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Loop corrections to the form factors in B → πlν decay
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Abstract

In this paper we study the semileptonic decay B → πlν and in particular the factor-
izable contribution to symmetry breaking corrections to the form factors at large recoil.
This contribution is a convolution of the coefficient function, which can be calculated
in perturbation theory, and of the nonperturbative light-cone distribution amplitudes of
the mesons. The coefficient function, in turn, can also be represented as convolution of
the hard Wilson coefficient and of the jet function. Loop corrections to the hard Wilson
coefficient and jet function are calculated. We use the method of expanding by regions to
calculate these corrections. The results obtained coincide with the ones calculated in the
framework of the soft-collinear effective theory (SCET). Factorization of soft and collinear
singularities into the light-cone distribution amplitudes is demonstrated at one-loop level
explicitly. It is also demonstrated that the contribution of the so-called soft-messenger
modes vanishes; this fact is of critical importance to the factorization approach to this
decay.
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1 Introduction

Recent advances in experimental investigation of heavy meson decays demand detailed theo-
retical analysis of these decays. Of prime importance are B-meson decays into light particles:
pseudoscalar or vector mesons, photons and light lepton pairs, because the amplitudes of these
decays are proportional to the non-diagonal elements of the CKM matrix.

Recently, consistent factorization approach has been developed for heavy-to-light transi-
tions; it includes so-called soft-collinear effective theory (SCET) [1], [2]. This theory describes
form factors of heavy-to-light transitions in the kinematical region with the energy of one or
several light final state particles comparable with the B-meson mass. A typical example is the
semileptonic decay B → πlν. In first order in GF the amplitude of the decay is proportional
to the matrix element of the vector current between B and π mesons. The matrix element can
be written in terms of two form factors:

Aµ = 〈π(q)| q̄γµQ |B(p)〉

= f+(t)

(

pµ + qµ − M2
B −m2

π

t
(p− q)µ

)

+ f0(t)
M2

B −m2
π

t
(p− q)µ , (1)

where t = (p− q)2. Since mπ ≪ Mb, we neglect the pion mass below.
Let us consider a frame where the momenta of the initial and final mesons take the form:

p = MB v = MB (1, 0, 0, 0), q = E n = E(1, 0, 0,−1), (2)

where E is the energy of the pion. It is convenient to introduce one more light-cone vector:

n+ = (1, 0, 0, 1), v =
n

2
+

n+

2
. (3)

In this frame the amplitude (1) can be represented as follows:

Aµ =
MB

2
(f0 + f+ z) nµ +

MB

2 z̄
(f0 − f+ z) nµ

+ , (4)

where z = 2E/MB, z̄ = 1− z. On the other hand, the matrix element can be written as

〈π(q)| q̄γµQ |B(p)〉 = nµ

2
〈π(q)| q̄ 6n+ Q |B(p)〉+ nµ

+

2
〈π(q)| q̄ 6nQ |B(p)〉 . (5)

The kinematical region we are interested in is z ∼ 1, i.e., the energy of the pion is of the order
of the mass of the heavy meson MB ≫ ΛQCD. If hadronization occurs in such a way that the
light quark produced in the decay of the heavy quark inside the B-meson has a virtuality of
order Λ2

QCD but this quark carries sufficiently large part of the pion energy, then this quark may
be thought to be asymptotically free so that q̄ 6n ≈ 0. In this case the last term in (5) vanishes.
Comparing with (4) yields

zf+(t) = f0(t). (6)

Expression (6) is known as the symmetry of the form factors at large recoil [3]. Apparently,
a hard radiative correction, that affects the light quark, breaks this symmetry. In [4] possi-
ble ways of violating the symmetry were considered, namely, the radiative corrections to the
”non-factorizable” Feynman mechanism (Fig. 1a) and the hard spectator-scattering mechanism
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(a) (b)

Figure 1. Symmetry breaking radiative corrections

(Fig. 1b). The contribution of the latter factorizes into the product of the light-cone distri-
bution amplitudes (LCDAs) of the mesons and the coefficient function. The difference of the
form factors can be written [5], [6]

f0 − zf+ =
z̄

MB
〈π| q̄ 6nQ |B〉 = C(E) ξπ(E) +

∫ ∞

0

dωΦ+(ω)

∫ 1

0

du φπ(u) T (E, ω, u), (7)

where ξπ(E) is the universal nonperturbative form factor that corresponds to the Feynman
mechanism, Φ+(ω), φπ(u) are the light-cone distribution amplitudes of the initial and final
mesons. The form factors can be also represented in the form of Eq.7 [7], [6] but in this case
the Wilson coefficient C(E) begins with 1 instead of αs as it does with the difference of the
form factors (Fig. 1a).

