in J (2f,2g) were chosen because they

have simpler transformations under RPI.
Structures were also removed from Eq. (40) using equations of motion and the Bianchi

identity. In the effective field theory this gives a valid basis at any loop order. After
decoupling the usoft gluons the LO Lagrangian for collinear quarks is [4]

L(0)
c = ξn

n̄/

2

(

in·Dc + i/D⊥
c W

1

P̄
W †i/D⊥

c

)

ξn = χn

n̄/

2

(

in·Dc + i/D⊥
c

1

P̄
i/D⊥

c

)

χn , (42)

so the equation of motion for χn can be written

in·∂χn = −(ign·B)χn − i /D
⊥
c

1

P̄
i /D⊥

c χn , (43)

where using Eq. (8) the last term can be written as a sum of terms with either two P⊥’s,

two (igB⊥)’s, or one of each. Eq. (43) shows that a a current χ̄nin·
←−
∂ H†

v is redundant by

the collinear quark equation of motion and need not be included in the list, explaining why
we only have J (2b) and J (2c). (Note that in·Dusχn = in·∂χn.) As noted in [12], this makes

their J
(2)
5 current redundant. In J (2a) we have restricted the ultrasoft derivative acting on

hv to be purely transverse since the heavy quark equation of motion is v ·Dus hv=0.
One can also consider using the collinear gluon equation of motion. After the field

redefinition in Eq. (6), the lowest order collinear gluon Lagrangian is the same as in QCD [4],

L
(0)
g = 1/(2g2) tr{[iDµ

c , iD
ν
c ]}

2. Varying L
(0)
c + L

(0)
g with respect to the collinear gluon field

AA
cµ and contracting with n̄µT

A gives

0 = n̄µT
A δL

(0)

δAA
cµ

=
1

g
n̄µ [iDcν , [iD

µ
c , iD

ν
c ]] + gTA

∑

f

ξ
f

nT
A /̄n ξfn . (44)

Next we multiply by W † on the left and W on the right, use the identity (W †TAW )⊗TA =
TA ⊗ (WTAW †), and label by ω2 to give

−g2TA
∑

f

[

χ̄f
n T

A /̄nχf
n

]

ω2

=
(

[iDcν , [in̄·Dc, iD
ν
c ]]

)

ω2

(45)

=
ω2
2

2
(ign·B)ω2

− ω2P
⊥
ν (igB

ν
⊥)ω2

−
∑

ω3

ω3

[

(igBν
⊥)ω2−ω3

, (igB⊥
ν )ω3

]

.

Multiplying by χ̄n,ω1
on the left and ΓHv on the right where Γ is some Dirac structure gives

ω2
2

2
χ̄n,ω1

(ign·B)ω2
ΓHv = −g

2
∑

f,ω3

[

χ̄f
n,ω2−ω3

TA /̄nχf
n,ω3

][

χ̄n,ω1
TAΓHv

]

(46)

+ ω2 χ̄n,ω1
P⊥

ν (igB
ν
⊥)ω2

ΓHv +
∑

ω3

ω3 χ̄n,ω1

[

(igBν
⊥)ω2−ω3

, (igB⊥
ν )ω3

]

ΓHv .
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This result can be used to eliminate the current J (2g)(ω1,2) in terms of J (2e) and J (2k) if
desired. We have chosen not to remove this operator since doing so would induce a tree

level matching contribution for J (2k). For listing results it was more convenient to leave all

four quark operators with coefficients that start at one-loop order, O(α2
s). Since Eq. (46)

eliminates a current that will not show up in the constraint equations it does not effect the

discussion of RPI relations.
The Bianchi identity in QCD is DµGνσ+DνGσµ+DσGµν = 0. It can be used to eliminate

terms proportional to igBµν
⊥⊥ ≡ [iDµ

⊥, iD
ν
⊥] or

igBµν
⊥⊥ ≡

[ 1

P̄
W †igBµν

⊥⊥W
]

, (47)

in terms of factors of igBλ
⊥ or igBλ

⊥ = [in̄·D, iDλ
⊥]. The Bianchi identity gives [n̄·D,Bµν

⊥⊥] =
[Dµ

⊥, B
ν
⊥]− [Dν

⊥, B
µ
⊥] so using Eq. (8) we have

(igBµν
⊥⊥) =

Pµ
⊥

P̄
(igBν

⊥)−
Pν

⊥

P̄
(igBµ

⊥) +
1

P̄2

[

(igBµ
⊥), (P̄igB

ν
⊥)
]

−
1

P̄2

[

(igBν
⊥), (P̄igB

µ
⊥)
]

. (48)

Thus a heavy-to-light current with (igBµν
⊥⊥) can be matched onto a linear combination of

J (2f,2e) and J (2h) with antisymmetric indices in Υαβ

(h).

B. Constraint equations from reparameterization invariance

We derive constraint equations for the allowed subleading currents considering the differ-
ent types of RPI in turn.

1. RPI-⋆ at O(λ)

To set the stage we review the constraints at O(λ) from SCET RPI. To ensure that the

next-to-leading order current is RPI-⋆ invariant, we must have

δ(λ
1)

⋆ J (0) + δ(λ
0)

⋆ J (1) = 0. (49)

Computing the various terms in this equation gives4

δ(λ
1)

⋆ J (0)(ω) = χ̄n,ω

(1

4
/̄n /∆⊥Γ + δ(λ

1)
⋆ Γ

)

Hv ,

δ(λ
0)

⋆ J (1a)(ω) =
1

ω
χ̄n,ω

(

−
1

2
∆⊥

αP
†)
Θα

(a)Hv ,

δ(λ
0)

⋆ J (1b)(ω1,2) = 0. (50)

The terms that must cancel all have a common dependence on χ̄n,ω, ∆
⊥
α, and Hv which

can be factored out. The remaining coefficients and Dirac structures give the constraint

4 Note the remark on our use of notation at the end of section II C that explains why we do not include the

transformation of Y .
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equation:

∑

j

Baj(ω)Θ
α
(aj) =

∑

j

Cj(ω)
(1

2

/̄n

n̄·v
γα⊥Γ(j) + 2δα⋆Γ(j)

)

(51)

where the index α is ⊥, j sums over Dirac structures, and δα⋆ Γ(j) is defined through

δ(λ
1)

⋆ Γ(j) =
1

n·v
∆⊥

αδ
α
⋆Γ(j) . (52)

2. RPI-$ at O(λ2)

The only terms in the current whose transformation under RPI-$ leaves uncanceled terms

are J (0) and J (2a). We must have

δ
(λ2)
$ J (0) + δ

(λ0)
$ J (2a) = 0. (53)

Now,

δ
(λ2)
$ J (0)(ω) = χ̄n

[

−n · βT P
†
δ′(ω − n · vP

†
)
]

ΓHv + χ̄n,ω

[

δ
(λ2)
$ Γ +

Γβ/T
2

]

Hv ,

δ
(λ0)
$ J (2a)(ω) =

1

2m
χ̄n,ωΥ

σ
(a)(−mβ

T
σ )Hv. (54)

Suppressing the common fields χ̄n,ω, Hv, and vector βσ
T leads to the constraint equation

∑

j

Aaj(ω)Υ
σ
(aj) =

∑

j

{

Cj(ω)
(

2δσ$Γ(j) + Γ(j)γ
σ
T

)

+ 2ω
d

dω
Cj(ω)

nσ
T

n·v
Γ(j)

}

, (55)

where

δ
(λ2)
$ Γ(j) = βT

σ δ
σ
$Γ(j) and γσT = γσ − /vvσ. (56)

3. SCET RPI-a at O(λ2)

The terms in the current that transform under SCET RPI-a are J (0), J (1a), J (2b), and J (2c).

