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Abstract

We evaluate the W-exchange diagram within the framework of light cone sum rules
(LCSR), taking B0

d → D−

s K
+ as an example. This decay mode, though proceeding

via the W-exchange diagram only and therefore expected to be highly suppressed,
has the branching ratio 3.2 × 10−5. We estimate the W-exchange amplitude within
LCSR, including soft gluon corrections, to twist-3 accuracy. The calculation naturally
brings out the features which suggest that such an amplitude is expected to be small
in cases when both the final state mesons are light, without relying on any kind of an
assumption. With minor changes, it is also possible to have a rough estimate of the
exchange/annihilation type contributions to other processes like B → ππ, πK,KK.
We find that though it appears as if the sum rule method yields a fair agreement with
the observed value, a careful analysis of individual terms shows that the method, in
its present form, is inadequate to capture the correct physical answer for the case of
heavy final states.

1 Introduction

There is a compelling need to have an unambiguous quantitative estimate of the two body
hadronic B decay amplitudes. It is now well established that the naive factorization ap-
proach has to be abandoned and one has to rely on one of the QCD based approaches, like
QCD factorization (QCDF) [1], perturbative QCD (PQCD) [2], soft collinear effective the-
ory (SCET) [3] or light cone sum rules (LCSR) [4], to calculate hadronic decay amplitudes.
These differ in their treatment of one or more hadronic quantities/parameters and therefore
the results are quite approach dependent and at times very different.
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The rare decay B0
d → D−

s K
+ proceeds solely via the W-exchange diagram. In general,

certain diagrams, which go under the name of annihilation (A), W-exchange (E)and penguin-
annihilation (PA) - hereafter generically referred to as annihilation diagrams or contributions,
are neglected on the ground of being much lower in the hierarchy of contributing diagrams.
These are the diagrams where the lighter quark present in the B-meson also participates
in the weak process as opposed to tree (T) or color-suppressed tree (C) or penguin (P)
type diagrams. The annihilation contributions are most often either set to zero or become
parameters of the model. Since the mode B0

d → D−

s K
+ has only the E-type contribution,

it offers a unique opportunity to confront theoretical predictions against the experimental
observations. Also, it can be used to extract and understand the general structure of such an
amplitude. This decay mode has been investigated in the past within various calculational
approaches. If factorization holds, then the exchange amplitude will have the form

E =
GF√
2
VudV

∗

cb

(

C1

3
+ C2

)

fBF
0→DsK
0 (1)

ie the initial B-meson annihilates into vacuum and the [DsK] pair is created from the vacuum
(represented by the time-like form factor). Within naive factorization, the time-like form
factor is expected to be small at q2 = m2

B and also the combination of the Wilson coefficients
appearing is a small number. Therefore, this amplitude is negligible and thus justifies the
neglect in such a scheme. Using the BSW model [5] the branching ratio is predicted to be
6.5× 10−8 [6]. In order to have a sizeable branching ratio within such a picture, the possible
explanation is to consider final state rescattering effects which can lift the suppression [7].
An early attempt to predict the branching fraction based upon PQCD [8] yielded a value
(4.7 − 6.6) × 10−6 - an increase by two orders of magnitude compared to the BSW based
prediction.

The decay has been experimentally observed both by BaBar [9] and Belle [10] and the
observed branching ratio is

BR(B0
d → D−

s K
+) =

{

(3.2± 1.0± 1.0)× 10−5 (BaBar)
(4.6± 1.2± 1.3)× 10−5 (Belle)

(2)

The observed branching ratio is larger than the predicted value. It has been re-examined
within PQCD [11] and it is found that theoretical prediction matches well with the exper-
imental value. However, any such calculation requires precise knowledge of heavy meson
wave functions, which is lacking at the moment. Also, the employed wave functions do not
satisfy equation of motion constraints. Therefore, once that is taken into account, some
differences may arise. In [12], within SCET, it is noted that the C- and E-type contributions
are of similar size and are both suppressed compared to T- contributions and it is expected
that the B0

d → D−

s K
+ amplitude will have a suppression factor of about 3 compared to

B0
d → D0π0 to account for the experimental numbers. However, a complete calculation