The coefficient function T (E, ω, u) is universal in the sense that it depends on initial and
final states through the quantum numbers only. Consequently, this function can be calculated
by considering the scattering amplitude of the partons that constitute the final and initial
mesons:

A(E, ω, u) =

∫

d4xei(p−q)x 〈q̄(−q2), q(q1) | q̄(x) 6n b(x) | q̄(−k), b(p− k)〉 , (8)

so that the fractions of the pion’s longitudinal momentum carried by the final-state light quark
and antiquark are taken to be q1 ≈ ūq and q2 ≈ uq, respectively (see Fig. 2), and k · n = ω
(the choice of the external kinematics will be considered in detail in Section 2). The coefficient
function T (E, ω, u) is the amplitude (8) averaged over the spin and color states of the initial
and final mesons

T (E, ω, u) = K Ā(E, ω, u) , (9)

where K is a normalization factor, which depends on normalizations of the light-cone distribu-
tion amplitudes. For averaging over the spin and color states we use the following projection
operators:

qjβ(−q2) q̄
i
α(q1) → Kπ δ

ij 6nαβ , (10)

Qj
β(p− k) q̄iα(−k) → KB δij

[

(1+ 6v)
2

6n 6n+

4

]

αβ

, (11)

where Greek letters denote Lorentz indices and Latin letters denote color ones. Kπ and KB are
products of all normalization factors for the LCDAs.
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Taking into account all mentioned above, one can calculate the contribution of the dia-
gram 1b

A1b = − g2dµν
(q1 − k)2

[

q̄(q1) γ
µ ta

( 6q− 6k)
(q − k)2

6nQ(p− k)

]

[q̄(−k) γνtaq(−q2)] . (12)

The substitution of the projectors (10) and (11) into (12) yields

A1b ≈ Kπ KB CF Nc
g2dµν
2E2uω

Sp

{

6n γµ 6n+ 6n
4

(1+ 6v)
2

6n 6n+

4
γν

}

(13)

= −Kπ KB CF Nc (D − 2)
g2

E2 ω u
, (14)

where D is the dimensionality of space-time. It is convenient to define the normalization factor
K as

K−1 = −4πKπ KB CF Nc (D − 2) . (15)

Therefore, the tree-level coefficient function is

T (E, ω, u) =
αs

E2 ω u
. (16)

Note that even before the calculation of the trace (13) one can see that the gluon can only have
the polarization orthogonal to the (n, n+) plane:

dµν → dµν⊥ = δµν − nµnν
+ + nνnµ

+

2
. (17)

Putting it another way, there is an exchange of a transverse gluon in the diagram 1b, and
the factor (D − 2) in the expression (14) is the number of possible polarization states of the
gluon. It is consistent with the fact that the factorizable contribution can be generated by the
operators of SCETI with D⊥ only [5, 6, 7].

Calculation of loop corrections to the tree-level coefficient function is given in the following
Sections. In contrast to SCET, we calculate QCD diagrams directly using the method of ex-

panding by regions. We outline this method in the next Section. In Section 3 we present the
general structure of the coefficient function. Results and conclusions are given in Sections 4
and 5.

2 The method of expanding by regions

In this Section we briefly review the method of expanding by regions (for further information the
reader is referred to [8], [6]). Let us assume that there is a small parameter in a set of one-loop
diagrams that is a ratio of kinematical invariants composed by external momenta pn, such as
(pn · pm). In this case the method of expanding by regions allows one to calculate the result for
each diagram up to power suppressed terms with respect to the small parameter. The idea is to
single out the regions containing leading logarithms from the entire integration domain in the
loop momentum. That is a non-trivial step, the point is to find field degrees of freedom that
are most important for the given process. Using factorization scales µi one has to divide the
loop integration domain into regions so that a typical loop momentum is considered to be of the
order of one of the scales specified by external kinematics. After expansion of the integrands
in every given region it is necessary to regularize the integrands in covariant way so that the
integral should be convergent not only in the respective region but in the entire integration
domain. Usually dimensional regularization is sufficient2. The last step is the integration over

2See however [6].
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Figure 2. Choice of kinematics Figure 3. One-loop example

the full loop momentum space. Thus the scales of the bounds of the regions µi will occur in
the form of lnµi/µj and/or lnµi/ (pn · pm) (In addition, there are poles in ǫ = (4 − D)/2 in
the dimensional regularization). All the intermediate scales µi, by means of which separation
into the regions has been performed, cancel out in the sum of the contributions of all the
regions. Therefore, one can omit the contributions that contain only logarithms of the ratio of
the intermediate scales µi from the outset. It corresponds to omitting scaleless integrals in the
dimensional regularization.

To calculate loop corrections to the difference of the form factors, we choose the external
kinematic in such a way so as to regularize infrared singularities by one or another external
momentum squared (see Fig. 2).

For this purpose, we take the rest frame of the B-meson (2), (3) so that p2 = m2
b ≈ M2

B.
From the physical point of view it is clear that all components of the light spectator are of
order ΛQCD but, for the sake of convenience, we choose the momentum kµ to be in the (n, n+)
plane:

kµ = ω
nµ
+

2
− | k2 |

ω

nµ

2
. (18)

The momenta of the pion constituents (the quark and antiquark) are taken to be

q1 = ū E nµ + q⊥ , (19)

q2 = u E nµ − q⊥ , (20)

where u and ū are the fractions of the pion momentum such that u, ū > 0, u+ ū = 1, and the
vector q⊥ is orthogonal to the (n, n+) plane. The small parameter needed for the expansion
is λ2 = ΛQCD/mb ≪ 1. The hierarchy of the external kinematical parameters is stated to be

E ∼ mb ≫ ω ∼
√
−k2 ∼

√

q2⊥ ∼ λ2mb.
With this choice of kinematics logarithmic contributions are generated by five regions. The

corresponding kinematical parameters and momentum scaling are presented in Table 1. All
dimensional quantities are given in units of mb.