We must have
δ(λ

2)
a J (0) + δ(λ

1)
a J (1a) + δ(λ

0)
a J (2b) + δ(λ

0)
a J (2c) = 0. (57)

Now,

δ(λ
2)

a J (0)(ω) = χ̄n

[

−n·v n̄ · ℓ δ′(ω − n·vP
†
)
]

ΓHv ,

δ(λ
1)

a J (1a)(ω) =
1

ω
χ̄n,ω ℓ

⊥
α Θα

(a)Hv ,

δ(λ
0)

a J (2b)(ω) = −
n·v

ω
χ̄n,ωΥ(b) n̄ · ℓHv ,

δ(λ
0)

a J (2c)(ω) = −
1

ω
χ̄n,ωΥ

α
(c) ℓ

⊥
α Hv . (58)
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This leads to the a constraint equation between O(λ2) and O(λ0)

∑

j

Abj(ω)Υ(bj) =
∑

j

ωC ′
j(ω)Γ(j) (59)

and a constraint equation between O(λ2) and O(λ)

∑

j

Acj(ω)Υ
α
(cj) =

∑

j

Baj(ω)Θ
α
(aj) . (60)

4. SCET RPI-⋆ at O(λ2)

Under RPI-⋆ we must have

δ(λ
2)J (0) + δ(λ

1)J (1) + δ(λ
0)J (2) = 0. (61)

Many of the currents transform under this form of RPI:

δ(λ
2)

⋆ J (0)(ω) = −χ̄n

{

ig /B⊥ /∆⊥

(n̄·v)2

2P
†

+
[

igB⊥ ·∆⊥
(n̄·v)2

P
†

]

+ /P
†
⊥ /∆⊥

(n̄·v)2

2P
†

}

δ(ω−n·vP
†
)

−∆⊥ · P
†
⊥(n̄·v) δ

′(ω−n · vP
†
)

}

ΓHv ,

δ(λ
1)

⋆ J (1a)(ω) =
1

ω
χ̄n,ω

{

P⊥†
α

( /̄n /∆⊥

4
Θα

(a) + δ(λ
1)

⋆ Θα
(a)

)

+ (n̄·v)2∆⊥ ·P
†
⊥n

T
σΘ

σ
(a)

}

Hv ,

δ(λ
1)

⋆ J (1b)(ω1,2) =
1

m
χ̄n,ω1

{

igB⊥
α

( /̄n /∆⊥

4
Θα

(b) + δ(λ
1)

⋆ Θα
(b)

)

+ (n̄·v)2∆⊥ ·(igB⊥)n
T
σΘ

σ
(b)

}

ω2

Hv ,

δ(λ
0)

⋆ J (2a,2b,2c) = 0 ,

δ(λ
0)

⋆ J (2d)(ω) =
(n̄·v)

ω
χ̄n,ω

(

−
1

2
∆⊥

αP
⊥†
β −

1

2
P⊥†

α ∆⊥
β

)

Hv ,

δ(λ
0)

⋆ J (2e)(ω1,2) =
1

m(ω1 + ω2)
χ̄n,ω1

(igB⊥
α )ω2

(

−
1

2
∆⊥

βP
†
)

Υαβ

(g) Hv ,

δ(λ
0)

⋆ J (2f,2g,2h,2i,2j,2k) = 0 . (62)

The terms in Eq. (62) can be grouped into two unique field structures, [χ̄n,ω∆
⊥
αP

†
β · · ·Hv] and

[χ̄n,ω∆
⊥
αB

†
β · · ·Hv], which must cancel independently. This gives two constraint equations.

The terms proportional to ∆⊥
αP

⊥†
β give

∑

j

Adj(ω)
(

Υαβ

(dj) +Υβα

(dj)

)

=
∑

j

{

− Cj(ω)γ
β
⊥γ

α
⊥Γ(j) − 2ωC ′

j(ω)g
αβ
⊥ Γ(j)

}

+
∑

j

Baj(ω)
(1

2

/̄n

n̄·v
γα⊥Θ

β

(aj) + 2δα⋆Θ
β

(aj) + 2gαβ⊥
nT
σ

n·v
Θσ

(aj)

)

.
(63)

From Eq. (51) we know that the index σ on Θσ
(aj) must be ⊥ so the last term vanishes.

Inserting Eq. (51) also simplifies the nonvanishing terms. Finally we know that Υαβ
dj is
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symmetric in α and β. With these simplifications we have the constraint equation

∑

j

Adj(ω) Υ
αβ

(dj) =
∑

j

{

−
1

2
Cj(ω)γ

β
⊥γ

α
⊥Γ(j) − ωC

′
j(ω)g

αβ
⊥ Γ(j) +

1

2
Cj(ω)

/̄n

n̄·v
γα⊥δ

β
⋆Γ(j)

}

+
∑

j

Baj(ω) δ
α
⋆Θ

β

(aj) .

(64)

Since the LHS is symmetric in αβ, all terms on the RHS that are not symmetric should
cancel. The terms from Eq. (62) that are proportional to ∆⊥

αB
⊥
β give another constraint

∑

j

Aej(ω1, ω2)Υ
βα

(ej) = −
∑

j

Cj(ω1 + ω2)
( m

ω1+ω2

γβ⊥γ
α
⊥ +

2m

ω2

gαβ⊥

)

Γ(j)

+
∑

j

Bbj(ω1, ω2)
(1

2

/̄n

n̄·v
γα⊥Θ

β

(bj) + 2δα⋆Θ
β

(bj) + 2gαβ⊥
nT
σ

n·v
Θσ

(bj)

)

.
(65)

In Eqs. (64) and (65), the indices α and β are purely perpendicular. The equation that
defines δα⋆Θ

β is the same as Eq. (52), just with the Θβ Dirac structures.

C. Solutions to the constraint equations

We now find solutions for the O(λ2) constraints in Eqs. (55,59,60,64,65). Note that
by careful construction of our operator basis we have ensured that each equation gives a

constraint on a different NNLO operator.
Eqs. (51,55,64,65) have implicit spinor indices, one or two vector indices, and a sum in j

over independent structures. Since all of the equations appear between [ξ̄n · · ·Hv] they are
only valid when the spinor indices are projected onto a 4-dimensional subspace, rather than

the full 16-dimensional space of Dirac structures.
It is useful to exploit the following method to determine how many independent Dirac

structures we should have for each operator. Start by consider the three minimal structures
that appear in the trace reduction formula, Eq. (13), namely {1, γ5, γ

α
⊥}. Next for each

case write down all possible scalar objects (vµ, nµ, gµν , . . .) to saturate the Lorentz vector
indices coming from derivatives in the operator and current indices, taking into account any

symmetries. To satisfy parity and time reversal with γ5, we will need to have an ǫ-tensor,

such as iǫµν⊥ γ5. As long as the scalar objects are linearly independent these steps give a
complete basis.

At O(λ0), a complete basis of Dirac structures for scalar, vector, and tensor heavy-to-light
currents is [2]

Γ(1) = 1 , Γµ

(1−3) =
{

γµ, vµ,
nµ

n·v

}

, Γµν

(1−4) =
{

iσµν , γ[µvν],
1

n·v
γ[µnν],

1

n·v
n[µvν]

}

. (66)

At O(λ), there is no constraint on J (1b), and Eq. (51) constrains the J (1a) currents in terms
of J (0). To impose this constraint we need

δα⋆Γ(1) = 0 , δα⋆Γ
µ

(1,2) = 0 , δα⋆Γ
µ

(3) = gαµ⊥ , (67)

δα⋆Γ
µν

(1,2) = 0 , δα⋆Γ
µν

(3) = γ[µg
ν]α
⊥ , δα⋆Γ

µν

(4) = g
α[µ
⊥ vν] .

20



The constraint equation causes some Dirac structures to always appear in the same combi-

nation. We find

Θα
(a1) =

1

2

/̄n

n̄·v
γα⊥ , Θα

(b1) = γα⊥ ,

Θαµ

(a1−3) =

{

1

2

/̄n

n̄·v
γα⊥{γ

µ, vµ},
n̄/

2
γα⊥n

µ + 2gαµ⊥

}

,

Θαµ

(b1−4) =

{

γα⊥{γ
µ, vµ,

nµ

n·v
}, gαµ⊥

}

,

Θαµν

(a1−4) =
{1

2

/̄n

n̄·v
γα⊥{iσ

µν , γ[µvν]} ,
n̄/

2
γα⊥γ

[µnν] − 2g
α[µ
⊥ γν] ,

n̄/

2
γα⊥n

[µvν] + 2g
α[µ
⊥ vν]

}

,

Θαµν

(b1−6) =
{

γα⊥Γ
µν

(1−4) , g
α[µ
⊥ γν] , g

α[µ
⊥ vν]

}

, (68)

where Γµν

(1−4) are given in Eq. (66), which is in agreement with Ref. [17]. This basis is

equivalent to the one in Ref. [17].5 We take Θbj terms with no n̄/ so that this choice does not

need to be modified if we enlarge the basis for v⊥ 6= 0 (see section IIID). With Eq. (68),

the constraint Eq. (51) gives relations for the Wilson coefficients in the J (1a) current

B
(s)
a1 (ω) = C

(s)
1 (ω), B

(v)
a1−3(ω) = C

(v)
1−3(ω), B

(t)
a1−4(ω) = C

(t)
1−4(ω) . (69)