within SCET is still missing. Further, since such contributions are free parameters in QCDF
or schemes relying on SU(3) classification, it is desirable to have an independent check on
such results employing some other method. This is further required by the need to verify
the presence (or absence) of possible large final state interactions in the channel. It should
be noticed that the effect of such rescatterings can be to enhance the rates and also to bring
in extra contributions with different CKM elements - thus providing with an opportunity
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to look for CP violation which will unambiguously confirm such rescatterings. However, in
the present case, the dominant rescattering contributions come from π+(0)D−(0) intermediate
states. These amplitudes have the same weak phase as the E-type contribution and there-
fore there is no possibility of CP violation. Therefore, it becomes even more important to
have independent checks to be sure of the results. Moreover, an unambiguous estimation of
such contributions is necessary in order to faithfully extract CKM parameters, since such
contributions are present in the decay modes often employed for extracting CKM angles.

Recently, a modified light cone sum rule method has been proposed [13] and has been
employed to estimate emission [13] and penguin contributions [14], both hard and soft as
well as factorizable and non-factorizable, to B → ππ mode as well as to evaluate soft non-
factorizable contributions in case of B → J/ψK [15], B → Dπ [16], B → ηcK, χcK [17],
B → K + charmonium [18] and B → Kπ [19]. It has been shown in these studies that
the soft gluon contributions are equally important as the hard gluon ones, if not dominant.
However, none of these studies addresses the issue of annihilation type diagrams within this
modified LCSR approach. It is the aim of this study to focus on the evaluation of such
contributions employing LCSR.

We evaluate the W-exchange diagram and work to twist-3 accuracy. The calculation explic-
itly brings out the features which clearly show why the exchange/annihilation type contribu-
tions are generally small. The leading soft gluon corrections turn out to be proportional to
q2 = m2

K , which vanish in the chiral limit. Such soft gluon corrections may not be completely
insignificant numerically due to the presence of large multiplicative factors. The main aim of
the present study is to present an unambiguous and clear way of estimating annihilation type
contributions, without having to rely on any dynamical assumptions. Using the computed
amplitude, and not relying on general expectations, we argue that the annihilation type
amplitudes are 1/mB suppressed compared to the tree contributions. However, a careful
analysis of individual terms in the final expression reveals that the sum rule method in its
present form is not suitable for final states containing heavy quark like charm.

The paper is organised as follows. In the next section we outline the method and introduce
the basic correlation function. In Section 3 we present the calculation of the correlation
function, including the leading soft gluon corrections. Section 4 contains the numerical
results and discussions. Conclusions are summarised in Section 5.

2 Modified LCSR framework and relevant correlation

function

We are interested in evaluating the amplitude for the decay B0
d → D−

s K
+. It proceeds via

the W-exchange diagram, with the ss̄ pair attached to any of the quark legs via a gluon.
The effective Hamiltonian relevant for the process is

Heff =
GF√
2
VudV

∗

cb [C1(µ)O1(µ) + C2(µ)O2(µ)] (3)

where
O1 = (b̄Γµc)(ūΓ

µd) O2 = (ūΓµc)(b̄Γ
µd) (4)
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where Γµ = γµ(1− γ5) The above effective Hamiltonian can be cast into the following form
(suppressing the scale µ in operators as well as coefficients)

Heff =
GF√
2
VudV

∗

cb

[(

C1

3
+ C2

)

O2 + 2C1Õ2

]

(5)

where

Õ2 =

(

ū
λa

2
Γµc

)(

b̄
λa

2
Γµd

)

(6)

and λa are the Gell-Mann matrices with normalization Tr(λaλb) = 2δab. The amplitude that
we are interested in is

A(B0
d → D−

s K
+) = 〈D−

s (p)K
+(q)|Heff |B0

d(p+ q)〉 (7)

K

0
Bd

sD

+

−

b

d

c

u

s

s

Oi
K+

s

s

Oi

c

j

5j
(B)

(Ds)

µ
y

q

p−k

p+q

d

b

u

x

k

Figure 1: Schematic representation of the exchange diagram (Left). Oi represents one of the
operators of the effective Hamiltonian. LCSR picture (Right) with B and Ds interpolating
currents. k is the artificial four momentum introduced at the weak vertex. The thick
dot indicates possible lines to which a soft gluon (dotted line) from the kaon distribution
amplitude can be attached.

