Enhanced $K_L \to \pi^0 \nu \bar{\nu}$ from Direct *CP* Violation in $B \to K \pi$ with Four Generations

Wei-Shu Hou^{*a,b*}, Makiko Nagashima^{*a*}, and Andrea Soddu^{*a,c*}

^aDepartment of Physics, National Taiwan University, Taipei, Taiwan 106, R.O.C.

^bStanford Linear Accelerator Center, Stanford, California 94309, U.S.A.

^cDepartment of Particle Physics, Weizmann Institute of Science, Rehovot 76100, Israel

(Dated: June 25, 2018)

Recent CP violation results in B decays suggest that Z penguins may have large weak phase. This can be realized by the four generation (standard) model. Concurrently, $B \to X_s \ell^+ \ell^-$ and B_s mixing allow for sizable $V_{t's}^* V_{t'b}$ only if it is nearly imaginary. Such large effects in $b \leftrightarrow s$ transitions would affect $s \leftrightarrow d$ transitions, as kaon constraints would demand $V_{t'd} \neq 0$. Using $\Gamma(Z \to b\bar{b})$ to bound $|V_{t'b}|$, we infer sizable $|V_{t's}| \lesssim |V_{t'b}| \lesssim |V_{us}|$. Imposing ε_K , $K^+ \to \pi^+ \nu \bar{\nu}$ and $\varepsilon' / \varepsilon$ constraints, we find $V_{t'd}^* V_{t's} \sim \text{few } \times 10^{-4}$ with large phase, enhancing $K_L \to \pi^0 \nu \bar{\nu}$ to 5×10^{-10} or even higher. Interestingly, Δm_{B_d} and $\sin 2\Phi_{B_d}$ are not much affected, as $|V_{t'd}^* V_{t'b}| \ll |V_{td}^* V_{tb}| \sim 0.01$.

PACS numbers: 11.30.Er, 11.30.Hv, 12.60.Jv, 13.25.Hw

Just 3 years after CP violation (CPV) in the B system was established, direct CP violation (DCPV) was also observed in $B^0 \to K^+\pi^-$ decay, $\mathcal{A}_{K^+\pi^-} \sim -0.12$. A puzzle emerged, however, that the charged $B^+ \to K^+\pi^0$ mode gave no indication of DCPV, and is in fact a little positive, $\mathcal{A}_{K^+\pi^0} \gtrsim 0$. Currently, $\mathcal{A}_{K^+\pi^0} - \mathcal{A}_{K^+\pi^-} \simeq 0.16$, and differs from zero with 3.8σ significance [1].

The amplitude $\mathcal{M}_{K^+\pi^-} \simeq P + T$ is dominated by the strong penguin (P) and tree (T) contributions, while the main difference $\sqrt{2}\mathcal{M}_{K^+\pi^0} - \mathcal{M}_{K^+\pi^-} \simeq P_{\rm EW} + C$ is from electroweak penguin (EWP, or $P_{\rm EW}$) and colorsuppressed tree (C) contributions which are subdominant. Thus, $\mathcal{A}_{K^+\pi^0} \sim \mathcal{A}_{K^+\pi^-}$ was anticipated by all models. As data indicated otherwise, it has been stressed [2] that the C term could be much larger than previously thought, effectively cancelling against the CPV phase in T, leading to $\mathcal{A}_{K\pi^0} \to 0$. While this may well be realized, a very large C (especially if $\mathcal{A}_{K\pi^0} > 0$) would be a surprise in itself.

In a previous paper [3], we explored the possibility of New Physics (NP) effects in $P_{\rm EW}$, in particular in the 4 generation standard model (SM4, with SM3 for 3 generations). A sequential t' quark could affect $P_{\rm EW}$ most naturally for two reasons. On one hand, the associated Cabibbo-Kobayashi-Maskawa (CKM) matrix element product $V_{t's}^* V_{t'b}$ could be large and imaginary; on the other hand, it is well known that $P_{\rm EW}$ is sensitive to $m_{t'}^2$ in amplitude, and heavy t' does not decouple.

Using the PQCD factorization approach at leading order [4], which successfully predicted $\mathcal{A}_{K^+\pi^-} < -0.1$ (and C was not inordinately large), we showed that $\mathcal{A}_{K^+\pi^0} \gtrsim 0$ called for sizable $m_{t'} \gtrsim 300$ GeV and large, nearly imaginary $V_{t's}^* V_{t'b}$. As the $m_{t'}$ dependence is similar, we also showed that data on $B \to X_s \ell^+ \ell^-$ and B_s mixing concurred, in the sense that large t' effect is allowed only if $V_{t's}^* V_{t'b}$ is nearly imaginary. Applying the latter two constraints, however, $m_{t'}$ and $V_{t's}^* V_{t'b}$ become highly constrained. In the following, we will take [3]

$$m_{t'} \cong 300 \text{ GeV}, \ V_{t's}^* V_{t'b} \equiv r_{sb} \ e^{i\phi_{sb}} \simeq 0.025 \ e^{i70^\circ}, \ (1)$$

as exemplary values for realizing $\mathcal{A}_{K^+\pi^0} - \mathcal{A}_{K^+\pi^-} \gtrsim 0.10$,

without recourse to a large C contribution.