These results agree with Refs. [6, 15, 17].
At O(λ2) we must solve Eqs. (55,59,60,64,65). From these equations we see that the

currents J (2f), J (2g), J (2h), J (2j), and J (2k) are not constrained. The currents J (2a), J (2b),
J (2c), and J (2d) are all related to the leading order current J (0). Finally the currents J (2e)

are related to the currents J (0) and J (1b).
To solve the equations we will need

δσ$Γ(1) = 0 , δσ$Γ
µ

(1) = 0 , δσ$Γ
µ

(2) = gσµT , δσ$Γ
µ

(3) = n̄σ
Tn

µ (70)

δσ$Γ
µν

(1) = 0 , δσ$Γ
µν

(2) = γ[µg
ν]σ
T , δσ$Γ

µν

(3) = n̄σ
Tγ

[µnν] , δσ$Γ
µν

(4) = n̄σ
Tn

[µvν] +
1

n·v
n[µg

ν]σ
T ,

where n̄σ
T = −(n̄·v)2nσ

T . We will also need

δα⋆Θ
β

(b1) = −g
αβ
⊥ n·v

n̄/

2
, (71)

δα⋆Θ
βµ

(b1,2,3) = −g
αβ
⊥ n·v

n̄/

2
Γµ

(1,2,3) + γβ⊥δ
α
⋆Γ

µ

(1,2,3) , δα⋆Θ
βµ

(b4) = gαβ⊥
nµ
T

n·v
,

δα⋆Θ
βµν

(b1,2,3,4) = −g
αβ
⊥ n·v

n̄/

2
Γµν

(1,2,3,4) + γβ⊥δ
α
⋆Γ

µν

(1,2,3,4) , δα⋆Θ
βµν

(b5) =
1

n·v
gαβ⊥ n

[µ
T γ

ν] ,

δα⋆Θ
βµν

(b6) =
1

n·v
gαβ⊥ n

[µ
T v

ν] ,

where αβ were projected onto ⊥ directions. Note that δα⋆Θ(aj) are easily obtained from
these. The constraints in Eqs.(59,60) have a particularly simple solution:

Abj(ω) = ωC ′
j(ω), Acj(ω) = Baj(ω), Υ(bj) = Γ(j), Υ(cj) = Θ(aj) . (72)

Solutions to the other equations are slightly more involved. We present solutions to the

constraint equations for the scalar, vector, and tensor currents in turn.

5 Note that a structure g
α[µ
⊥ nν] is redundant in 4-dimensions [29, 31].
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1. Solutions for scalar and pseudoscalar currents at O(λ2)

The RPI constraints do not effect the allowed Dirac structures for scalar currents, so we
have the complete sets

Υσ
(a1,2) =

{

γσT ,
nσ
T

n·v

}

, Υ(b1) = Υ(g1) = 1 , Υα
(c1) =

1

2

/̄n

n̄·v
γα⊥ ,

Υαβ

(d1) = gαβ⊥ , Υαβ

(e1,2) = Υαβ

(f1,2) = Υαβ

(h1,2) = Υαβ

(i1,2) =
{

2gαβ⊥ , γα⊥γ
β
⊥

}

. (73)

For the four quark operators, there are three possible Dirac structures in the χ̄n · · ·χn

bilinear, {n̄/, n̄/γ5, n̄/γ
α
⊥}. In performing the matching onto SCET at a scale ∼ mb, the light

quark masses are perturbations, and for matching onto the O(λ2) four quark operator we
can set mq = 0. In this case, chirality rules out the n̄/γα⊥ structure which connects right and

left handed quarks. A complete set of structures is therefore

(

Υ⊗Υ
)

(j1,j2)
=

(

Υ⊗Υ
)

(k1,k2)
=

{ /̄n

n̄·v
⊗ 1 ,

/̄n

n̄·v
γ5 ⊗ γ5

}

. (74)

To solve the RPI-$ constraint, we insert the Dirac structures Eqs. (66,70,73) into Eq. (55).

Satisfying this constraint requires a relation on the Wilson coefficients

A
(s)
a1 (ω) = C

(s)
1 (ω) A

(s)
a2 (ω) = 2ωC

(s) ′
1 (ω) . (75)

The solution for the SCET RPI-a constraint equation in (72) gives

A
(s)
b1 (ω) = ωC

(s) ′
1 (ω) A

(s)
c1 (ω) = C

(s)
1 (ω). (76)

To solve the SCET RPI-⋆ constraints in Eqs. (64,65), we need the additional Dirac structures
in Eqs. (68,71). On the RHS of Eq. (64) we observe that all structures that were not

symmetric in αβ cancel, in agreement with the symmetry of the LHS. Solving the equations,
the relations on the Wilson coefficients are

A
(s)
d1 (ω) = −ωC

(s) ′
1 (ω) , (77)

A
(s)
e1 (ω1,2) = −

m

ω2

C
(s)
1 (ω1+ω2) ,

A
(s)
e2 (ω1,2) = −

m

(ω1+ω2)
C

(s)
1 (ω1+ω2)− B

(s)
b1 (ω1,2) .

The following Wilson coefficients of scalar currents are not determined by the RPI constraints

A
(s)
f1,2(ω1,2) , A

(s)
g1,2(ω1,2) , A

(s)
h1,2(ω1,2,3) , A

(s)
i1,2(ω1,2,3) , A

(s)
j1,2,k1,2(ω1,2,3) . (78)

Since the light quark in the full theory current retains its chirality in the effective theory

current, the results for the expansion of the pseudoscalar current, q̄γ5b, are simple to extract
from those for the scalar case, q̄ b. The Dirac structures for pseudoscalar currents may

be obtained by multiplying Eqs. (73,74) on the left by γ5 and 1 ⊗ γ5, respectively. The
constraints on the Wilson coefficients of these currents are then identical.
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2. Solutions for vector and axial-vector currents at O(λ2)

The analysis for the scalar current can be extended to the vector currents, where the
extra Lorentz index makes ensuring that the Dirac basis is complete slightly more difficult.

We use the method discussed in section IIIC to count the number of terms in the Dirac
basis prior to imposing the RPI constraints. For the case of Υσµ

a the index σ is transverse

to v and we have

1 : {gσµT , nσ
Tn

µ, nσ
Tv

µ} , γ5 : {iǫ
σµ
⊥ } , γσ⊥ : {nµ, vµ} , γµ⊥ : {nσ

T} , (79)

which has seven elements. The counting for the Υb,c,g cases are straightforward. For Υαβµ
d

the indices αβ are ⊥ and symmetric. We have

1 : {gαβ⊥ nµ, gαβ⊥ vµ} , γ5 : {–} , γµ⊥ : {gαβ⊥ } , γ
{α
⊥ : {g

β}µ
⊥ } , (80)

so there are four elements in the basis. Finally, for Υαβµ
e,f,h,i we have

1 : {gαβ⊥ nµ, gαβ⊥ vµ}, γ5 : {iǫ
αβ
⊥ nµ, iǫαβ⊥ vµ}, γµ⊥ : {gαβ⊥ }, γα⊥ : {gβµ⊥ }, γβ⊥ : {gαµ⊥ }, (81)

so the basis has seven elements.

For computations, a different basis choice is slightly more convenient. The independent
Dirac structures appearing on the RHS of the constraint equations reduce the basis for

Υσµ

{a1−7} by one further element. For the vector currents we find

Υσµ

(a1−6) =

{

γµγσT , v
µγσT + 2gσµT ,

nµ

n·v
γσT , {γ

µ, vµ,
nµ

n·v
}
nσ
T

n·v

}

, (82)

Υµ

(b1−3) = Υµ

(g1−3) =

{

γµ, vµ,
nµ

n·v

}

, Υµ

(c1−3) =

{

1

2

/̄n

n̄·v
γα⊥

{

γµ, vµ
}

,
n̄/

2
γα⊥n

µ+2gαµ⊥

}

,

Υαβµ

(d1−4) =

{

gαβ⊥ {γ
µ, vµ,

nµ

n·v
} ,

1

2

/̄n

n̄·v
γ
{α
⊥ g

β}µ
⊥

}

,

Υαβµ

(e1−7) =

{

2gαβ⊥ {γ
µ, vµ,

nµ

n·v
} , γα⊥γ

β
⊥{γ

µ, vµ,
nµ

n·v
} ,

1

2

/̄n

n̄·v
γβ⊥g

αµ
⊥

}

,

Υαβµ

(f,h,i1−7) =

{

2gαβ⊥ {γ
µ, vµ,

nµ

n·v
} , γα⊥γ

β
⊥{γ

µ, vµ,
nµ

n·v
} , γβ⊥g

αµ
⊥

}

.