In order to demonstrate the method of expansion by regions we consider the diagram shown
in Figure 3. All the results of loop corrections will be normalized to the tree-level amplitude
(14). The integration measure is defined by

[dl] =

(

µ2eγE

4π

)ǫ
dDl

(2π)D
, D = 4− 2ǫ . (21)
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Scale l = (l · n, l⊥, l · n+)

hard m2
b ∼ 1 (1, 1, 1)

hard-collinear 2q · k = 2Eω ∼ λ2 (λ2, λ, 1)

collinear |q2i | = q2
⊥ ∼ λ4 (λ4, λ2, 1)

soft |k2| ∼ λ4 (λ2, λ2, λ2)

soft-collinear q2
⊥ |k2| /(2Eω) ∼ λ6 (λ4, λ3, λ2)

Table 1.

The heavy quark does not participate in the scattering in this diagram, therefore, there is no
contribution of the hard region. The contribution of the other regions are the following:

Hard collinear region.

Ahc
3 =

αs

4π

(

CF − CA

2

)(

µ2

2Eω

)ǫ [
1

ǫ2
Γ2(1− ǫ)

Γ(1− 2ǫ)
− 1

ǫ

(

ln u

ū
+ 2 ln ū

)

+
ln2 u

2 ū
+ ln2 ū

]

. (22)

The first collinear region. In this region the gluon with momentum l2 (see. Fig. 3) is collinear
and the gluon with momentum l1 is hard-collinear. The contribution of this region is

Ac
3 =

αs

4π

(

CF − CA

2

)(

µ2

q2
⊥

)ǫ [

− 1

ǫ2
Γ2(1− ǫ)

Γ(1− 2ǫ)
+

ln u

ǫ ū
+

1

ū

(

Li2

(

− ū

u

)

− Li2(ū)
)

]

. (23)

The second collinear region. In this region the gluon with momentum l1 (see. Fig. 3) is collinear
and the gluon with momentum l2 is hard-collinear. The contribution of this region takes the
form

Ac
3 =

αs

4π

(

CF − CA

2

)(

µ2

q2
⊥

)ǫ [
ln ū

ǫ
− Li2(u) + Li2

(

−u

ū

)

]

. (24)

Soft region.

As
3 =

αs

4π

(

CF − CA

2

)(

µ2

|k2|

)ǫ [

− Γ2(1− ǫ)

ǫ2 Γ(1− 2ǫ)

]

. (25)

Soft-collinear region.

Asc
3 =

αs

4π

(

CF − CA

2

)(

µ22Eω

|k2|q2
⊥

)ǫ [
Γ(1− ǫ) Γ(1 + ǫ)

ǫ2
+

ln ū

ǫ
+

ln2 ū

2

]

. (26)

The sum. Adding up all the contributions yields

A3 =
αs

4π

(

CF − CA

2

)[

ln
2Eω

|k2| ln
2Eū ω

q2
⊥

+

(

2 ln ū+
ln u

ū

)

ln
2Eū ω

q2
⊥

−2 Li2(u)−
2

ū
Li2(ū)− ln2 ū+

π2

3

]

. (27)
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Figure 4. Structure of the coefficient
function

Figure 5. Two loop example

Since the diagram is ultraviolet and infrared convergent, the logarithms of the factorization
scale µ as well as the singularities in ǫ cancel in the sum of all the contributions.

As it will be demonstrated below at one-loop level, the regions with l2 ∼ Λ2
QCD factorize from

the hard and hard-collinear regions into the light-cone distribution amplitudes of the mesons
(see also [6]). Our analysis is in many ways similar to the analysis performed in [9] for the form
factors that parametrize the amplitude of the radiative decay B → V γ.

As shown in [6], the contributions of the hard and hard-collinear regions are also factor-
ized. Corresponding logarithms lnmb/µ and ln 2Eω/µ2 can be summed up into a hard Wilson
coefficient and a so-called jet function. Some heuristic considerations of this factorization are
presented in the following Section.

3 Structure of the coefficient function

It is evident that the largest hard physical scale of the transition B → π is the heavy quark
mass mb ∼ MB. Therefore, the contribution of the hard region is somehow or other associated
with the heavy quark decay. However, the hard-collinear scale 2Eω implies participation of the
light spectator with the momentum kµ ∼ ΛQCD in the process. Consequently, there are two
subprocesses: the hard decay of the heavy quark into two partons that have v and v̄ fractions of
the collinear momentum q, and semihard scattering of these partons by the soft spectator with
the pion in final state (see Figure 4). To illustrate the general idea we consider an example of
a radiative correction to the diagram Fig. 3. Namely, consider the two-loop correction shown
in Figure 5 where the dash lines contour the subprocesses involved. In the case when the
momentum l1 is hard and l2 is hard-collinear it is easy to calculate the contribution of this
diagram sequentially in three steps: the first step is integration over the hard momentum l1.
In this step the virtualities of the quark and gluon produced in the heavy quark decay can be
neglected, i.e., the momenta of the partons can be considered to be collinear to n:

(q − l2)
µ ∼ (l2 − k)µ ∼ (λ2, λ, 1) ⇒

{

(l2 − k)µ ≈ v qµ

(q − l2)
µ ≈ v̄ qµ

, (28)

where v = l2 ·n+/(2E) is a dimensionless Sudakov parameter and v̄ = 1−v. This part contains
logarithms of the hard scale lnmb/µ, we call it hard Wilson coefficient C (hard coefficient
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function)

C

(

v, ln
mb

µ
,
E

mb
, αs

)

= 〈g(vq), q(v̄q) | q̄ 6n b | b(p− k)〉 , (29)

averaging over the spin and color states is performed in the same way as for the amplitude
(9). The second step is integration with respect to the components of the momentum l2 except
v, i.e., over the components that do not appear in the hard loop. This part, the so-called jet
function, contains the logarithms of the semihard scale ln 2Eω/µ2:

J

(

u, v, ln
2Eω

µ2
, αs

)

= E2 〈q̄(−q2), q(q1)| g(vq), q(v̄q), q̄(−k)〉 . (30)

The last step is a convolution of the hard Wilson coefficient and the function with respect to the
Sudakov parameter v, this convolution is convergent, i.e., it does not produce ”big” logarithms:

T (u, ω, µ,mb, E) =
1

E2

∫ 1

0

dv C

(

v, ln
mb

µ
,
E

mb
, αs

)

J

(

u, v, ln
2Eω

µ2
, αs

)

. (31)

In terms of effective theory the first step of our consideration corresponds to the matching of
the vector current in full QCD onto the set of three-body operators of SCETI (integrating out
of hard modes), the second step corresponds to matching of the operators of the intermediate
effective theory SCETI onto four-quark operators of SCETII.

This simple partonic picture is only valid in the physical light-cone gauge A · n+ = 0
because in this gauge only one transverse gluon connects C to J but in the Feynman gauge it is
accompanied by longitudinal collinear gluons. To be more specific, in the light-cone gauge the
hard-collinear gluon produced in the heavy quark decay has a polarization that is approximately
transverse to the (n, n+) plane (see Eq.17)

dµν(l2 − k) = δµν − (l2 − k)µ nν
+ + (l2 − k)ν nµ

+

2 (l2 − k) · n+ − i0
≈ dµν⊥ . (32)

It is consistent with the fact that in this gauge the intermediate operator of SCETI has the
form (here we use notation of [6]):

O1
1(s1, s2) = ξ̄C(s1) 6A⊥(s2) hv(0) . (33)

As can be seen from the consideration of the diagram 1b, the tree-level hard Wilson coeffi-
cient and the jet-function are

C

(

v, ln
mb

µ
,
E

mb
, αs

)

= 1 , J

(

u, v, ln
2Eω

µ2
, αs

)

=
αs

u ω
δ(u− v) . (34)

The loop corrections to them are presented in the following Sections.

4 Loop corrections

Following are the contributions of the five regions. The contributions of each diagram in all the
regions except for the hard-collinear one are presented in the Feynman gauge. The expressions
for the hard-collinear region are given in the light-cone gauge. As noted above, the loop
corrections are normalized to the tree-level amplitude (14).

One further comment is in order. We use the ”naive dimensional regularization” (NDR)
scheme that corresponds to omitting γ5 in the projection operators (10) and (11). It can easily
be shown that this scheme (using the projection operators (10) and (11) and calculation of
a trace in dimensional regularization, i.e., without recourse to the Fierz transformations) is
identical to the scheme with the basis of the evanescent operators chosen in [10].
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(a) (b) (c)

(d) (e)
(f)

Figure 6. Loop correction to the hard coefficent function

4.1 Hard region

We start the discussion of loops with the hard region. As stated earlier, it is necessary to
consider the diagrams of the heavy quark decay into the collinear quark and transverse gluon
(see Fig. 6). The contribution of each diagram is the following:

C

(

u, z, ln
mb

µ
, αs

)

= 1 +
αs

4π
δC

(

u, z, ln
mb

µ

)

, (35)

δCa =

(

CF − CA

2

) [

−
(

2 ln2 z mb

µ
+

π2

12
+

2z

z̄
ln z + 2Li2 (z̄)

)

−2

u

(

2 ln ū

(

ln
mb

µ
+ ln z − 1

)

+ ln2 ū+ Li2 (1− ū z)− Li2 (z̄)

)

+
1

u

(

ln z

z̄
− ln ūz

(1− ū z)
+ ln ū

)]

, (36)

δCb =

(

−CA

2

) [

2 ln2
zmb

µ
+

π2

12
+

2 z ln z

z̄
+ 2Li2 (z̄)

−1

ū

(

ln z

z̄
− ln uz

(1− u z)
− 3 ln u

)]

, (37)

δCc = CF

[

−2 ln
mb

µ
− 1 + z̄

z̄
ln z + 1

]

(38)

δCd =

(

CF − CA

2

) [

−1

ū

(

ln z

z̄
− ln uz

(1− u z)
+ ln u

)

−1

u

(

ln z

z̄
− ln ūz

(1− ū z)
+ ln ū

)]

, (39)

δCe = CF

[

z

z̄ (1− u z)
+

1

ū

(

ln z

z̄2
− ln uz

(1− uz)2

)

+
ln u

ū

]

, (40)

δCf = CF

[

3 ln
mb

µ
− 2

]

. (41)

8



Figure 7.

Note that the expressions (36–41) are finite in the limits u → 0 and u → 1, it confirms the fact
that no logarithms of mb/µ or 2Eω/µ2 are generated by the convolution of the hard Wilson
coefficient and jet function. The final result of the hard Wilson coefficient takes the form

δC =

(

CF − CA

2

) [

−2

u

(

2 ln ū

(

ln
mb

µ
+ ln z − 1

)

+ ln2 ū+ Li2 (1− ū z)− Li2 (z̄)

)

−2

ū

(

ln z

z̄
− ln u z

(1− u z)
− ln u

)]

+CF

(

−2 ln2 z mb

µ
− π2

12
+ ln

mb

µ
+

2 + z

z̄
ln z − 2 Li2 (z̄)− 1 +

z

z̄ (1− u z)

+
1

ū

(

ln z

z̄2
− ln u z

(1− u z)2
+

ln z

z̄
− ln u z

(1− u z)
− 2 ln u

))

. (42)

As already mentioned, this result is a special case of the Wilson coefficient of the QCD vector
current matched onto the corresponding three-body SCETI operator. Our result coincides
with the result calculated in [7] and the corresponding combination of matching coefficients
calculated in [11] where an operator basis different from [7] is used.