Comparing with $|V_{cs}V_{cb}| \simeq 0.04$, $r_{sb} \sim 0.025$ is quite sizable. In our $b \to s$ study, we had assumed [3] $V_{t'd} \to 0$ out of convenience, so as to decouple from $b \to d$ and $s \to d$ concerns. The main purpose of this note, however, is to show that, in view of the large r_{sb} and ϕ_{sb} values given in Eq. (1), $V_{t'd} = 0$ is untenable, and one must explore $s \to d$ and $b \to d$ implications. The reasoning is as follows. Since a rather large impact on $V_{ts}^*V_{tb}$ is implied by Eq. (1), if one sets $V_{t'd} = 0$, then $V_{td}^*V_{ts}$ would still be rather different from SM3 case. With our current knowledge of m_t , the ε_K parameter would deviate from the well measured experimental value. Thus, a finite $V_{t'd}$ is needed to tune for ε_K .

We find that the kaon constraints that are sensitive to t' (i.e. $P_{\rm EW}$ -like), viz. $K^+ \to \pi^+ \nu \bar{\nu}$, $K_L \to \mu^+ \mu^-$, ε_K , and $\varepsilon' / \varepsilon$ can all be satisfied. Interestingly, once kaon constraints are satisfied, we find little impact is implied for $b \leftrightarrow d$ transitions, such as Δm_{B_d} and $\sin 2\Phi_{B_d}$. That is, $V_{t'd} \to 0$ works approximately for $b \to d$ transitions, for current level of experimental sensitivity. The main outcome for $s \to d$ and $b \to d$ transitions is the enhancement of $K_L \to \pi^0 \nu \bar{\nu}$ mode by an order of magnitude or more, to beyond 5×10^{-10} .

With four generations, adding $V_{t's}^* V_{t'b}$ extends the familiar unitarity triangle relation into a quadrangle,

$$V_{us}^* V_{ub} + V_{cs}^* V_{cb} + V_{ts}^* V_{tb} + V_{t's}^* V_{t'b} = 0.$$
(2)

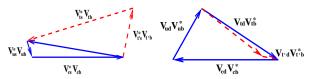


FIG. 1: Unitarity quadrangles of (a) Eq. (2), with $|V_{us}^{*}V_{ub}|$ exaggerated; (b) Eq. (17), where actual scale is ~ 1/4 of (a). Adding $V_{ts}^{*}V_{tb}$ (dashed) according to Eq. (1) drastically changes the invariant phase and $V_{ts}^{*}V_{tb}$ from the SM3 triangle (solid), but from Eq. (16), the dashed lines for $V_{td}V_{tb}^{*}$ and $V_{t'd}V_{tb}^{*}$ can hardly be distinguished from SM3 case.

Using SM3 values for $V_{us}^*V_{ub}$, $V_{cs}^*V_{cb}$ (validated later by our $b \to d$ study), since they are probed in multiple ways already, and taking $V_{t's}^*V_{t'b}$ as given in Eq. (1), we depict Eq. (2) in Fig. 1(a). The solid, rather squashed triangle is the usual $V_{us}^*V_{ub} + V_{cs}^*V_{cb} + V_{ts}^*V_{tb} = 0$ in SM3. Given the size and phase of $V_{t's}^*V_{t'b}$, one sees that the invariant phase represented by the area of the quadrangle is rather large, and $V_{ts}^*V_{tb}$ picks up a large imaginary part, which is very different from SM3 case. Such large effect in $b \to$ s would likely spill over into $s \to d$ transitions, since taking V_{tb} as real and of order 1, one immediately finds the strength and complexity of $V_{td}^*V_{ts}$ would be rather different from SM3, and one would need $V_{t'd}^*V_{t's} \neq 0$ to compensate for the well measured value for ε_K .

Note from Fig. 1(a) that the usual approximation of dropping $V_{us}^* V_{ub}$ in the loop remains a good one. To face $s \to d$ and $b \to d$ transitions, however, one should respect unitarity of the 4×4 CKM matrix V_{CKM} . We adopt the parametrization in Ref. [5] where the third column and fourth row is kept simple. This is suitable for B physics, as well as for loop effects in kaon sector. With V_{cb} , V_{tb} and $V_{t'b}$ defined as real, one keeps the SM3 phase convention for V_{ub} , now defined as

$$\arg V_{ub}^* = \phi_{ub},\tag{3}$$

which is usually called ϕ_3 or γ in SM3. We take $\phi_{ub} = 60^{\circ}$ as our nominal value [6]. This can in principle be measured through tree level processes such as the $B \rightarrow DK$ Dalitz method [7]. The two additional phases are associated with $V_{t's}$ and $V_{t'd}$, and for the rotation angles we follow the PDG notation [8]. To wit, we have

$$V_{t'd} = -c_{24}c_{34}s_{14}e^{-i\phi_{db}}, \qquad (4)$$

$$V_{t's} = -c_{34}s_{24}e^{-i\phi_{sb}}, (5)$$

$$V_{t'b} = -s_{34}, (6)$$

while $V_{t'b'} = c_{14}c_{24}c_{34}, V_{tb} = c_{13}c_{23}c_{34}, V_{cb} = c_{13}c_{34}s_{23}$ are all real. With this convention for rotation angles, from Eq. (3) we have $V_{ub} = c_{34}s_{13}e^{-i\phi_{ub}}$.