The index symmetrization means γ
{α
⊥ g

β}µ
⊥ = γα⊥g

βµ
⊥ + γβ⊥g

αµ
⊥ . In Eq. (82) we have used

Eq. (13) to remove redundant structures.
The operators J (2a,2b,2c) bear some similarity to the complete basis of six 1/m suppressed

heavy-to-light currents in HQET [46, 47]. The differences are due to the fact that for a
collinear light quark we have the vector nµ available to build additional structures and from

the fact that working in the v⊥ = 0 frame, we do not need operators like χ̄ni v ·
←−
D⊥ΥHv.

For the four quark operators, a basis of Dirac structures is

(

Υ⊗Υ
)µ

(j1−6)
=

(

Υ⊗Υ
)µ

(k1−6)
=

{ /̄n

n̄·v
⊗ {γµ, vµ,

nµ

n·v
} ,

/̄n

n̄·v
γ5 ⊗ γ5{γµ, vµ,

nµ

n·v
}
}

. (83)

Here the counting of the number of independent structures proceeds in the same way as
for the bilinear operators, except that we start by writing down minimal structures for the
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four quark operator where we impose the correct chirality on the purely collinear fermion

bilinear. For J (2j) we start with six structures, {n̄/ , n̄/γ5}⊗{1, γ5, γ
α
⊥}, and find that only the

six terms

n̄/⊗ 1 : {vµ, nµ}, n̄/⊗ γµ⊥ : {1}, n̄/γ5 ⊗ γ
α
⊥ : {iǫαµ⊥ }, n̄/γ5 ⊗ γ5 : {v

µ, nµ} , (84)

are allowed, which we swap for the basis in Eq. (83). The analysis of discrete symmetries for
these currents is similar to that of the four quark operators in the HQET Lagrangian [48].

Using Eqs. (66,70), the relations for the vector current coefficients obtained by solving

the RPI-$ constraint in Eq. (55) are

A
(v)
a1−3(ω) = C

(v)
1−3(ω) , A

(v)
a4 (ω) = 2ωC

(v) ′
1 (ω) ,

A
(v)
a5 (ω) = 2ωC

(v) ′
2 (ω) , A

(v)
a6 (ω) = −2C

(v)
3 (ω)+2ωC

(v) ′
3 (ω) , (85)

The RPI-a solution in Eq. (72) gives

A
(v)
b1−3(ω) = ωC

(v) ′
1−3(ω) , A

(v)
c1−3(ω) = C

(v)
1−3(ω) . (86)

Using in addition Eq. (82), we find that solving Eq. (64) gives

A
(v)
d1 (ω) = −ωC

(v) ′
1 (ω) , A

(v)
d2 (ω) = −ωC

(v) ′
2 (ω)− 2C

(v)
3 (ω) ,

A
(v)
d3 (ω) = −ωC

(v) ′
3 (ω) + 2C

(v)
3 (ω) , A

(v)
d4 (ω) = C

(v)
3 (ω) . (87)

Finally, solving the second RPI-⋆ constraint in Eq. (65) gives

A
(v)
e1 (ω1,2) = −

(m

ω2

)

C1(ω1+ω2)−Bb3(ω1,2) , (88)

A
(v)
e2 (ω1,2) = −

(m

ω2

)

C2(ω1+ω2)−Bb4(ω1,2) ,

A
(v)
e3 (ω1,2) = −

(m

ω2

)

C3(ω1+ω2) +Bb3(ω1,2) +Bb4(ω1,2) ,

A
(v)
e4 (ω1,2) = −

( m

ω1+ω2

)

C1(ω1+ω2) +Bb1(ω1,2) + 2Bb3(ω1,2) ,

A
(v)
e5 (ω1,2) = −

( m

ω1+ω2

)

C2(ω1+ω2)− 2Bb1(ω1,2)− Bb2(ω1,2) ,

A
(v)
e6 (ω1,2) = −

( m

ω1+ω2

)

C3(ω1+ω2)− 3Bb3(ω1,2) ,

A
(v)
e7 (ω1,2) = −2Bb3(ω1,2) +Bb4(ω1,2) .

The following Wilson coefficients of the O(λ2) vector currents are not determined by the
RPI constraints,

A
(v)
f1−7(ω1,2) , A

(v)
g1−3(ω1,2) , A

(v)
h1−7,i1−7(ω1,2,3) , A

(v)
j1−6,k1−6(ω1,2,3) . (89)

The Dirac structures for axial-vector currents which expand ūγ5γ
µb may be obtained by

multiplying the Dirac structures in Eq. (82) by γ5 on the left and in Eq. (83) by 1⊗γ5. The
relations for their Wilson coefficients are then the same as the vector currents.
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3. Solutions for tensor currents at O(λ2)

The counting of the number of independent terms proceeds just as in the vector case but
now with antisymmetric indices µν. For J (2a), the index σ is transverse to v and there are

ten structures

1 : {v[µnν]nσ, g
σ[µ
⊥ vν], g

σ[µ
⊥ nν]} , γ5 : {iǫ

µν
⊥ n

σ, iǫ
σ[µ
⊥ nν], iǫ

σ[µ
⊥ vν]} ,

γ
[µ
⊥ : {vν]nσ, nν]nσ, g

ν]σ
⊥ } , γσ⊥ : {v[µnν]} . (90)

The bases for J (2b,2g) are simple, while for J (2c) we have six terms

1 : {g
α[µ
⊥ vν], g

α[µ
⊥ nν]} , γ5 : {iǫ

α[µ
⊥ nν], iǫ

α[µ
⊥ vν]} , γ

[µ
⊥ : {g

ν]σ
⊥ } , γα⊥ : {v[µnν]} . (91)

We also have six terms for J (2d)

1 : {gαβ⊥ n[µvν]} , γ5 : {iǫ
µν
⊥ g

αβ
⊥ } , γ

[µ
⊥ : {nν]gαβ⊥ , vν]gαβ⊥ } , γ

{α
⊥ : {g

β}[µ
⊥ nν], g

β}[µ
⊥ vν]} , (92)

where the identity g
α[µ
⊥ ǫ

ν]β
⊥ = −gαβ⊥ ǫµν⊥ leaves only one term for γ5. Finally for J (2e,2f,2h,2i) we

count ten terms

1 : {gαβ⊥ n[µvν], g
α[µ
⊥ g

ν]β
⊥ } , γ5 : {iǫ

µν
⊥ g

αβ
⊥ , iǫαβ⊥ n[µvν]} , γ

[µ
⊥ : {nµ]gαβ⊥ , vµ]gαβ⊥ } ,

γα⊥ : {g
β[µ
⊥ nν], g

β[µ
⊥ vν]} , γβ⊥ : {g

α[µ
⊥ nν], g

α[µ
⊥ vν]} . (93)

Again only J (2a) has its basis of Dirac structures further restricted by the RPI-$ constraint
in Eq. (55), which reduces the basis by two terms (since only eight linearly independent

Wilson coefficients appear in Eq. (96) below). For the complete set of Dirac structures for
tensor currents we find

Υσµν

(a1−8) =
{

iσµνγσT , γ
[µvν]γσT − 2g

σ[µ
T γν] ,

1

n·v
γ[µnν]γσT ,

1

n·v
n[µvν]γσT − 2g

σ[µ
T nν] ,

Γµν

(1−4)

nσ
T

n·v

}

, Υµν

(b,g1−4) =
{

Γµν

(1−4)

}

,

Υαµν

(c1−4) =
{1

2

/̄n

n̄·v
γα⊥{iσ

µν , γ[µvν]} ,
n̄/

2
γα⊥γ

[µnν] − 2g
α[µ
⊥ γν] ,

n̄/

2
γα⊥n

[µvν] + 2g
α[µ
⊥ vν]

}

,

Υαβµν

(d1−6) =
{

gαβ⊥ Γµν

(1−4) ,
1

4

/̄n

n̄·v
γ
{α
⊥ g

β}[µ
⊥ γν] ,

1

4

/̄n

n̄·v
γ
{α
⊥ g

β}[µ
⊥ vν]

}

,

Υαβµν

(e1−10) =
{

2gαβ⊥ Γµν

(1−4) , γ
α
⊥γ

β
⊥Γ

µν

(1−4) ,
1

2

/̄n

n̄·v
γβ⊥g

α[µ
⊥ γν] ,

1

2

/̄n

n̄·v
γβ⊥g

α[µ
⊥ vν]

}

,

Υαβµν

(f,h,i1−10) =
{

2gαβ⊥ Γµν

(1−4) , γ
α
⊥γ

β
⊥Γ

µν

(1−4) , γ
β
⊥g

α[µ
⊥ γν] , γβ⊥g

α[µ
⊥ vν]

}

, (94)

where gαβT = gαβ − vαvβ. Similarly, for the tensor four quark operator currents, a complete
basis is

(

Υ⊗Υ
)µν

(j1−10)
=

(

Υ⊗Υ
)µν

(k1−10)

=
{ /̄n

n̄·v
⊗ Γµν

(1−4) ,
/̄n

n̄·v
γ5 ⊗ γ5Γµν

(1−4) , iσ
µν ⊗ 1 , iσµνγ5 ⊗ γ5

}

, (95)
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where just as for the vector case we have made use of chirality.