The starting point of any LCSR calculation is the specification of the relevant vacuum-meson
correlation function. In the present case, the correlator of interest is the following

F (O)
µ (p, q, k) = −

∫

d4xei(p−q)x
∫

d4yei(p−q)y〈K+(q)|T [j(Ds)
µ (y) O(0) j

(B)
5 (x)]|0〉 (8)

where O is one of the operators present in the effective Hamiltonian and j(Ds)
µ and j

(B)
5

are the interpolating currents for Ds and B-meson respectively. Explicitly we have, O =

(ūiΓµc
j)(b̄kΓµdl) AijAkl, where AijAkl = δijδkl for O = O2 and AijAkl =

(

λa

2

)ij (
λa

2

)kl
for

O = Õ2 and j
(B)
5 = imbd̄γ5b, j

(Ds)
µ = c̄γµγ5s.

As proposed and explained in [13], an unphysical, artificial four momentum k is introduced in
the problem. This is done in order to avoid unwanted contributions to the dispersion relation.
This is ensured with the introduction of the unphysical momentum because now the total
momentum of the final state mesons, P = (p − k) + q, is different from the momentum of
the initial B-meson, p + q. In the final physical matrix elements, no trace of this fictitious
momentum k remains. The six invariants are chosen to be p2, q2, k2, (p − k)2, (p + q)2
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and P 2. The kaon is on-shell. In the chiral limit, the kaon can be treated as massless and
thus q2 = 0. We do not assume such a limit for the time being and shall only consider it
towards the end. The correlation function is evaluated in the deep Euclidean region and then
analytically continued to the time-like region. The complete kinematical region in which the
light cone expansion is applicable, relevant to this case is

k2 = 0 q2 = m2
K p2 = m2

Ds

|(p+ q)|2, |(p− k)|2, |P |2 >> Λ2
QCD

The correlation function, Eq(8), can be expressed in terms of the four independent tensor
structures, namely

F (O)
µ (p, q, k) = F

(O)
0 (p− k)µ + F

(O)
1 qµ + F

(O)
2 kµ + F

(O)
3 ǫµναβp

νqαkβ (9)

For the present case, F
(O)
0 is the only object of interest to us.

The above correlation function is evaluated to the desired accuracy, both in the strong
coupling, gs, and the kaon distribution amplitudes governed by the twist expansion. The
evaluated result is then expressed as a double dispersion integral with respect to the vari-
ables (p − k)2 and (p + q)2 and is subsequently matched to the corresponding hadronic
double dispersion integral. In the intermediate steps, Borel transformations are applied in
both the variables and quark-hadron duality is invoked to approximate the excited state
contributions. It is found that the ground state B-meson contribution is independent of the
auxiliary momentum k. Thus the final physical matrix elements do not have any dependence
on the fictitious momentum introduced. The end result of such a matching has the following
structure

A(B0
d → D−

s K
+) ≡ [..] 〈D−

s (p)K
+(q)|O|B0

d(p+ q)〉

= [..]

(

− i

π2fDs
fBm2

B

)

∫ sDs
th

m2
c

ds1 e
(m2

Ds
−s1)/M2

1

∫ Rb

m2

b

ds2 e
(m2

B
−s2)/M2

2

Ims1Ims2F
(O)
0,QCD(s1, s2) (10)

where [..] represents the overall multiplicative factors like CKM elements and Wilson coeffi-
cients relevant to the operator inserted.