Analogous to Eq. (1), we also make the heuristic but redundant definition of

$$V_{t'd}^* V_{t'b} \equiv r_{db} \, e^{i \, \phi_{db}}, \ V_{t'd}^* V_{t's} \equiv r_{ds} \, e^{i \, \phi_{ds}}, \tag{7}$$

as these combinations enter $b \to d$ and $s \to d$ transitions. Inspection of Eqs. (1), (4–6) gives the relations

$$r_{db}r_{sb} = r_{ds}s_{34}^2, \ \phi_{ds} = \phi_{db} - \phi_{sb}.$$
 (8)

As we shall see, $s \to d$ transitions are much more stringent than $b \to d$ transitions, hence we shall turn to constraining r_{ds} and ϕ_{ds} .

Before turning to the kaon sector, we need to infer what value to use for $s_{34} = |V_{t'b}|$, as this can still affect the relevant physics through unitarity. Fortunately, we have some constraint on s_{34} from $Z \to b\bar{b}$ width, which receives special t (and hence t') contribution compared to other $Z \to q\bar{q}$, and is now suitably well measured. Following Ref. [9] and using $m_{t'} = 300$ GeV, we find

$$|V_{tb}|^2 + 3.4|V_{t'b}|^2 < 1.14.$$
(9)

Since all c_{ij} s except perhaps c_{34} would still likely be close to 1, we infer that $s_{34} \leq 0.25$. We take the liberty to nearly saturate this bound ($\Gamma(Z \rightarrow b\bar{b})$) is close to 1σ above SM3 expectation), by *imposing*

$$s_{34} \simeq 0.22,$$
 (10)

to be close to the Cabibbo angle, $\lambda \equiv |V_{us}| \approx 0.22$. Note that Eq. (10) is somewhat below the expectation of "maximal mixing" of $s_{34}^2 \sim 1/2$ between third and fourth generations. Combining it with Eq. (1), one gets $|V_{t's}| \sim 0.11 \sim \lambda/2$. Its strength would grow if a lower value of $s_{34} \lesssim \lambda$ is chosen, which would make even greater impact on $s \to d$ transitions.

Using current values [8] of V_{cb} and V_{ub} as input and respecting full unitarity, we now turn to the kaon constraints of $K^+ \to \pi^+ \nu \bar{\nu}$, ε_K , $K_L \to \mu^+ \mu^-$, and $\varepsilon' / \varepsilon$. The first two are short-distance (SD) dominated, while the last two suffer from long-distance (LD) effects.

Let us start with $K^+ \to \pi^+ \nu \bar{\nu}$. The first observed event [10] by E787 suggested a sizable rate hence hinted at NP. The fourth generation would be a good candidate, since the process is dominated by the Z penguin. Continued running, including E949 data (unfortunately not greatly improving accumulated luminosity), has yielded overall 3 events, and the rate is now $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) =$ $(1.47^{+1.30}_{-0.89}) \times 10^{-10}$ [11]. This is still somewhat higher than the SM3 expectation of order 0.8×10^{-10} .

Defining $\lambda_q^{ds} \equiv V_{qd} V_{qs}^*$ and using the formula [12]

$$\mathcal{B}(K^{+} \to \pi^{+} \nu \bar{\nu}) = \kappa_{+} \left| \frac{\lambda_{c}^{ds}}{|V_{us}|} P_{c} + \frac{\lambda_{t}^{ds}}{|V_{us}|^{5}} \eta_{t} X_{0}(x_{t}) + \frac{\lambda_{t'}^{ds}}{|V_{us}|^{5}} \eta_{t'} X_{0}(x_{t'}) \right|^{2}, \quad (11)$$

we plot in Fig. 2 the allowed range (valley shaped shaded region) of $r_{ds}-\phi_{ds}$ for the 90% confidence level (C.L.) bound of $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) < 3.6 \times 10^{-10}$. We have used [12] $\kappa_+ = (4.84 \pm 0.06) \times 10^{-11} \times (0.224/|V_{us}|)^8$ and $P_c = (0.39 \pm 0.07) \times (0.224/|V_{us}|)^4$. We take the QCD correction factors $\eta_{t'} \sim 1$, and $X_0(x_{t'})$ evaluated for $m_t = 166$ GeV and $m_{t'} = 300$ GeV. We see that r_{ds} up to 7×10^{-4} is possible, which is not smaller than the SM3 value of 4×10^{-4} for $|V_{td}^*V_{ts}|$.