The relations for tensor Wilson coefficients obtained by solving the RPI-$ constraint
equation are:

A
(t)
a1 (ω) = C1(ω) , A

(t)
a2 (ω) = C2(ω) , (96)

A
(t)
a3 (ω) = C3(ω) , A

(t)
a4 (ω) = C4(ω) ,

A
(t)
a5 (ω) = 2ωC ′

1(ω) , A
(t)
a6 (ω) = 2ωC ′

2(ω) ,

A
(t)
a7 (ω) = −2C3(ω) + 2ωC ′

3(ω) , A
(t)
a8 (ω) = −2C4(ω) + 2ωC ′

4(ω) .

The relations for Wilson coefficients from the RPI-a constraint equations are

A
(t)
b1−4(ω) = ωC

(t)′
1−4(ω), A

(t)
c1−4(ω) = C

(t)
1−4(ω). (97)

Finally, solving the RPI-⋆ constraint in Eq. (64) for the tensor case gives

A
(t)
d1 (ω) = −ωC

(t)′
1 (ω) , A

(t)
d2 (ω) = −ωC

(t)′
2 (ω)− 2C

(t)
3 (ω) ,

A
(t)
d3 (ω) = −ωC

(t)′
3 (ω) + 2C

(t)
3 (ω) , A

(t)
d4 (ω) = −ωC

(t)′
4 (ω) + 2C

(t)
4 (ω) ,

A
(t)
d5 (ω) = −2C

(t)
3 (ω) , A

(t)
d6 (ω) = 2C

(t)
4 (ω) . (98)

while the constraint in Eq. (65) has the solution

A
(t)
e1 (ω1,2) = −

(m

ω2

)

C
(t)
1 (ω1+ω2)− 2B

(t)
b3 (ω1,2) ,

A
(t)
e2 (ω1,2) = −

(m

ω2

)

C
(t)
2 (ω1+ω2)−B

(t)
b4 (ω1,2) +Bb5(ω1,2) ,

A
(t)
e3 (ω1,2) = −

(m

ω2

)

C
(t)
3 (ω1+ω2)−B

(t)
b3 (ω1,2)− B

(t)
b5 (ω1,2) ,

A
(t)
e4 (ω1,2) = −

(m

ω2

)

C
(t)
4 (ω1+ω2)− 2B

(t)
b3 (ω1,2) +B

(t)
b4 (ω1,2) +B

(t)
b6 (ω1,2) ,

A
(t)
e5 (ω1,2) = −

( m

ω1+ω2

)

C
(t)
1 (ω1+ω2)−B

(t)
b1 (ω1,2) + 4B

(t)
b3 (ω1,2) ,

A
(t)
e6 (ω1,2) = −

( m

ω1+ω2

)

C
(t)
2 (ω1+ω2)− 2B

(t)
b1 (ω1,2) +B

(t)
b2 (ω1,2) + 2B

(t)
b4 (ω1,2) ,

A
(t)
e7 (ω1,2) = −

( m

ω1+ω2

)

C
(t)
3 (ω1+ω2) + 3B

(t)
b3 (ω1,2) ,

A
(t)
e8 (ω1,2) = −

( m

ω1+ω2

)

C
(t)
4 (ω1+ω2) + 6B

(t)
b3 (ω1,2)− 3B

(t)
b4 (ω1,2) ,

A
(t)
e9 (ω1,2) = −2B

(t)
b3 (ω1,2) +B

(t)
b5 (ω1,2) ,

A
(t)
e10(ω1,2) = 4B

(t)
b3 (ω1,2)− 2B

(t)
b4 (ω1,2) +B

(t)
b6 (ω1,2) . (99)

The following Wilson coefficients of the O(λ2) tensor currents are not determined by the
RPI constraints

A
(t)
f1−10(ω1,2) , A

(t)
g1−4(ω1,2,3) , A

(t)
h,i1−10(ω1,2) , A

(t)
j,k1−10(ω1,2,3) . (100)
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D. Absence of supplementary projected operators at O(λ2)

Here we show that the analysis above on the surface v⊥ = 0 is complete by showing that
there are no supplementary projected operators as defined in section IIC. The analysis of the

proceeding section makes this simpler, since a complete set of relations have been derived for
all currents J

(2b−2e)
j . Thus, we only need to worry about supplementary projected operators

generated by transforming the currents J
(2a,2f−2k)
j . To simplify our proof we first swap all

factors of n̄·v for 1/(n·v).

First consider the SCET RPI-II transformation at O(λ0) for these J (2) currents. At this
order we have

n̄µ → n̄µ + ǫµ⊥ , γµ⊥ → γµ⊥ −
nµ

2
ǫ⊥/ −

ǫµ⊥
2
n/ , vµ⊥ → −

nµ

2
ǫ⊥ ·v⊥ −

ǫµ⊥
2
n·v ,

Pµ
⊥ → P

µ
⊥ −

nµ

2
ǫ⊥ ·P⊥ , Bµ

⊥ → B
µ
⊥ −

nµ

2
ǫ⊥ ·B⊥ . (101)

We use the convention where all indices αβ are ⊥ for the field structures and Dirac structures
in J

(2f−2k)
j . Now due to the contractions of the α and β indices only the transformations

on n̄µ and γµ⊥ can contribute for these operators (there are no n̄’s or ⊥’s in the J (2a) case).
The transformation related to their labels ωi is O(λ) and need not be considered and the

field transformations cancel. Thus, the only terms that appear in an RPI-II relation are
those whose Dirac structure transforms, δλIIΥ(a,f,g,h,i,j,k) 6= 0. However, with our choice of the

complete basis of Dirac structures on the v⊥ = 0 surface, the structures for these currents
all have zero transformations. In this regard it was important to take a basis with no factors

of n̄/. Away from this surface we must add to our basis of Dirac structure by including
additional v⊥ dependent terms and it is only these terms that can have additional relations.

For example, factors of v⊥ are induced when we reduce a basis that includes factors of n̄/

using the trace formula in Eq. (13). The same is true with our choice of the basis of J
(1b)
j

currents.

Finally consider whether the transformations RPI-⋆ and RPI-$ induce SPO’s or equiva-
lently SCET RPI-I and HQET RPI. Since the n̄ transformation in RPI-$ did not enter at the

order we are working it is apparent that there are no SPO’s from the HQET RPI. Examining
the results of the RPI-I transformations we find that none of the J

(2a,2f−2k)
j currents have

O(λ0) transformations (since the Dirac structures transform at O(λ) and the field structures

that do transform all cancel out).
Thus the results derived in the previous section give the complete set of RPI relations

for the O(λ2) currents when v⊥ = 0.

IV. CHANGE OF BASIS AND COMPARISON WITH TREE LEVEL RESULTS

In expanding the heavy-to-light currents, two different bases of operators are useful. At

tree level it is convenient to write the result for the currents in terms of collinear covariant

derivatives, giving one basis. For the derivation of RPI relations and factorization theorems,
a basis such as the one in Eq. (40) is more useful.

The tree level matching of the full theory current q̄Γb onto SCET currents was done to
subsubleading order in Ref. [15]. In deriving Feynman rules we find the momentum space
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version more convenient so we use the equivalent result from [10]

ψ̄qΓψb → J
(0)

+J
(1a)

+J
(1b)

+J
(2a)

+J
(2b)

+J
(2c)

+J
(2d)

+J
(2d)

+J
(2f)

, (102)

where

J
(0)
(ω) = χ̄n,ωΓHv , (103)

J
(1a)

(ω) =
1

ω

(

χ̄n i
←−
D α

c⊥

)

ω
Θ(a) α Hv , J

(1b)
(ω1,2) =

−1

m
χ̄n,ω1

(igBα
c⊥)ω2

Θ(b)αHv .