3 QCD calculation of correlation function and hadronic

matrix elements

The possible contributions to the correlation function up to O(gs) can be diagrammatically
represented as shown in Fig.1. These come in two forms - contributions without any soft
gluon and with one soft gluon connecting the kaon to one of the remaining three quark lines.
The soft gluon contributions are obtained by expanding the relevant propagator(s) around
the light cone and picking the first non-trivial terms containing one gluon field [20]:

Sjk(x, y : m) ≡ −i〈0|T [qj(x)q̄k(y)|0〉 (11)

5



=
∫

d4k

2π4
e−i(x−y)k

[

6 k +m

k2 −m2
δjk −

∫ 1

0
dvgsG

µν
a (vx+ (1− v)y)

(

λa

2

)jk

×
{

1

2

6 k +m

(k2 −m2)2
σµν −

1

k2 −m2
v(x− y)µγν

}

+O(g2s)

]

We discuss and evaluate these contributions below. To this end, we note that various contri-
butions are labeled according to the operator from the effective Hamiltonian and the order in
strong coupling. We restrict ourselves to twist-3 order in the kaon distribution amplitudes.
Incorporation of higher twist effects is fairly straightforward, though cumbersome. The con-
tribution due to insertion of operator O2 is labeled as F

(O2)
0 . Further, it is explicitly split

into terms according to the order in strong coupling and subsequently the contributions are

labeled as F
(O2,g0s)
0 and F

(O2,g1s)
0 . The former has no gluon line while in the latter, the gluon

from the kaon amplitude is hooked on to the charm quark line. The last contribution is a
sum of two diagrams where the soft gluon gets attached to either the bottom or down quark

line. These are the soft gluon contributions arising due to Õ2 and are labeled as F
(Õ2,g1s)
0 .

The calculation is done in the NDR scheme. We note that though all the diagrams are
divergent, the divergent terms vanish on Borel transforming. Further, we do not show finite
terms which disappear after Borel transformation in either or both the variables or the terms
which are not proportional to the four vector (p− k).

We start by evaluating, F
(O2,g0s)
0 , the leading factorizable contribution to the correlation func-

tion. In the correlation function Eq(8), use O = O2 and make the relevant Wick contractions.
For the quark-anti-quark T-ordered products, pick the trivial terms. It is straightforward to
evaluate the one-loop Feynman integrals. The end result is

F
(O2,g0s)
0 = −fKm

2
b

4π2

∫

[Dαi]
∫ 1

0
dx

1

[(p′ − k)2 −m2
c ]

{

[(xQ2 − q.Q)φK(αi)

− (x− 1)q.(p′ − k)φK(αi) +mcµK(x− 1)φp(αi)] ln(m
2
b − (1− x)Q2)

+
mcµK

3
(1− x)2

q.Q

m2
b − (1− x)Q2

φσ(αi)

}

(12)

where [Dαi] = (Πidαi)δ(1 −
∑

i αi), µK = m2
K/(mu + ms), Q = (p + q) and p′ = p + αsq.

The light quark masses are all set to zero. We choose to label the αi’s by the parton they
correspond to. The different φ’s represent different kaon distribution amplitudes defined
through the following relations [21]:

〈K+(q)|ū(0)γµγ5s(y)|0〉 = −iqµfK
∫

[Dαi]e
iαsy.qφK(αi)

〈K+(q)|ū(0)γ5s(y)|0〉 = −ifKµK

∫

[Dαi]e
iαsy.qφp(αi) (13)

〈K+(q)|ū(0)σµνγ5s(y)|0〉 = i(qµyν − qνyµ)
fKµK

6

∫

[Dαi]e
iαsy.qφσ(αi)

φK is twist-2 kaon distribution amplitude while φp and φσ are twist-3 distribution amplitudes.

Next we consider the O(gs) soft gluon contribution, F
(O2,g1s)
0 . This contribution arises when

the soft gluon connects the final state kaon to the charm quark line. Following exactly the
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same procedure as above, and considering the O(gs) term of the propagator, we obtain

F
(O2,g1s)
0 = 16imcm

2
bf3Kq

2
∫ 1

0
dv
∫

[Dαi]
φ3K(αi)

[(k − p′′)2 −m2
c ]

2

∫

d4kd
(2π)4

kdµ
k2d[(kd −Q)2 −m2

b ]
(14)

where p′′ = p + (αs + vαg)q and φ3K is the twist-3 three particle distribution amplitude
defined via the relation

〈K+(q)|ū(0)σαγγ5Gλσ(vx)s(y)|0〉 = −if3K [(qλqαησγ − qσqαηλγ)− (qλqγησα − qσqγηλα)]
∫

[Dαi]e
i(αsy+vαgx).qφp(αi) (15)

where Gλσ(vx) = gsG
λσ
a (vx)

(

λa

2

)

.