The SD contribution to $K_L \to \mu^+ \mu^-$ is also of interest. The $K_L \to \mu^+ \mu^-$ rate is saturated by the absorptive $K_L \to \gamma \gamma \to \mu^+ \mu^-$, while the off-shell photon contribution makes the SD contribution hard to constrain. To be conservative, we use the experimental bound of $\mathcal{B}(K_L \to \mu^+ \mu^-)_{\rm SD} < 3.7 \times 10^{-9}$ [13]. It is then in general less stringent than $K^+ \to \pi^+ \nu \bar{\nu}$, although the generic constraint on r_{ds} drops slightly. We do not plot this constraint in Fig. 2.

The rather precisely measured CPV parameter $\varepsilon_K = (2.284 \pm 0.014) \times 10^{-3}$ [8] is predominantly SD. It maps

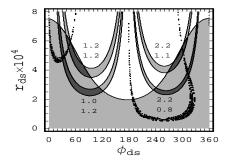


FIG. 2: Allowed region from $K^+ \to \pi^+ \nu \bar{\nu}$ (valley shaped shaded region), ε_K (simulated dots) and ε'/ε (elliptic rings) in r_{ds} and ϕ_{ds} plane, as described in text, where $V_{t'd}^* V_{t's} \equiv$ $r_{ds} e^{i\phi_{ds}}$. For ε'/ε , the rings on upper right correspond to $R_6 = 2.2$, and $R_8 = 0.8$, 1.1 (bottom to top), and on upper left, $R_6 = 1.0$, 1.2 (bottom to top), $R_8 = 1.2$.

out rather thin slices of allowed regions on the $r_{ds}-\phi_{ds}$ plane, as illustrated by dots in Fig. 2, where we use the formula of Ref. [9] and follow the treatment. Note that r_{ds} up to 7×10^{-4} is still possible, for several range of values for ϕ_{ds} . This is the aforementioned effect that extra CPV effects due to large ϕ_{sb} and r_{sb} now have to be tuned by t' effect to reach the correct ε_K value. We have checked that Δm_K makes no additional new constraint.

The DCPV parameter, Re $(\varepsilon'/\varepsilon)$, was first measured in 1999 [14], with current value at $(1.67 \pm 0.26) \times 10^{-3}$ [8]. It depends on a myriad of hadronic parameters, such as m_s , $\Omega_{\rm IB}$ (isospin breaking), and especially the nonperturbative parameters R_6 and R_8 , which are related to the hadronic matrix elements of the dominant strong and electroweak penguin operators. With associated large uncertainties, we expect ε'/ε to be rather accommodating, but for specific values of R_6 and R_8 , some range for r_{ds} and ϕ_{ds} is determined.

We use the formula

$$\operatorname{Re}\frac{\varepsilon'}{\varepsilon} = \operatorname{Im}\left(\lambda_c^{ds}\right)P_0 + \operatorname{Im}\left(\lambda_t^{ds}\right)F(x_t) + \operatorname{Im}\left(\lambda_{t'}^{ds}\right)F(x_{t'}),\tag{12}$$

where F(x) is given by

$$F(x) = P_X X_0(x) + P_Y Y_0(x) + P_Z Z_0(x) + P_E E_0(x).$$
(13)

The SD functions X_0 , Y_0 , Z_0 and E_0 can be found, for example, in Ref. [15], and the coefficients P_i are given in terms of R_6 and R_8 as

$$P_i = r_i^{(0)} + r_i^{(6)} R_6 + r_i^{(8)} R_8, \tag{14}$$

which depends on LD physics. We differ from Ref. [15] by placing P_0 , multiplied by Im (λ_c^{ds}) , explicitly in Eq. (12). In SM4, one no longer has the relation Im $\lambda_c^{ds} = -\text{Im}\lambda_t^{ds}$ that makes Re $(\varepsilon'/\varepsilon)$ proportional to Im (λ_t^{ds}) . We take the $r_i^{(j)}$ values from Ref. [15] for $\Lambda_{\overline{MS}}^{(4)} = 310$ MeV, but reverse the sign of $r_0^{(j)}$ for above mentioned reason. Note that Re $(\varepsilon'/\varepsilon)$ depends linearly on R_6 and R_8 . For fixed SD parameters $m_{t'}$ and $\lambda_{t'}^{ds} = V_{t'd}V_{t's}^*$, one may adjust for solutions to $K^+ \to \pi^+ \nu \bar{\nu}$ and ε_K .