J
(2a)

(ω) =
1

2m
χ̄n,ω Υ(a) α i

−→
D T α

us Hv , J
(2b)

(ω) =
1

ω
χ̄n,ω Υ(b) α i

←−
D⊥α

us Hv ,

J
(2c)

(ω) = −
(

χ̄n

n̄·v

P̄

ign·Bc
n·v

)

ω
Υ(c) Hv , J

(2d)
(ω1,2) =

−1

m
χ̄n,ω1

(ign·Bc
n·v

)

ω2

Υ(d)Hv ,

J
(2e)

(ω1,2) =
−1

mω1

(

χ̄ni
←−
Dα

c⊥

)

ω1

(igBβ
c⊥)ω2

Υ(e) αβ Hv ,

J
(2f)

(ω1,2) =
−1

m
χ̄n,ω1

( 1

n·v P̄
iDα

c⊥ igB
β
c⊥

)

ω2

Υ(f) αβ Hv .

The Γ in J
(0)

is simply the Dirac structure of the full theory current. The Dirac structures

that appear in the subleading currents are

Θ(a) α = γ⊥α
n̄/

2n̄ · v
Γ , Θ(b) α = Γ

n/

2n · v
γ⊥α (104)

and

Υ(a) α = ΓγTα , Υ(b) α = γ⊥α
n̄/

2n̄ · v
Γ , Υ(c) = Γ ,

Υ(d) = Γ
n/n̄/

4
, Υ(e) αβ = γ⊥α

n̄/

2
Γ
n/

2
γ⊥β , Υ(f) αβ = Γγ⊥α γ

⊥
β . (105)

Each of the operators J has unit Wilson coefficient at tree level. By re-expressing these
operators in the basis of operators presented in this paper, we determine the tree-level

Wilson coefficients of our currents. This provides a check of the RPI relations.

A. Conversion

In terms of our basis, the leading order tree level current J
(0)

is given by
∫

dω J
(0)
(ω) =

∫

dω J
(0)
1 (ω) . (106)

This result holds for all five Lorentz types, Γ = {1 , γ5 , γµ , γ5γµ, iσµν}. For the remainder of

this section, we will suppress the explicit ω-dependence of our basis J(ω)’s as well as the ap-
propriate integrals

∫

[dωi] whenever results hold equally well as integrals or as densities. For

example, Eq. (106) would be written simply as J
(0)

= J
(0)
1 . If the Lorentz type (s, p, v, a, t)

of the current is not specified, the same result holds for all five types as above.
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For the O(λ) currents, the relations differ for the scalar, vector, and tensor cases,
∫

dω1 J
(1a)

s,p (ω1) =

∫

dω1 J
(1a)
1 (ω1)−

∫

dω1,2
m

ω1+ω2
J
(1b)
1 (ω1, ω2) , (107)

∫

dω1 J
(1a)

v,a (ω1) =

∫

dω1 J
(1a)
1 (ω1) +

∫

dω1,2
m

ω1+ω2

[

J
(1b)
1 (ω1, ω2)− 2J

(1b)
2 (ω1, ω2)

]

,

∫

dω1 J
(1a)

t (ω1) =

∫

dω1 J
(1a)
1 (ω1) +

∫

dω1,2
m

ω1+ω2

[

−J
(1b)
1 (ω1, ω2)− 2J

(1b)
2 (ω1, ω2)

]

,

J
(1b)

s,p = 0 , J
(1b)

v,a = −J
(1b)
3 , J

(1b)

t = 2J
(1b)
1 + J

(1b)
3 + 2J

(1b)
4 + 2J

(1b)
5 .

The last line of relations are true as integrals or as densities. For example J
(1b)
v,a (ω1,2) =

−J
(1b)
3 (ω1,2). At O(λ2) the relations between the two forms of subleading currents are the

same for all J
(2a,2b,2c)

currents

J
(2a)

= J
(2a)
1 , J

(2b)
= J

(2c)
1 ,

∫

dω1 J
(2c)

=

∫

dω1,2
m

ω2

[

−J
(2e)
1 +J

(2g)
1

]

, (108)

where in the last relation the arguments of J
(2c)

(ω1) and J
(2e,2g)
1 (ω1,2) are implicit. The

remaining currents come in different combinations depending on the Dirac structure. For

J
(2d)

we have

J
(2d)

s,p = 0 , J
(2d)

v,a = J
(2e)
3 −J

(2g)
3 , J

(2d)

t = −J
(2e)
3 +J

(2g)
3 . (109)

For the scalar J
(2e)

currents,
∫

dω1,2 J
(2e)

s,p =

∫

dω1,2

[

J
(2e)
1 −J

(2e)
2

]

+

∫

dω1,2

[

e→ f
]

+

∫

dω1,2,3
ω2+ω3

ω1+ω2

[

e→ h
]

, (110)

with similar relations for the vector and tensor cases (suppressing the integrals for conve-

nience),

J
(2e)

v,a =
[

J
(2e)
1 − J

(2e)
3 −J

(2e)
4 +J

(2e)
6 +2J

(2e)
7

]

+
[

J
(2f)
1 − J

(2f)
3 −J

(2f)
4 +J

(2f)
6 −2J

(2f)
7

]

+
ω2+ω3

ω1+ω2

[

J
(2h)
1 − J

(2h)
3 −J

(2h)
4 +J

(2h)
6 −2J

(2h)
7

]

,

J
(2e)

t =
[

− J
(2e)
1 − J

(2e)
3 + J

(2e)
5 + J

(2e)
7

]

+
[

e→ f
]

+
ω2+ω3

ω1+ω2

[

e→ h
]

. (111)

Finally for J
(2f)

,

J
(2f)

s,p =
[

−J
(2e)
1 + J

(2e)
2

]

−
ω1

ω2

[

e→ f
]

−
[

e→ h
]

, (112)

J
(2f)

v,a =
[

−J
(2e)
3 − J

(2e)
4 + 2J

(2e)
6

]

−
ω1

ω2

[

e→ f
]

−
[

e→ h
]

,

J
(2f)

t =
[

−J
(2e)
1 − J

(2e)
3 + J

(2e)
5 + 2J

(2e)
7

]

−
ω1

ω2

[

e→ f
]

−
[

e→ h
]

,

where the suppressed integrals are the same as for J
(2e)

.
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B. Wilson coefficients at tree level

Inserting Eqs. (106-112) into Eq. (102), we can read off the tree level Wilson coefficients

of our basis. For example, since J
(0)

is the only term at leading order we have C
(d)
1 (ω) = 1

and C
(d)
j 6=1(ω) = 0 for d = s, p, v, a, t.

For scalar currents, the non-vanishing tree-level Wilson coefficients are

C
(s)
1 (ω) = 1 , B

(s)
a1 (ω) = 1 , B

(s)
b1 (ω1,2) =

−m

ω1+ω2
, (113)

and at O(λ2)

A
(s)
a1 (ω) = 1 , A

(s)
c1 (ω) = 1 ,

A
(s)
e1 (ω1,2) = −

m

ω2
, A

(s)
f1 (ω1,2) = 1 +

ω1

ω2
,

A
(s)
f2 (ω1,2) = −1 −

ω1

ω2
, A

(s)
g1 (ω1,2) =

m

ω2
,

A
(s)
h1 (ω1,2) =

ω1+2ω2+ω3

ω1+ω2

, A
(s)
h2 (ω1,2,3) = −

ω1+2ω2+ω3

ω1+ω2

. (114)