The last contribution to be evaluated is the soft gluon contribution to the correlation function
due to Õ2. There are two diagrams to this piece - with the gluon attaching to the bottom
or down quark line. The sum of these two diagrams yields

F
(Õ2,g1s)
0 = −2imcm

2
bf3Kq

2
∫ 1

0
dv
∫

[Dαi]
φ3K(αi)

[(k − p′)2 −m2
c ]

∫

d4kd
(2π)4

kdµ
k2d[(kd −Q′)2 −m2

b ]

[

1

k2d
+

1

(kd −Q′)2 −m2
b

]

(16)

where Q′ = p+ (1− vαg)q.

Before proceeding further with the calculation of hadronic matrix elements, we would like
to discuss some of the features that are evident from the above computation. In particular,
the following is noteworthy. The soft contributions, Eq(14) and Eq(16), are proportional
to the momentum squared of the on-shell kaon. If we work in the chiral limit, where q2 =
m2

K = 0, then these contributions vanish identically. Moreover, both these contributions are
proportional to the charm quark mass. These are two of the most important features of the
present calculation. Imagine computing the annihilation type contribution for the case of
two light mesons in the final state. Then the charm quark mass would have been replaced by
the corresponding light quark mass which would have been set to zero without introducing
any new assumption. This would have implied that the soft gluon corrections vanish, even
if the corresponding q2 is not set to zero. Also, some terms drop out from the factorizable
contribution, Eq(12), on similar arguments. We therefore have a natural explanation for
expecting the annihilation type diagrams in most of the cases to be rather small.

It is worthwhile to mention that setting the charm mass to zero would imply vanishing
of the amplitude arising due to O2 because of current conservation. However, the sum
rule calculation yields a non vanishing result and this point must be understood. Consider
computing annihilation amplitude for B-meson decay into light hadrons. In that case, the
light quark masses would have all been set to zero and the only non vanishing contribution
stems from quark mass independent terms in Eq(12). However, this particular contribution
will beO(sth/m

2
B), where sth is the corresponding threshold in the light hadron channel. Such

a contribution is to be neglected in the approximation we are working with, and therefore,
the sum rule calculation conforms with the expectation of vanishing contribution. Let us
now consider what happens in our case. We set the charm mass to zero. The contribution
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in the limit of zero charm mass is O(sDs

th /m
2
B) ∼ (20 − 30)% for sDs

th = 6 GeV2. Such a
contribution, O(sth/m

2
B), is actually an artefact of the sum rule method and must be looked

upon as an error in the prediction. In contrast to the case of light final states, this induced
error is quite large. We take this as a hint that the sum rule method, in the present form and
within the approximations employed, is too crude to capture the physically correct answer
for the decay into heavy final state(s). However in order to estimate the numerical error due
to such a contribution, we must evaluate the matrix elements and study individual pieces.

Having discussed the important features emerging from the structure of various contributions
to the correlation function, we proceed to the evaluation of hadronic matrix elements. We
choose to work in the chiral limit ie. we set q0 = m2

k = 0. In physical terms, this means
that we have neglected O(q2/m2

B) terms in the analysis. Note however that µK 6= 0 in this
limit. This implies that the soft gluon corrections are neglected altogether and we are left

with F
(O2,g0s)
0 only. 1 Define two new variables

s1 =
m2

c − αsP
2

1− αs
s2 =

m2
b

1− x
(17)

It is fairly straightforward to make the change of variables in the expression for F
(O2,g0s)
0 to

arrive at the following

F
(O2,g0s)
0 =

fKm
2
b

4π2

∫

∞

m2
c

ds1

∫

∞

m2

b

ds2

[

m2
b

s22(s1 − P 2)

][

1

s1 − (p− k)2

]

(18)

×
[{ [(

1

2
− m2

b

s2

)

P 2 − m2
bs1
2s2

]

φK(αs)−
mcµKm

2
b

s2
φp(αs)

}

ln(s2 −Q2)