For the "standard" [15] parameter range of $R_6 = 1.23 \pm 0.16$ and $R_8 = 1.0 \pm 0.2$, we find $R_8 \sim 1.2$ and $R_6 \sim 1.0-1.2$ allows for solutions at $r_{ds} \sim (5-6) \times 10^{-4}$ with $\phi_{ds} \sim +(35^\circ-50^\circ)$, as illustrated by the elliptic rings on upper left part of Fig. 2. For $R_6 = 2.2 \pm 0.4$ found [16] in $1/N_C$ expansion at next-to-leading order (and chiral perturbation theory at leading order), within SM3 one has trouble giving the correct Re $(\varepsilon'/\varepsilon)$ value. However, for SM4, solutions exist for $R_6 \sim 2.2$ and $R_8 = 0.8-1.1$, for $r_{ds} \sim (3.5-5) \times 10^{-4}$ and $\phi_{ds} \sim -(45^\circ-60)^\circ$, as illustrated by the elliptic rings on upper right part of Fig. 2. We will take

$$r_{ds} \sim 5 \times 10^{-4}, \ \phi_{ds} \sim -60^{\circ} \text{ or } +35^{\circ},$$
 (15)

as our two nominal cases that satisfy all kaon constraints. The corresponding values for R_6 and R_8 can be roughly read off from Fig. 2. We stress again that these values should be taken as exemplary.

To illustrate in a different way, we plot ε_K , $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ and $\operatorname{Re}(\varepsilon'/\varepsilon)$ vs ϕ_{ds} in Figs. 3(a), (b) and (c), respectively, for $r_{ds} = 4$ and 6×10^{-4} . The current 1σ experimental range is also illustrated. In Fig. 3(c), we have illustrated with $R_6 = 1.1$, $R_8 = 1.2$ [15] and $R_6 = 2.2$, $R_8 = 1.1$ [16]. For the former (latter) case, the variation is enhanced as R_6 (R_8) drops.

It is interesting to see what are the implications for the CPV decay $K_L \to \pi^0 \nu \bar{\nu}$. The formula for $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})$ is analogous to Eq. (11), except [15] the change of κ_+ to $\kappa_L = (2.12 \pm 0.03) \times 10^{-10} \times (|V_{us}|/0.224)^8$, and taking only the imaginary part for the various CKM products. Since $\phi_{ds} \sim -60^\circ$ or $+35^\circ$ have large imaginary part, while $r_{ds} \equiv |V_{t'd}^* V_{t's}| \sim 5 \times 10^{-4}$ is stronger than the SM3

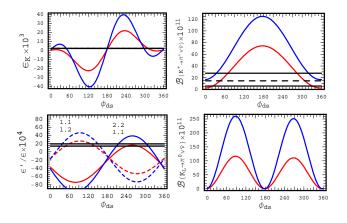


FIG. 3: (a) ε_K , (b) $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$, (c) $\operatorname{Re}(\varepsilon'/\varepsilon)$ and (d) $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})$ vs ϕ_{ds} , for $r_{ds} = 4$ and 6×10^{-4} and $m_{t'} = 300$ GeV. Larger r_{ds} gives stronger variation, and horizontal bands are current (1σ) experimental range [8] (the bound for (d) is outside the plot). For (c), solid (dashed) lines are for $R_6 = 2.2$, $R_8 = 1.1$ ($R_6 = 1.1$, $R_8 = 1.2$).

expectation of $\text{Im} V_{td}^* V_{ts} \sim 10^{-4}$, we expect the CPV decay rate of $K_L \to \pi^0 \nu \bar{\nu}$ to be much enhanced.

We plot $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})$ vs ϕ_{ds} in Fig. 3(d), for $r_{ds} = 4$ and 6×10^{-4} . Reading off from the figure, we see that the $K_L \to \pi^0 \nu \bar{\nu}$ rate can reach above 10^{-9} , almost two orders of magnitude above SM3 expectation of 0.3×10^{-10} . It is likely above 5×10^{-10} , and in general larger than $K^+ \rightarrow \pi^+ \nu \bar{\nu}$. Specifically, for our nominal value of $r_{ds} \sim 5 \times 10^{-4}$ and $\phi_{ds} \sim +35^{\circ}$, $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})$ and $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ are 6.5 and 2×10^{-10} , respectively, while for the $\phi_{ds} \sim -60^{\circ}$ case, they are 12 and 3×10^{-10} , respectively. The latter case is closer to the Grossman-Nir bound [17], i.e. $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) / \mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) \sim$ $\tau_{K_L}/\tau_{K^+} \sim 4.2$, because $V_{t'd}V_{t's}^*$ is more imaginary. Thus, both $K^+ \to \pi^+ \nu \bar{\nu}$ and $K_L \to \pi^0 \nu \bar{\nu}$ should be very interesting at the next round of experiments. We note that the ongoing E391A experiment could [18] attain single event sensitivity with the Grossman-Nir bound based on the current $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ measurement. However, for $r_{ds} \sim 3.5 \times 10^{-4}$ and $\phi_{ds} \sim -45^{\circ}$, which is still a solution for $R_6 \sim 2.2$, one has $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) \sim 4 \times 10^{-10}$ with $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ at lower end of current range.