The same results hold for the pseudoscalar currents. To O(λ2), the values of the Wilson

coefficients for vector currents that do not vanish at tree-level are

C
(v)
1 (ω) = 1 , B

(v)
a1 (ω) = 1 ,

B
(v)
b1 (ω1,2) =

m

ω1+ω2
, B

(v)
b2 (ω1,2) =

−2m

ω1+ω2
, B

(v)
b3 (ω1,2) = −1 , (115)

and

A
(v)
a1 (ω) = 1 , A

(v)
c1 (ω) = 1 ,

A
(v)
e1 (ω1,2) = 1−

m

ω2

, A
(v)
e3 (ω1,2) = −1 ,

A
(v)
e4 (ω1,2) = −2 , A

(v)
e6 (ω1,2) = 3 ,

A
(v)
e7 (ω1,2) = 2 , A

(v)
f1 (ω1,2) = 1 ,

A
(v)
f3 (ω1,2) = −1 +

ω1

ω2
, A

(v)
f4 (ω1,2) = −1 +

ω1

ω2
,

A
(v)
f6 (ω1,2) = 1−

2ω1

ω2

, A
(v)
f7 (ω1,2) = −2 ,

A
(v)
g1 (ω1,2) =

m

ω2

, A
(v)
g3 (ω1,2) = −1 ,

A
(v)
h1 (ω1,2,3) =

ω2+ω3

ω1+ω2

, A
(v)
h3 (ω1,2,3) =

ω1−ω3

ω1+ω2

,

A
(v)
h4 (ω1,2,3) =

ω1−ω3

ω1+ω2
, A

(v)
h6 (ω1,2,3) =

−2ω1−ω2+ω3

ω1+ω2
,

A
(v)
h7 (ω1,2,3) = −2

ω2+ω3

ω1+ω2

. (116)
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The same results hold for the axial vector currents. Finally, for the O(λ2) tensor currents

we have nonvanishing coefficients

C
(t)
1 (ω) = 1 , B

(t)
a1 (ω) = 1 , B

(t)
b1 (ω1,2) = 2−

m

ω1+ω2

, B
(t)
b2 (ω1,2) =

−2m

ω1+ω2

,

B
(t)
b3 (ω1,2) = 1 , B

(t)
b4 (ω1,2) = 2 , B

(t)
b5 (ω1,2) = 2 , (117)

and

A
(t)
a1 (ω) = 1 , A

(t)
c1 (ω) = 1 ,

A
(t)
e1 (ω1,2) = −2−

m

ω2
, A

(t)
e3 (ω1,2) = −3 ,

A
(t)
e5 (ω1,2) = 2 , A

(t)
e7 (ω1,2) = 3 ,

A
(t)
f1(ω1,2) = −1 +

ω1

ω2
, A

(t)
f3(ω1,2) = −1 +

ω1

ω2
,

A
(t)
f5(ω1,2) = 1−

ω1

ω2
, A

(t)
f7(ω1,2) = 1−

2ω1

ω2
,

A
(t)
g1 (ω1,2) =

m

ω2

, A
(t)
g3 (ω1,2) = 1 ,

A
(t)
h1(ω1,2,3) =

ω1−ω3

ω1+ω2
, A

(t)
h3(ω1,2,3) =

ω1−ω3

ω1+ω2
,

A
(t)
h5(ω1,2,3) =

−ω1+ω3

ω1+ω2
, A

(t)
h7(ω1,2,3) =

−2ω1−ω2+ω3

ω1+ω2
. (118)

It is straightforward to check that these results all satisfy the RPI relations from section IIIC,

providing a cross-check on those results.

C. One-Loop Results

The relations from section IIIC apply at any order in perturbation theory, so they can
also be used to determine one-loop values for certain coefficients. For the LO currents the

one-loop coefficients in MS at µ = m are [2]

C
(s)
1 (ω̂) = 1−

αs(m)CF

4π

{

2 ln2(ω̂) + 2Li2(1−ω̂)−
2 ln(ω̂)

1− ω̂
+
π2

12

}

,

C
(v)
1 (ω̂) = 1−

αs(m)CF

4π

{

2ln2(ω̂) + 2Li2(1−ω̂) + ln(ω̂)
(3ω̂ − 2

1− ω̂

)

+
π2

12
+ 6

}

,

C
(t)
1 (ω̂) = 1−

αs(m)CF

4π

{

2ln2(ω̂) + 2Li2(1−ω̂) + ln(ω̂)
(4ω̂ − 2

1− ω̂

)

+
π2

12
+ 6

}

,

C
(v)
2 (ω̂, 1) =

αs(m)CF

4π

{

2

(1− ω̂)
+

2ω̂ ln(ω̂)

(1− ω̂)2

}

, C
(t)
2 (ω̂) = 0 ,

C
(v)
3 (ω̂) =

αs(m)CF

4π

{

(1− 2ω̂)ω̂ ln(ω̂)

(1− ω̂)2
−

ω̂

1− ω̂

}

,

C
(t)
3 (ω̂) =

αs(m)CF

4π

{

−2ω̂ ln(ω̂)

1− ω̂

}

, C
(t)
4 (ω̂) = 0 , (119)
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where ω̂ = ω/m and CF = 4/3 for color SU(3). The quark-gluon-antiquark operators

J (1b) have coefficients that are not fixed by RPI, and these were determined by a one-loop
matching in [29, 30]. Thus all O(λ0,1) currents are known at one-loop order. The expressions

are fairly lengthy, and so we do not repeat them here. Using their results and our Eqs. (75-
77), (85-88), and (96-99), the coefficients of the currents J (2a,2b,2c,2d,2e) are also determined

at one-loop order.
We give the scalar current case as an example. For the scalar current, the coefficient at

µ = m is [29, 30]

B
(s)
(b1)(ω̂1,2, 1) = −

1

ω̂
+
αsCF

4π

[

−2

ω̂2

{

ln2 ω̂−ln2 ω̂1−ln
( ω̂

ω̂1

)

}

+
( 4

ω̂
+

2

1−ω̂

)

ln ω̂

−
2

ω̂1

(

ln ω̂

1−ω̂
−

ln ω̂2

1−ω̂2

)

−
ω̂2 ln ω̂2

(1−ω̂2)2
+
2(1−ω̂1)

ω̂1ω̂2

{

Li2(1−ω̂)−Li2(1−ω̂1)
}

−
2

ω̂1ω̂2

{

Li2(1− ω̂2)−
π2

6

}

−
4

ω̂
−

1

1− ω̂2

]

−
αsCA

4π

[

−1

ω̂2

{

ln2 ω̂−ln2 ω̂1−ln
( ω̂

ω̂1

)}

+
1

ω̂1
ln
( ω̂

ω̂2

)

+
ln ω̂2

1−ω̂2

+
1− ω̂1

ω̂1ω̂2

{

Li2(1−ω̂)− Li2(1−ω̂1)
}

−
1

ω̂1ω̂2

{

Li2(1−ω̂2)−
π2

6

}

]

+
αsCF

4π

1

ω̂

[

2 ln2(ω̂) + 2Li2(1−ω̂)−
2 ln(ω̂)

1− ω̂
+
π2

12

]

, (120)

where CA = 3, ω̂1,2 = ω1,2/m, ω̂ = ω̂1 + ω̂2, and we have transformed to our basis. We will
also need the derivative of the LO scalar currents coefficient

d

dω
C

(s)
1 (ω̂, 1) = −

αs(m)CF

2πm

{

−1 + ω̂ + (2− 4ω̂ + ω̂2) ln ω̂

ω̂(1− ω̂)2

}

. (121)

Now in section IIIC we derived the following results for the O(λ2) currents

A
(s)
a1 (ω) = C

(s)
1 (ω) , A

(s)
a2 (ω) = 2ωC

(s) ′
1 (ω) , (122)

A
(s)
b1 (ω) = ωC

(s) ′
1 (ω) , A

(s)
c1 (ω) = C

(s)
1 (ω) , A

(s)
d1 (ω) = −ωC

(s) ′
1 (ω) ,

A
(s)
e1 (ω1,2) = −

m

ω2

C
(s)
1 (ω1+ω2) , A

(s)
e2 (ω1,2) = −

m

(ω1+ω2)
C

(s)
1 (ω1+ω2)− B

(s)
b1 (ω1,2) .

Combined with Eqs.(119-121), these relations determine the coefficients at one-loop order.

The results for the J
(2a−2e)
j vector and tensor currents at one-loop order are easily obtained

in the same manner.

V. CONCLUSION

In this paper we derived a complete basis of scalar, vector, and tensor heavy-to-light
currents at next-to-next-to-leading order in the power counting, O(λ2). Building on the

approach in Ref. [31] where one takes v⊥ = 0 from the start, we constructed the full set
of RPI relations that leave us on this surface. The completeness of deriving RPI relations
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projected on a surface was analyzed. With a careful choice of Dirac structures in our analysis

of heavy-to-light currents at O(λ2) it was demonstrated that the projected RPI gives the
full set of constraints. We also investigated the path dependence of Wilson lines in order to

clarify what conditions they must obey to give the correct cancellation of usoft gluon effects,
and to demonstrate the manner in which results are independent of the choice of boundary

condition.
A simple method for counting the number of Dirac structures in the basis for any operator

with d = 4 was given.6 Several types of reparameterization invariance provide restrictions on
the structure of these currents, which we formulated as constraint equations on the allowed

Dirac structures and Wilson coefficients as given in Eqs. (51), (55), (59), (60), (64), and
(65). We expect that a similar setup with constraint equations and projected surfaces will

be useful in deriving RPI relations at higher orders in λ and in deriving results for non
heavy-to-light currents.