+

(

1

2
− m2

b

s2

)

φK(αs)[Q
2 ln(s2 −Q2)] +

mcµKm
2
b

6s2
(s2 − p2)φσ(αs)

(

1

s2 −Q2

)]

Borel transforming twice with respect to (p − k)2 and Q2 = (p + q)2 leads to the hadronic
matrix element

A(B0
d → D−

s K
+) =

GF√
2
VudV

∗

cb

(

C1

3
+ C2

)

〈D−

s (p)K
+(q)|O2|B0

d(p+ q)〉

=
GF√
2
VudV

∗

cb

(

C1

3
+ C2

)

(

− i

π2fDs
fBm

2
B

)

∫ sDs
th

m2
c

ds1 e
(m2

Ds
−s1)/M2

1

×
∫ Rb

m2

b

ds2 e
(m2

B
−s2)/M2

2 Ims1Ims2F
(O2,g0s)
0,QCD (s1, s2) (19)

with

Ims1Ims2F
(O2,g0s)
0,QCD (s1, s2) =

(

fKm
4
b

4

)[

M2
2

s22(s1 −m2
B)

]

(20)

×
{[

m2
b

s2
(m2

B +M2
2 +

s1
2
)− m2

B +M2
2

2

]

φK(αs)

+
mcµKm

2
b

s2
φp(αs) +

mcµKm
2
b

6s2M
2
2

(s2 −m2
Ds
) φσ(αs)

}

1We would like to mention a word of caution at this point regarding the neglect of the soft gluon con-

tribution due to Õ2, F
(Õ2,g

1

s
)

0 . Although, the contribution is proportional to q2, it comes with factors of mc

and 2C1 (recall that C1 ∼ 1) and thus it is possible that the q2/m2
B suppression is partially lifted.
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In the above, we have analytically continued P 2 → m2
B and p2 → m2

Ds
. This then com-

pletes the LCSR calculation of the W-exchange contribution to twist-3 accuracy in the
kaon distribution amplitude in the chiral limit, q2 = m2

K = 0. Note the absence of any
imaginary/absorptive parts indicating that there are no rescatterings. Although not shown
explicitly, it is easy to conclude from the structure of the soft corrections that they also do
not introduce any additional phases.

From the structure of the amplitude, Eq(19), it is clear that we can not write the amplitude
in a factorizable form ie as a product of B-meson decay constant and a form factor. This thus
provides us with a rigorous argument that factorization seizes to hold in such amplitudes
and thereby offers the justification for naive factorization failing so badly in predicting the
decay rate.

The scaling behaviour of various terms of the amplitude in the large mB limit can be easily
obtained. From the above expression of the hadronic amplitude, it is very much evident that
the twist-3 terms are suppressed by one or two powers of mB compared to the twist-2 leading
term. We treat the charm quark also as a light quark. Further, a quick comparison with
the heavy mass behaviour studied in [13] confirms the expectation that the annihilation or
W-exchange type contributions are O(1/mB) of the tree/emission type contributions. The
soft gluon contributions are 1/m2

B suppressed, which further justifies their neglect.

4 Numerical estimates

We begin by specifying the input parameters. The NLO values for Wilson coefficients in NDR
[22] are C1 = 1.082 and C2 = −0.1.85. The absolute values of the CKM elements are taken to
be |Vcb| = 0.043 and |Vud| = 0.974. For the form of various distribution amplitudes and other
sum rule parameters we rely on [21, 23, 24]. We only specify the central values of various
parameters that we have taken into account for the numerical estimation: mDs

= 1.968
GeV, mc = 1.3 GeV, fDs

= 0.22 GeV, sDs

th = 6 GeV2, M2
1 = 1.5 GeV2, mB = 5.28 GeV,

mb = 4.8 GeV, fB = 0.18 GeV, R̄ = sBth = 35 GeV2, M2
2 = 10 GeV2, fK = 0.16 GeV,

f3K = 0.0026 GeV2, µb =
√

m2
B −m2

b = 2.4 GeV, µK(µb) = 2.5 GeV. To have an estimate of
the variation of the results with the sum rule parameters, we check for the variation in the
following interval: 0.8 ≤M1 ≤ 1.5 and 2.8 ≤M2 ≤ 3.5.