4.2 Hard-collinear region

To calculate the contributions to the jet function, it is necessary to consider all diagrams of the
scattering of the hard-collinear quark and gluon by the soft spectator.

In the diagram depicted in Fig. 7 we label the external lines by (1), (2), (4), (5) and the
internal propagators by (3) and (6). The contributions to the corrections to the jet function
can be generated by diagrams in which a gluon is attached to two labelled lines3. We denote
the contribution of each diagram by the letter J with {ij} subscript where i and j are the
numbers of positions in Figure 7.

As emphasized above, loop corrections to the jet function have to be calculated in the light-
cone gauge. In this gauge the contributions of the diagrams {4j}, where the gluon is radiated
by the heavy quark, vanishes. The reason is that the heavy quark can radiate longitudinally
polarized collinear gluons only; the contribution of these gluons is excluded by the condition
A · n+ = 0. Diagrams {11}, {22}, {55} do not contribute also because they do not contain the

3There is quark loop contribution to the diagram {66}
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hard-collinear scale. Nonzero contributions are given by the following diagrams:

J{15} =

(

CF − CA

2

)

δ(v − u)

(

− ln2 2Eω

µ2
+ (3− 2 ln u) ln

2Eω

µ2

+3 ln u− ln2u− 8 +
π2

6

)

, (43)

J{66} = CA δ(v − u)

(

2 ln2
2Eω

µ2
−
(

11

3
− 4 ln u

)

ln
2Eω

µ2
− 11 lnu

3

+2 ln2u+
67

9
− π2

3

)

+ TF nfδ(v − u)

(

4

3
ln

2Eω

µ2
+

4

3
ln u− 20

9

)

, (44)

J{16} =
CA

2
δ(v − u)

(

−3 ln2 2Eω

µ2
+ (3− 6 ln u) ln

2Eω

µ2

+3 ln u− 3 ln2u− 6 +
π2

2

)

, (45)

J{33} = 2CF v̄

(

ln
2Eω

µ2
+ ln(v v̄) + 1

)

, (46)

J{23} = 2

(

CF − CA

2

) (

θ(v − ū)

(

v̄ (v − ū)

v u

(

ln
2Eω

µ2
+ ln(v̄)

)

+
(v − ū)

ū
ln v − (v − ū)2

v u ū
ln
(

1− v̄

u

)

+
v̄

v u

)

+ θ(ū− v)
ū− v

ū

(

1

ǫ
− ln vv̄

))

. (47)

J{25} + J{26} + J{12} =

(

CF − CA

2

)

× 2

[

θ(v − u)

v − u

(

ln
2Eω

µ2
+ ln(v − u)

)

+
θ(u− v)

u− v

(

ln
2Eω

µ2
+ ln(u− v)

)]

+

+

(

CF − CA

2

)

δ(v − u) 2

(

ln2 2Eω

µ2
+ ln(uū) ln

2Eω

µ2
+

ln2ū

2
+

ln2u

2
+

π2

6

)

+ CF θ(u− v)
2v̄

ū u

(

ln
2Eω

µ2
+ ln

(

v (u− v)

u

)

− ū

v̄

)

−
(

CF − CA

2

)

2 θ(u− v)

u

(

ū− v

ū
ln

2Eω

µ2
− u

u− v
ln

v

u
+

(ū− v)

ū
ln

v (u− v)

u
− 1

)

+

(

CF−
CA

2

)

2 θ(v − u)

v

(

− ln
2Eω

µ2
+

u

v − u
ln

v̄

ū
− ln(v − u) +

v̄

ū

)

+

(

CF−
CA

2

)

2 (ū− v)

ū

(

ln
2Eω

µ2
+ ln vv̄

)

− CF
2 v̄

ū

(

ln
2Eω

µ2
+ ln vv̄ − ū

v̄

)

− 2CF
θ(v − u)

v
. (48)

As in the case of the hard coefficient function, the corrections to the jet function are finite in
the u → 0 limit. It in particular means that the corresponding convolution integral with pion
light-cone distribution amplitude is convergent. The final result for the jet functions has the

10



form:

J

(

u, v, ln
2Eω

µ2
, αs(µ)

)

=
αs

u ω
(δ(u− v)

+
αs

4π

(

CF ln2 2Eω

µ2
δ(u− v) + j1(u, v) ln

2Eω

µ2
+ j2(u, v)

))

, (49)

where functions j1(u, v) j2(u, v) are defined by

j1(u, v) = δ(v − u)

(

−CA

2

(

13

3
− 2 lnu

)

+

(

CF − CA

2

)

(3 + 2 ln ū) +
4

3
TF nf

)

−
(

CA

2
− CF

)

2

[

θ(v − u)

v − u
+

θ(u− v)

u− v

]

+

+

(

CF − CA

2

)

2 (v − ū)

ū

(

θ(v − ū)
v̄ ū

v u
+ θ(ū− v)

)

−
(

CF − CA

2

)

2

(

θ(u− v)
ū− v

uū
+ θ(v − u)

1

v
− ū− v

ū

)

+ CF 2
(

−u v̄

ū
+ θ(u− v)

v̄

ū u

)

, (50)

j2(u, v) = δ(v − u)

(

CA

2

(

80

9
− π2

6
− 13

3
ln u+ ln2 u

)