Our main results are contained in the solution of the constraint equations as given in
Eqs. (73-77), (82-88), and (94-99). These results determine the coefficients of five of the

eleven NNLO operators, J
(2a,2b,2c,2d,2e)
j , for various Dirac structures indicated by j and at

any order in perturbation theory, in terms of the coefficients of NLO and LO operators. This
determines 7, 23, and 32 Wilson coefficients for the scalar, vector, and tensor heavy-to-light

currents respectively. Results at tree-level and one-loop order were discussed in sections IVB

and IVC. Finally, the operators J (2f,2g,2h,2i,2j,2k) defined in Eqs. (40,41) together with the
Dirac structures in Eqs. (73,74,82,83,94,95) were shown to not be constrained by reparam-

eterization invariance.
We thank D.Pirjol for useful comments, and the Institute of Nuclear Theory for their

hospitality while parts of this work were completed. This work was supported by the Office
of Nuclear Science and U.S. Department of Energy under DE-FG02-93ER-40762 (J.K.) and

the cooperative research agreement DF-FC02-94ER40818 (C.A. and I.S.), as well as the
DOE OJI program and Sloan Foundation (I.S.).

[1] C. W. Bauer, S. Fleming, and M. E. Luke, Phys. Rev. D63, 014006 (2001), hep-ph/0005275.

[2] C. W. Bauer, S. Fleming, D. Pirjol, and I. W. Stewart, Phys. Rev. D63, 114020 (2001),

hep-ph/0011336.

[3] C. W. Bauer and I. W. Stewart, Phys. Lett. B516, 134 (2001), hep-ph/0107001.

[4] C. W. Bauer, D. Pirjol, and I. W. Stewart, Phys. Rev. D65, 054022 (2002), hep-ph/0109045.

[5] M. E. Luke and A. V. Manohar, Phys. Lett. B286, 348 (1992), hep-ph/9205228.

[6] J. Chay and C. Kim, Phys. Rev. D65, 114016 (2002), hep-ph/0201197.

[7] A. V. Manohar, T. Mehen, D. Pirjol, and I. W. Stewart, Phys. Lett. B539, 59 (2002), hep-

ph/0204229.

[8] C. W. Bauer and A. V. Manohar, Phys. Rev. D70, 034024 (2004), hep-ph/0312109.

6 We did not consider the complication that occurs if one uses dimensional regularization where there can

be additional evanescent O(λ2) operators which vanish for d = 4. In SCET this type of operator has been

studied for the O(λ) currents in Ref. [30].

33



[9] S. W. Bosch, B. O. Lange, M. Neubert, and G. Paz, Nucl. Phys. B699, 335 (2004), hep-

ph/0402094.

[10] K. S. M. Lee and I. W. Stewart, Nucl. Phys. B721, 325 (2005), hep-ph/0409045.

[11] S. W. Bosch, M. Neubert, and G. Paz, JHEP 11, 073 (2004), hep-ph/0409115.

[12] M. Beneke, F. Campanario, T. Mannel, and B. D. Pecjak, JHEP 06, 071 (2005), hep-

ph/0411395.

[13] B. O. Lange, M. Neubert, and G. Paz (2005), hep-ph/0504071.

[14] J. Chay, C. Kim, and A. K. Leibovich, Phys. Rev. D72, 014010 (2005), hep-ph/0505030.

[15] M. Beneke, A. P. Chapovsky, M. Diehl, and T. Feldmann, Nucl. Phys. B643, 431 (2002),

hep-ph/0206152.

[16] C. W. Bauer, D. Pirjol, and I. W. Stewart, Phys. Rev. D67, 071502 (2003), hep-ph/0211069,

journal version.

[17] D. Pirjol and I. W. Stewart, Phys. Rev. D67, 094005 (2003), hep-ph/0211251.

[18] J.-g. Chay and C. Kim, Phys. Rev. D68, 034013 (2003), hep-ph/0305033.

[19] M. Beneke and T. Feldmann, Nucl. Phys. B685, 249 (2004), hep-ph/0311335.

[20] B. O. Lange and M. Neubert, Nucl. Phys. B690, 249 (2004), hep-ph/0311345.

[21] B. Grinstein, Y. Grossman, Z. Ligeti, and D. Pirjol, Phys. Rev. D71, 011504 (2005), hep-

ph/0412019.

[22] T. Becher, R. J. Hill, and M. Neubert (2005), hep-ph/0503263.

[23] J. Chay and C. Kim, Nucl. Phys. B680, 302 (2004), hep-ph/0301262.

[24] C. W. Bauer, D. Pirjol, I. Z. Rothstein, and I. W. Stewart, Phys. Rev. D70, 054015 (2004),

hep-ph/0401188.

[25] M. Beneke, G. Buchalla, M. Neubert, and C. T. Sachrajda, Phys. Rev. Lett. 83, 1914 (1999),

hep-ph/9905312.

[26] T. Feldmann and T. Hurth, JHEP 11, 037 (2004), hep-ph/0408188.

[27] A. V. Manohar and M. B. Wise, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 10, 1 (2000).

[28] M. Neubert, Phys. Rept. 245, 259 (1994), hep-ph/9306320.

[29] M. Beneke, Y. Kiyo, and D. s. Yang, Nucl. Phys. B692, 232 (2004), hep-ph/0402241.

[30] T. Becher and R. J. Hill, JHEP 10, 055 (2004), hep-ph/0408344.

[31] R. J. Hill, T. Becher, S. J. Lee, and M. Neubert, JHEP 07, 081 (2004), hep-ph/0404217.

[32] C. W. Bauer, C. Lee, A. V. Manohar, and M. B. Wise, Phys. Rev. D70, 034014 (2004),

hep-ph/0309278.

[33] G. P. Korchemsky and G. Sterman, Nucl. Phys. B555, 335 (1999), hep-ph/9902341.

[34] C. W. Bauer, A. V. Manohar, and M. B. Wise, Phys. Rev. Lett. 91, 122001 (2003), hep-

ph/0212255.

[35] J. C. Collins and G. Sterman, Nucl. Phys. B185, 172 (1981).

[36] G. T. Bodwin, Phys. Rev. D31, 2616 (1985).

[37] J. C. Collins, D. E. Soper, and G. Sterman, Nucl. Phys. B308, 833 (1988).

[38] G. P. Korchemsky and G. Marchesini, Nucl. Phys. B406, 225 (1993), hep-ph/9210281.

[39] J. C. Collins, Phys. Lett. B536, 43 (2002), hep-ph/0204004.

[40] X.-d. Ji, J.-p. Ma, and F. Yuan, Phys. Rev. D71, 034005 (2005), hep-ph/0404183.

[41] J. C. Collins and A. Metz, Phys. Rev. Lett. 93, 252001 (2004), hep-ph/0408249.

[42] J. Chay, C. Kim, Y. G. Kim, and J.-P. Lee, Phys. Rev. D71, 056001 (2005), hep-ph/0412110.

[43] C. W. Bauer, S. Fleming, D. Pirjol, I. Z. Rothstein, and I. W. Stewart, Phys. Rev. D66,

014017 (2002), hep-ph/0202088.

[44] A. V. Manohar, Phys. Rev. D68, 114019 (2003), hep-ph/0309176.

34



[45] M. E. Luke, A. V. Manohar, and I. Z. Rothstein, Phys. Rev. D61, 074025 (2000), hep-

ph/9910209.

[46] A. F. Falk and B. Grinstein, Phys. Lett. B247, 406 (1990).

[47] A. F. Falk, M. Neubert, and M. E. Luke, Nucl. Phys. B388, 363 (1992), hep-ph/9204229.

[48] B. Blok, J. G. Korner, D. Pirjol, and J. C. Rojas, Nucl. Phys. B496, 358 (1997), hep-

ph/9607233.

35


	Introduction
	Ingredients from SCET
	Degrees of freedom, power counting, gauge invariance, and Wilson lines
	Comments on boundary conditions for Y(x)
	Reparameterization invariance
	Completeness of Projected RPI

	Heavy-to-Light currents to O(2)
	Current field structures at O(2)
	Constraint equations from reparameterization invariance
	RPI- at O()
	RPI-$ at O(2)
	SCET RPI-a at O(2)
	SCET RPI- at O(2)

	Solutions to the constraint equations
	Solutions for scalar and pseudoscalar currents at O(2)
	Solutions for vector and axial-vector currents at O(2)
	Solutions for tensor currents at O(2)

	Absence of supplementary projected operators at O(2)

	Change of Basis and Comparison with Tree Level Results
	Conversion
	Wilson coefficients at tree level
	One-Loop Results

	Conclusion
	References