With $\phi_{sb} \sim 70^{\circ}$ and $\phi_{ds} \sim -60^{\circ}$ (and $+35^{\circ}$) both sizable while the associated CKM product is larger than the corresponding SM3 top contribution, there is large impact on $b \to s$ and $s \to d$ transitions from Z penguin and box diagrams. It is therefore imperative to check that one does not run into difficulty with $b \to d$ transitions. Remarkably, we find that the impact on $b \to d$ is mild. From Eqs. (1), (8), (10) and (15), we infer

$$r_{db} \sim 1 \times 10^{-3}, \ \phi_{db} \sim 10^{\circ} \ (105^{\circ}).$$
 (16)

Since r_{db} is much smaller than $|V_{td}^*V_{tb}| \sim \lambda^3 \sim 0.01$ in SM3, the impact on $b \to d$ is expected to be milder, i.e. we are not far from the $V_{t'd} \to 0$ limit. We stress that this is *nontrivial* since there is a large effect in $b \to s$; it is a consequence of imposing $s \to d$ and $Z \to b\bar{b}$ constraints. We illustrate in Fig. 1(b) the unitarity quadrangle

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* + V_{t'd}V_{t'b}^* = 0.$$
(17)

In contrast to Fig. 1(a), $(V_{td}V_{tb}^* + V_{t'd}V_{t'b}^*)_{SM4}$ and $(V_{td}V_{tb}^*)_{SM3}$ can hardly be distinguished.

The $B_d^0 - \overline{B}_d^0$ mass difference and CP violation phase in mixing are respectively given by $\Delta m_{B_d} \equiv 2 |M_{12}|$ and $\sin 2\Phi_{B_d} \equiv \text{Im} (M_{12}/|M_{12}|)$, where

$$M_{12} = \kappa_{B_d} \left[(\lambda_t^{db})^2 \eta_t S(x_t) + (\lambda_{t'}^{db})^2 \eta_{t'} S(x_{t'}) + 2\lambda_t^{db} \lambda_{t'}^{db} \eta_{tt'} S(x_t, x_{t'}) \right],$$
(18)

with $\kappa_{B_d} = \frac{G_F^2}{12\pi^2} m_W^2 m_{B_d} B_{B_d} f_{B_d}^2$. The functions S(x)and S(x, y) can be found in [19]. We take $\eta_t = 0.55$, $\eta_{t'} = 0.58$ and $\eta_{tt'} = 0.50$, and plot in Fig. 4(a) Δm_{B_d} vs ϕ_{db} , for $r_{db} = 8$ and 12×10^{-4} (corresponding to $r_{ds} = 4$ and 6×10^{-4}). We have taken the experimental value of

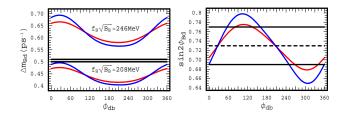


FIG. 4: (a) Δm_{B_d} and (b) $\sin 2\Phi_{B_d}$ vs ϕ_{db} for $r_{db} = 8$ and 12×10^{-4} , with $V_{t'd}^* V_{t'b} \equiv r_{db} e^{i\phi_{db}}$. Larger r_{db} gives stronger variation, and horizontal bands are the experimental range [8].

$$\begin{split} \Delta m_{B_d} &= (0.505\pm0.005)~{\rm ps}^{-1}~{\rm from}~{\rm PDG}~2005~[8],~{\rm and}~{\rm illustrated}~{\rm with}~{\rm the}~{\rm lower}~{\rm range}~{\rm of}~f_{B_d}\sqrt{B_{B_d}} = (246\pm38)\\ {\rm MeV}~[20].~{\rm We}~{\rm have}~{\rm scaled}~{\rm up}~{\rm the}~{\rm error}~{\rm for}~{\rm the}~{\rm latter}~{\rm by}\\ 1.4,~{\rm since}~{\rm it}~{\rm comes}~{\rm from}~{\rm the}~{\rm new}~{\rm result}~{\rm on}~f_{B_d}~{\rm with}~{\rm unquenched}~{\rm lattice}~{\rm QCD}~[21],~{\rm but}~B_{B_d}~{\rm is}~{\rm not}~{\rm yet}~{\rm updated}.\\ {\rm We}~{\rm see}~{\rm from}~{\rm Fig.}~4({\rm a})~{\rm that}~\Delta m_{B_d}~{\rm does}~{\rm not}~{\rm rule}~{\rm out}~{\rm the}~{\rm parameter}~{\rm space}~{\rm around}~{\rm Eq.}~(16)~({\rm equivalent}~{\rm to}~{\rm Eq.}~(15)).\\ {\rm The}~{\rm overall}~{\rm dependence}~{\rm on}~r_{db}~{\rm and}~\phi_{db}~{\rm is}~{\rm mild},~{\rm and}~{\rm error}~{\rm on}~f_{B_d}\sqrt{B_{B_d}}~{\rm cominates}.~{\rm Seemingly},~{\rm a}~{\rm lower}~{\rm value}~{\rm of}~f_{B_d}\sqrt{B_{B_d}}~{\rm \sim}~215~{\rm MeV}~{\rm is}~{\rm preferred}.~{\rm SM3}~{\rm would}~{\rm give}~\Delta m_{B_d}=0.44-0.62~{\rm ps}^{-1}~{\rm for}~f_{B_d}\sqrt{B_{B_d}}=208~{\rm MeV}-246~{\rm MeV},~{\rm so}~{\rm the}~{\rm problem}~{\rm is}~{\rm not}~{\rm with}~{\rm SM4}. \end{split}$$