− TF nf

(

20

9
− 4

3
ln u

)

+

(

CF − CA

2

)(

−8 +
π2

2
+ ln2 ū+ 3 lnu

))

+

(

CF − CA

2

)

2

[

θ(v − u)

v − u
ln(v − u) +

θ(u− v)

u− v
ln(u− v)

]

+

− 2CF

(

θ(v − u)

v
+

θ(u− v)

u

)

+

(

CF − CA

2

)

θ(u− v)
2

u

(

v

u− v
ln

v

u
− ln (u− v) + 1

)

+

(

CF−
CA

2

)

θ(v − u)
2

v

(

u

v − u
ln

v̄

ū
− ln(v − u) +

v̄

ū

)

+

(

CF − CA

2

)

2

vu
θ(v − ū)

(

v̄ − (v − ū)2

ū
ln

v̄ (u− v̄)

u

)

+ CF 2
(

1 + v̄ − v̄u

ū
ln vv̄

)

+ 2
θ(u− v)

uū
ln

v (u− v)

u

(

CF − CA

2
v

)

. (51)

The result obtained is in complete agreement with the result calculated in [7]4 (In our notations
the corresponding correction is −j‖(ū, v̄), where j‖ is the function derived in [7])

4.3 Collinear region

In this Section we consider factorization of the collinear singularities, i.e., the singularities
associated with the radiation of a collinear gluon (momentum scaling is (λ4, λ2, 1)). Such

4According to a private communication from M. Beneke, his result for the loop corrections to the jet function,
which has been obtained in cooperation with D. S. Yang, coincides with the result calculated in [7].
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Figure 8. Figure 9. Figure 10.

singularities have an origin in the singularity of a collinear quark propagator when a gluon is
radiated in the direction of the quark. These singularities can be regularized by introduction of
the soft transverse momentum (see (19), (20)). The logarithms that result are lnµ2/q2

⊥, where
µ is a factorization scale. As we shall see later, all collinear divergencies correspond to the
renormalization of the pion LCDA. Thus, these singularities are cancelled by the substraction
of the loop corrections corresponding to renormalization of the LCDA from the total loop
corrections:

∆f = Φ+(ω)⊗ T0(ω, u
′)⊗ δφπ(u

′) (52)

δφπ(u
′, µ) =

g2

(4π)2
CF ln

µ2

q2
⊥

V (1)
π (u′, u)⊗ φπ(u, µ) , (53)

where V
(1)
π (u′, u) is ERBL kernel [12], [13],

〈π(q) | q̄α(sn+)W (sn+, 0) qβ(0)| 0〉 =
ifπ
4

(n+ · q)
[ 6n
2
γ5

]

βα

∫ 1

0

du eius(n+·q)φπ(u) . (54)

The contribution of each diagram for both the collinear and soft regions is denoted by

∆f = −Kπ KB CF Nc (D − 2)
g2

E2

∫ 1

0

du

u

∫ ∞

0

dω

ω
Φ+(ω)A{ij}(ω, u)φπ(u) , (55)

where i and j are the numbers of positions in the Figure 7 for the collinear gluon emission and
absorbtion (see also definitions for the tree-level amplitude (14)).

First of all, we consider the contributions of the diagrams where the light antiquark radiates
the collinear gluon, i.e., the {1i} diagrams. Using the following notation for the amplitudes A{1i}

A{1i} = 2i g2
∫

[dl]
Ã{1i}

(l2 + i0) ((q1 − l)2 + i0)
, (56)

we find the following integrands

Ã{15} =

(

CF − CA

2

)(

−1 +
u

β

)

, Ã{16} = −CA

2
, (57)

Ã{14} =

(

CF − CA

2

)(

−u

β
+

u

β − 1

)

, Ã{13} =

(

CF − CA

2

)(

− u

β − 1

)

, (58)

where β = (l · n+)/2E is a dimensionless Sudakov parameter. The corresponding corrections
to the pion LCDA is depicted in Figure 8. The dash line denotes the Wilson line W (sn+, 0)
which is connecting the quark fields in the LCDA. The sum of the contributions of the {1i}

12



diagrams is cancelled by the correction convoluted with the tree-level coefficient function 1/u:
∫ 1

0

du

u
φπ(u)

∑

i

A{1i}(u) →
∫ 1

0

du′

u′

∫ 1

0

du V8(u
′, u) φπ(u) (59)

= −2ig2CF

∫ 1

0

du′

u′

∫ 1

0

φπ(u) du

∫

[dl]
β − u

((l − q1)2 + i0) (l2 + i0)

δ(u′ − u)− δ (u′ − (u− β))

β + i0

= −2ig2
∫ 1

0

φπ(u)

u
du

∫

[dl]
CF

((l − q1)2 + i0) (l2 + i0)
. (60)

The collinear singularities corresponding to the radiation of the collinear gluon by the light
quark (the {2i} diagrams) can be considered in a similar manner:

A{2i} = 2i g2
∫

[dl]
Ã{2i}

(l2 + i0) ((q2 − l)2 + i0)
, (61)

Ã{25} =

(

CF − CA

2

)(

β − ū

β
− β − ū

β + u

)

, Ã(26) = −CA

2

(

β − ū

β + u

)

, (62)

Ã{24} =

(

CF − CA

2

)(

−β − ū

β
+

β − ū

β − 1

)

, Ã{23} =

(

CF − CA

2

)(

−β − ū

β − 1

)

. (63)

The sum of the contributions of these diagrams is cancelled by the correction depicted in
Figure 9.
∫ 1