For the two body decay into two pseudoscalars, the decay rate is simply given as

Γ(B → P1P2) =

(

1

16πmB

)

|A(B → P1P2)|2λ1/2
(

1,
m2

M1

m2
B

,
m2

M2

m2
B

)

(21)

where λ(a, b, c) = a2 + b2 + c2 − 2ab − 2ac − 2bc. Using this expression, with m2
K = 0, the

absolute value of the amplitude required by the experimental data Eq(2) is (in GeV) (we
quote the numbers corresponding to the central values of BaBar and Belle results)

|A(B0
d → D−

s K
+)|expt ∼ (6.5− 9)× 10−8 (22)

Using the input values of the parameters listed above, to the twist-3 accuracy, we obtain the
following value for the amplitude

|A(B0
d → D−

s K
+)|Tw3,LCSR =

(

3.6+2.1
−1.9

)

× 10−8 (23)
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where the upper and lower values correspond to the two extreme values for the sum rule
parameters, M1 and M2. The central value is about half the experimental value. However,
we must remember that the present analysis only takes into account terms up to twist-3 in
the kaon distribution amplitude. We can expect that twist-4 contributions will partially take
care of the discrepancy. Also, recall that some contribution is expected from the soft gluon
corrections, even at twist-3 level, because the q2/m2

B suppression is lifted due to the large
multiplicative factors, 2C1mc. Therefore, it is tempting to conclude that the experimental
values will be completely saturated once these extra contributions are accounted for.

However, in view of the discussion related to the charm mass independent terms in the
previous section, it is very important to investigate the individual contributions separately.
Let us recall some of the important points related to the individual contributions. There
are two type of terms - charm mass independent (twist-2), AindO(sDs

th /m
2
B) ∼ (20 − 30)%,

and terms proportional to the charm quark mass (twist-3), Adep. A quick check on the
relative size of the two contributions reveals that the bulk of contribution arises from the
charm mass independent terms. Although, this agrees with the expected scaling behaviour of
the individual terms, this observation implies that the sum rule method yields a much larger
theoretical error than we had anticipated. This thus forces us to conclude that the method is
not suitable for the decay of B-mesons into final states containing a heavy quark like charm.
Further, we do not expect the higher twist contributions to change the picture drastically
as the dominant term in the present case is twist-2, which will continue to dominate even
in the presence of twist-4 or higher terms. In Table 1 we summarize the values of the two
contributions for different choices of the sum rule parameters - M1 and M2.

Table 1: Individual contributions to the amplitude for different choices of M1 and M2. The
middle row corresponds to the central value of the parameters.

(M1,M2) (GeV) Aind Adep

(0.8,2.8) 3.16× 10−8 −1.4× 10−8

(1.22,3.16) 4.26× 10−8 −6.9× 10−9

(1.5,3.5) 6.53× 10−8 −8.1× 10−9

From the table it is clear that the two contributions come with opposite sign and it is only
for the lower values of M1 and M2 that the two are almost equal in magnitude. Also clear
from the table is the fact that the expected error, an artefact of the method, overwhelms the
total contribution. Although we had anticipated that the error in the present case is going
to be large, the values in the table are at complete variance with our naive expectations.
Therefore, in the present form, the sum rule method is not reliable for the case of final states
involving a heavy quark.

5 Results and discussion

Employing the modified light cone sum rule method [13], we have computed the hadronic
matrix element for the rare decay B0

d → D−

s K
+. This decay channel falls under the very
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special class of decays which receive contribution only from annihilation/W-exchange dia-
grams. Such diagrams lie way below in the usual hierarchy of diagrams/topologies and are
generally neglected. In such a situation, the only way to have a sizeable branching ratio is
to expect large final state interactions. Moreover, annihilation type diagrams contribute to
many other channels like ππ or πK, to mention the obvious. It is rather difficult to cleanly
extract various standard model parameters if a precise knowledge of these amplitudes is not
known.