We plot $\sin 2\Phi_{B_d}$ vs ϕ_{db} in Fig. 4(b), for $r_{db} = 8$ and 12×10^{-4} . One can see that $\sin 2\Phi_{B_d}$, which is not sensitive to hadronic parameters such as $f_{B_d}\sqrt{B_{B_d}}$, is well within experimental range of " $\sin 2\phi_1$ " = 0.73 ± 0.04 from PDG 2005 [8] for the $\phi_{db} \sim 10^\circ$ case. However, for $\phi_{db} \sim 105^\circ$ case, which is much more imaginary, $\sin 2\Phi_{B_d}$ is on the high side [22], and it seems that CPV in B physics prefers $R_6 \sim 2.2$ over $R_6 \sim 1$. As another check, we find the semileptonic asymmetry $A_{SL} = -0.7 \times 10^{-3}$ (-0.2×10^{-3}) for $\phi_{db} \sim 10^\circ$ (105°), which is also well within range of $A_{SL}^{exp} = (-1.1 \pm 7.9 \pm 7.0) \times 10^{-3}$ [23].

With Eqs. (1), (10) and (16), together with standard (SM3) values for V_{cb} and V_{ub} , we can get a glimpse of the typical 4×4 CKM matrix, which appears like

(0.9745	0.2225	$0.0038 e^{-i 60^{\circ}}$	$0.0281 e^{i 61^{\circ}}$
	-0.2241	0.9667	0.0415	$0.1164 e^{i \; 66^{\circ}}$
	$0.0073 e^{- i 25^{\circ}}$	$-0.0555 e^{-i 25^{\circ}}$	0.9746	$0.2168 e^{-i 1^{\circ}}$
($-0.0044e^{-i10^\circ}$	$-0.1136 e^{-i 70^{\circ}}$	-0.2200	0.9688
				(19)

for $\phi_{db} \sim 10^{\circ}$ case (V_{cd} and V_{cs} pick up tiny imaginary parts, which are too small to show in angles). For the $\phi_{db} \sim 105^{\circ}$ case, the appearance is almost the same, except $V_{td} \simeq 0.0082 \, e^{-i \, 17^{\circ}}$ and $V_{ub'} \simeq 0.029 \, e^{i \, 74^{\circ}}$. Note the "double Cabibbo" nature, i.e. the 12 and 34 diagonal 2×2 submatrices appear almost the same. This is a consequence of our choice of Eq. (10). To keep Eq. (1) intact, however, weakening s_{34} would result in even large $V_{t's}$, but it would still be close to imaginary. Since $V_{t(t)d}^*V_{t(t')s}$ are tiny compared to $V_{ud}^*V_{us} \simeq -V_{cd}^*V_{cs}$, the unitarity quadrangle for $s \to d$ cannot be plotted as in Fig. 1. However, note that $V_{td}^*V_{ts}$ is almost real, and CPV in $s \to d$ comes mostly from t'.

The entries for $V_{ib'}$, i = u, c, t are all sizable. $|V_{ub'}| \sim 0.03$ satisfies the unitarity constraint $|V_{ub'}| < 0.08$ [8] from the first row, but it is almost as large as V_{cb} . However, the long standing puzzle of unitarity of the first row could be taken as a hint for finite $|V_{ub'}| \sim 0.03$ [24].

The element $V_{cb'} \simeq -V_{t's}^*$ is even larger than V_{cb} and close to imaginary. Together with finite $V_{ub'}, V_{ub'}V_{cb'}^* \simeq 0.0033 \, e^{-i5^\circ} \, (0.0034 \, e^{i9^\circ})$ is not negligible, and one may worry about $D^0 \cdot \bar{D}^0$ mixing. Fortunately the D decay rate is fully Cabibbo allowed. Using $f_D \sqrt{B_D} = 200$ MeV, we find $\Delta m_{D^0} \leq 0.05 \text{ ps}^{-1}$ for $m_{b'} \leq 280$ GeV, for both nominal cases of Eq. (16). Thus, the current bound of $\Delta m_{D^0} < 0.07 \text{ ps}^{-1}$ is satisfied, and the search for D^0 mixing is of great interest. This bound weakens by factor of 2 if one allows for strong phase between $D^0 \to K^- \pi^+$ and $K^+\pi^-$ [8].

If $m_{b'} < m_{t'}$, as slightly preferred by $D^0 - \bar{D}^0$ mixing constraint, the direct search for b' just above 200 GeV at the Tevatron Run II could be rather interesting. Since $V_{cb'}$ is not suppressed, the b' quark would decay via charged current. Both b' and t', regardless of which one is lighter, with $m_{t'} \sim 300$ GeV and $|m_{t'} - m_{b'}| \leq 85$ GeV [8], can be easily discovered at the LHC.