0

du

u
φπ(u)

∑

i

A{2i}(u) →
∫ 1

0

du′

u′

∫ 1

0

du V9(u
′, u) φπ(u) (64)

= 2ig2CF

∫ 1

0

du′

u′

∫ 1

0

φ(u) du

∫

[dl]
(ū− β)

((l − q2)2 + i0) (l2 + i0)

(δ(u′ − u)− δ (u′ − (u+ β)))

β + i0

= 2ig2
∫ 1

0

φ(u)

u
du

∫

[dl]
CF

((l − q2)2 + i0) (l2 + i0)

ū− β

u+ β
. (65)

The diagram {12} with the collinear gluon exchange between the quark and antiquark

A{12} = −2ig2CF

∫

[dl]
(l⊥ − q⊥)

2

(l2 + i0) ((q1 − l)2 + i0) ((q2 + l)2 + i0)

u

β − u+ i0
(66)

is cancelled by the corresponding diagram Fig. 10. The self-energy diagrams {11} and {22} are
trivially cancelled by the renormalization of the quark fields in the pion light-cone distribution
amplitude.

4.4 Soft region

Below is a consideration of the singularities associated with the soft region l ∼ (λ2, λ2, λ2).
This region occurs in the diagrams with a gluon radiated by the slow-moving heavy quark or
by the soft spectator. Assuming p2 = m2

b , the singularities arise as logarithms lnµ2/ |k2|. These
”big” logarithms are absorbed by the renormalization of the B-meson light-cone distribution
amplitude:

∆f = δΦ+(ω′)⊗ T0(ω
′, u)⊗ φπ(u) (67)

δΦ+(ω′, µ) =
g2

(4π)2
CF

(

Γ(1) ln2 µ2

|k2| Φ
+(ω′, µ) + ln

µ2

|k2| U
(1)(ω′, ω)⊗ Φ+(ω, µ)

)

, (68)
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Figure 11. Figure 12. Figure 13.

where Γ(1) and U (1)(ω′, ω) are the functions contained in the kernel of the evolution equation
[14], [15] of the corresponding B-meson light-cone distribution amplitude Φ+(ω) [16], [4]

〈

0 |q̄α(sn) W (sn, 0) hvβ(0)| B̄(p)
〉

= −ifBMB

4

∫ ∞

0

dω e−iωs

(

1+ 6v
2

[(n · v) 6n+ Φ+(ω) + (n+ · v) 6nΦ−(ω)] γ5

)

βα

. (69)

First of all we consider the diagrams with a gluon radiated by the heavy quark. As in the
case of the collinear region, we introduce the following notation:

A{4i} = 2i g2
∫

[dl]
mb Ã{4i}

(l2 + i0) ((p− k − l)2 −m2
b)

. (70)

The integrands of the {4i} diagrams are as follows:

Ã{42} =

(

CF − CA

2

)

1

α
, Ã{41} =

(

CF − CA

2

)(

1

α + ω
− 1

α

)

, Ã{46} =
CA

2

1

α + ω
, (71)

where α = (l·n). Being convoluted with the tree-level coefficient function 1/ω , the contribution
to the LCDA’s renormalization (Fig.11) with gluon radiation by the heavy quark cancels the
sum of the contributions of the {4i} diagrams

∫ ∞

0

dω

ω
Φ+(ω)

∑

i

A{4i}(ω) →
∫ ∞

0

dω′

ω′

∫ ∞

0

dω V11(ω
′, ω) Φ+(ω) (72)

= −ig2CF

∫ ∞

0

dω′

ω′

∫ ∞

0

dω

∫

[dl]
1

((l + k) · v − i0) (l2 + i0)

δ(ω′ − ω)− δ(ω′ − ω − α)

α− i0
Φ+(ω)

= −ig2
∫ ∞

0

dω

ω
Φ+(ω)

∫

[dl]
CF

((l + k) · v − i0) (l2 + i0)

1

ω + α
. (73)

The contributions of the diagrams with the gluon radiation by the soft spectator can be con-
sidered in a similar way

A{5i} = −2i g2
∫

[dl]
Ã{5i}

((l − k)2 + i0) (l2 + i0)
, (74)

Ã{51} =

(

CF − CA

2

)

α− ω

α
, Ã{52} =

(

CF − CA

2

)

ω

α
, Ã{56} =

CA

2
. (75)

The sum of the contributions is cancelled by the contribution to the LCDA’s renormalization
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(Fig. 12) with radiation of a gluon by the soft spectator

∫ ∞

0

dω

ω
Φ+(ω)

∑

i

A{5i}(ω) →
∫ ∞

0

dω′

ω′

∫ ∞

0

dω V12(ω
′, ω) Φ+(ω) (76)

= −2ig2CF

∫ ∞

0

dω′

ω′

∫ ∞

0

dω

∫

[dl]
(α− ω)

((l − k)2 + i0) (l2 + i0)

δ(ω′ − ω)− δ(ω′ − (ω − α))

α− i0
Φ+(ω)

= −2ig2
∫ ∞

0

dω

ω
Φ+(ω)

∫

[dl]
CF

((l − k)2 + i0) (l2 + i0)
. (77)

The situation with the diagrams {44} and {55} is similar to the one in the collinear region,
these diagrams correspond to the renormalization of the quark field in the light-cone distribution
amplitude of the B-meson. The soft region of the diagram {45} is power suppressed; it exactly
corresponds to the absence of the contribution to the evolution kernel from the diagram Fig. 13.