Motivated by all these factors, we have evaluated the W-exchange diagram to twist-3 accu-
racy within the LCSR method. We find that naively it appears that the sum rule method
is more or less successful in explaining the observed branching ratio, while a careful analysis
of individual terms leads us to the conclusion that such an expectation is completely wrong.
Within the accuracy of the sum rule method, we neglect O(sth/m

2
B) terms. However, in the

present case such terms are already O(20%). Therefore a large error is expected. We find
that bulk of the contribution to the amplitude actually arises from the terms that should
be viewed as theoretical error. We therefore take this as a clear indication of the fact that
the sum rule method, in the present form and within the adopted accuracy, is unsuitable for
explaining the decay amplitudes when there is a massive quark in the final state, though the
method seems to work for light final states. The only consistent way out would be to try
to extend the method beyond the adopted approximations and carefully investigate whether
such an extension leads to more meaningful results and predictions. This would require
systematically incorporating, at least the leading, O(sth/m

2
B) terms. However, it is not clear

if such a modification will be easy to implement or if the whole approach is to be changed.

In view of the above discussion, it is tempting to use the above results to have a crude estimate
of annihilation type diagrams for the decay to light mesons, like B → ππ. This can be easily
achieved by appropriately changing various parameters. A crude estimate for the ratio of
the annihilation type amplitudes to the factorizable amplitude in the ππ channel turns out
to be at the percent level at best. However, this must include the higher order effects also
and should be investigated in detail. The annihilation type diagrams may contribute sub-
dominantly to the decay rate, but still can have significant impact on CP asymmetries. A
systematic study is thus called for in such cases and will be reported elsewhere.

We have argued above that the method can not be trusted for explaining the annihilation
diagrams in case of final state(s) involving a heavy quark. However, also clear from the
above discussion is the fact that the method is well suited for light final states. It may
be worthwhile to present the summary of the main features which emerge from the analytic
structure of the expressions. For this discussion we do not bother about the numerical values
of the individual pieces as we hope that such a discussion is useful in understanding the basic
structure of a generic annihilation diagram - of course we keep in mind all the discussion
and conclusions relevant for a massive final state.

• Factorizable contribution to twist-3 order is proportional to the final state quark mass
(the quark mass independent term is an error due to the method itself). Such a
contribution thus vanishes for light final states and one can hope that the twist-4
contributions will yield the leading non-vanishing contribution.

• The soft gluon non-factorizable contributions turn out to be proportional to q2, the
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mass squared of the meson described by the distribution amplitudes and mass of the
(anti-)quark emerging out of the weak vertex from the bottom (anti-)quark. In the
present case, the proportionality factor thus ismcq

2, with q2 = m2
K . Such contributions

are expected to vanish in the chiral limit. However, for cases where the final state
contains a heavy and a light meson, these contributions can become significant as
there is an additional enhancement factor, 2C1, yielding a net enhancement factor of
2mcC1 for some of the soft gluon contributions.

• The annihilation/W-exchange amplitudes are O(1/mB) compared to the tree/emission
type amplitudes. Further, the twist-3 contributions are suppressed by additional pow-
ers of the large mass in comparison to the twist-2 terms.

• It is not possible to write the amplitude in a factorized form.

• The amplitudes are all real to twist-3 accuracy, implying absence of rescattering.

To conclude, we have described the evaluation of annihilation type amplitudes within the
framework of light cone sum rules and applied to the case of B0

d → D−

s K
+. Our results

indicate that the modified sum rule method is not in a form which can be applied to the case
of B-meson decaying into a heavy final state. The numerical results clearly show that the
dominant contribution stems from terms that are an artefact of the sum rule method and
strictly speaking, should be considered a part of the theoretical error. Only for some partic-
ular choices of the sum rule parameters, the different contributions approach each other in
magnitude. Although, the present study shows that the method fails when trying to explain
the mode B0

d → D−

s K
+ (similar conclusion will hold for any other heavy state), the calcu-

lation brings out some generic features of a typical annihilation type diagram. The present
computation, in principle, completes the computation of all types of quark level diagrams
within LCSR. It is hoped that with straightforward modifications and improvements, the
results of this study and the ones already existing can be combined to obtain a clear and
consistent picture of the two body hadronic B decays.
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