4.5 Soft-collinear

In this Section we consider the contribution of the soft-collinear region, i.e., the region where the
momentum of a gluon has its’ components l = ((l · n), l⊥, (l · n+)) that are of order (λ

4, λ3, λ2).
According to the idea of the method of expanding by regions, for the difference of the form

factors to be independent on the intermediate factorization scale, it is necessary to sum the
contributions of all the regions, the soft-collinear region included. However, the contribution
of this region does not correspond to the summation of the leading logarithms for any of the
objects in the expression (7), therefore, it has to be cancelled in the sum of the diagrams by
itself. This cancellation corresponds to the idea that, in the framework of the effective theory,
after integration out of the hard and hard-collinear modes the soft and collinear degrees of
freedom should be decoupled from one another. At this specified condition, a matrix element,
containing the soft and collinear modes, can be factorized into matrix elements of ”soft” and of
”collinear” operators separately. This is of critical importance for a derivation of a factorization
formula of type (7). We show the cancellation of soft-collinear region contributions for pion
final state, though it is liable to brake down in general case [17].

Figure 14.

The cancellation of the contribution of the soft-collinear region occurs in line with the idea
of color transparency [18], which is underlying the factorization approach to exclusive processes:
the final state hadron produced by hard scattering is a color singlet state. Thus, there is a rather
weak (dipole) interaction with gluons, the wavelength of which is larger than the size of the
hadron. Therefore, it is hoped that there is a cancellation of the soft logarithmic singularities
of the radiative corrections between graphs in which the soft gluon couples to a parton in the
initial state and different constituents of the final state (see Fig. 14). Whereas the remaining
infrared singularities factorize into the LCDAs of each hadron separately.
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To calculate loop corrections it is convenient to introduce the followng dimensionless vari-
ables:

(l · n+) →
|k2|
ω

β, (l · n) → q2
⊥

2E
α, l2⊥ → |k2|q2

⊥

2Eω
l2⊥.

The contribution of the diagram {25} with these variables takes the form:

{25} = i g2
(

CF − CA

2

)(

µ22Eω

|k2|q2
⊥

)ǫ ∫

[dl]
2ū

(l2 + i0) (β − 1 + i0)(αū− 1 + i0)
. (78)

After the additional substitution α → α/ū, l⊥ → l⊥/ū
1/2 we find

{25} = i g2
(

CF − CA

2

)(

µ22Eω

|k2|q2
⊥

)ǫ ∫

[dl]
2ūǫ

(l2 + i0) (β − 1 + i0)(α− 1 + i0)
. (79)

The final result of the integral is the expression (26). The similar expression for the diagram
{15} is

{15} = −i g2
(

CF − CA

2

)(

µ22Eω

|k2|q2
⊥

)ǫ ∫

[dl]
2uǫ

(l2 + i0) (β − 1 + i0)(α− 1 + i0)
. (80)

Contrary to our expectations, the expressions (79) and (80) are not only of opposite sign,
but they also differ by the factors uǫ and ūǫ. It immediately follows that in the case of the
partons with u and ū fractions of the longitudinal momentum there is a cancellation of double
Sudakov logarithms only, but not of single ones. However, the pion LCDA is symmetric with a
substitution u ↔ ū while the sum of the expressions (79) and (80) is antisymmetric. Therefore,
being averaged over the pion light-cone distribution amplitude, the contribution of the soft-
collinear region vanishes.

The diagrams {14} and {24} can be considered in a similar manner:

{14} = −i g2
(

CF − CA

2

)(

µ22Eω

|k2|q2
⊥

)ǫ ∫

[dl]
2u |k2|

l2(1 + αu)
(

|k2| β̄ − ω2
) , (81)

{24} = i g2
(

CF − CA

2

)(

µ22Eω

|k2|q2
⊥

)ǫ ∫

[dl]
2ū |k2|

l2(1 + αū)
(

|k2| β̄ − ω2
) . (82)

Even before the integration one can see that the sum of the expressions (81), (82) is anti-
symmetric with respect to the substitution u ↔ ū. Hence, it vanishes in the convolution with
the pion light cone-distribution amplitude.

5 Conclusion

The semileptonic decay B → πlν has been discussed in this article. It is known that at a large
energy of recoil to the lepton pair there is the relation of the form factors that parametrize
an amplitude of this decay. This relation can be violated by the hard and semihard radiative
corrections. In this paper we have studied the factorizable contribution of these corrections.
In particular, loop corrections to the hard Wilson coefficient and to the jet function have been
calculated. In contrast to the soft-collinear effective theory, to calculate loop corrections we
have used the method of expanding by regions. The corrections obtained are in complete
agreement with previous results of Beneke, Kiyo and Yang [11] and results of Hill, Becher, Lee
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and Neubert [7]. The factorization of the soft and collinear singularities has been shown at
one-loop level. We have demonstrated the cancellation of the contribution of the soft-collinear
modes by taking into account the symmetry of the pion light-cone distribution amplitude; this
fact is of critical importance to the factorization approach to this decay.

Note added. After I completed this paper, the results of M. Beneke and D. Yang mentioned
above have appeared in preprint [19].

I would like to thank N. Kivel for his helpful comments and discussions and M. Beneke for
pointing out the dependence of the one-loop jet function on the choice of evanescent operators.
The investigation was supported by the Russian Foundation for Basic Research through Grant
No. 05-02-16627-a and by Institut für Theoretische Physik-II Ruhr-Universität through
Graduiertenkolleg ”Physik der Elementarteilchen an Beschleunigern und im Universum”.
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