The large and mainly imaginary element $V_{t's} \simeq -V_{cb'}^*$ in Eq. (19), being larger than V_{ts} and V_{cb} , may appear unnatural (likewise for $V_{ub'}$ vs V_{ub}). However, it is allowed, since the main frontier that we are just starting to explore is in fact $b \to s$ transitions. The current situation that $\mathcal{A}_{K^+\pi^-} \sim -0.12$ while $\mathcal{A}_{K^+\pi^0} \gtrsim 0$ in $B \to K\pi$ decays

- B. Aubert *et al.* [BaBar Collab.], Phys. Rev. Lett.
 93, 131801 (2004); Y. Chao *et al.* [Belle Collab.], *ibid.* 93, 191802 (2004); K. Abe *et al.* [Belle Collab.], hep-ex/0507045.
- [2] C.W. Chiang, M. Gronau, J.L. Rosner and D.A. Suprun, Phys. Rev. D **70**, 034020 (2004); Y.Y. Charng and H.n. Li, *ibid.* D **71**, 014036 (2005); M. Gronau and J.L. Rosner, *ibid.* D **71**, 074019 (2005); C.S. Kim, S. Oh and C. Yu, hep-ph/0505060; H.n. Li, S. Mishima and A.I. Sanda, hep-ph/0508041.
- [3] W.S. Hou, M. Nagashima and A. Soddu, hep-ph/0503072, to appear in Phys. Rev. Lett.
- [4] Y.Y. Keum, H.n. Li and A.I. Sanda, Phys. Rev. D 63, 054008 (2001).
- [5] W.S. Hou, A. Soni and H. Steger, Phys. Lett. B 192, 441 (1987).
- [6] Our results do not change drastically as ϕ_{ub} is varied by $\pm 10^{\circ}$.
- [7] A. Giri *et al.*, Phys. Rev. D **68**, 054018 (2003); A. Poluektov *et al.* [Belle Collab.], *ibid.* D **70**, 072003 (2004).
- [8] S. Eidelman *et al.* [Particle Data Group], Phys. Lett. B 592, 1 (2004); and 2005 update at http://pdg.lbl.gov/.
- [9] T. Yanir, JHEP06 (2002) 044.
- [10] S.C. Adler *et al.* [E787 Collab.], Phys. Rev. Lett. **79**, 2204 (1997).

may actually be hinting at the need for such large $b \to s$ CPV effects. The litmus test would be finding Δm_{B_s} not far above current bound, but with sizable sin $2\Phi_{B_s} < 0$ [3], which may even emerge at Tevatron Run II. Our results studied here are for illustration purpose, but the main result, that $K_L \to \pi^0 \nu \bar{\nu}$ may be rather enhanced, is a generic consequence of Eq. (1), which is a possible solution to the $B^+ \to K^+ \pi^0$ DCPV puzzle.

In summary, the deviation of direct CPV measurements between neutral and charged B decays, $\mathcal{A}_{K^+\pi^0}$ – $\mathcal{A}_{K^+\pi^-} \simeq 0.16$ while $\mathcal{A}_{K^+\pi^-} \simeq -0.12$, is a puzzle that could be hinting at New Physics. A plausible solution is the existence of a 4th generation with $m_{t'} \sim 300 \text{ GeV}$ and $V_{t's}^* V_{t'b} \sim 0.025 e^{i 70^\circ}$. If so, we find special solution space is carved out by stringent kaon constraints, and the 4×4 CKM matrix is almost fully determined. $K^+ \to \pi^+ \nu \bar{\nu}$ may well be of order $(1-2) \times 10^{-10}$, while $K_L \to \pi^0 \nu \bar{\nu} \sim (4-12) \times 10^{-10}$ is greatly enhanced by the large phase in $V_{t'd}^* V_{t's}$. With kaon constraints satisfied, B_d mixing and $\sin 2\Phi_{B_d}$ are consistent with experiment. Our results are generic. If the effect weakens in $b \rightarrow s$ transitions, the effect on $K \rightarrow \pi \nu \bar{\nu}$ would also weaken. But a large CPV effect in electroweak $b \rightarrow s$ penguins would translate into an enhanced $K_L \to \pi^0 \nu \bar{\nu}$ (and $\sin 2\Phi_{B_s} < 0$).

Acknowledgement. This work is supported in part by NSC-94-2112-M-002-035, NSC94-2811-M-002-053 and HPRN-CT-2002-00292. WSH thanks SLAC Theory Group for hospitality.

- [11] V.V. Anisimovsky *et al.* [E949 Collab.], Phys. Rev. Lett. 93, 031801 (2004).
- [12] A.J. Buras, F. Schwab and S. Uhlig, hep-ph/0405132.
- [13] D. Ambrose *et al.* [E871 Collab.], Phys. Rev. Lett. 84, 1389 (2000).
- [14] A. Alavi-Harati *et al.* [KTeV Collab.], Phys. Rev. Lett.
 83, 22 (1999); V. Fanti *et al.* [NA48 Collab.], Phys. Lett. B 465, 335 (1999).
- [15] A.J. Buras and M. Jamin, JHEP01 (2004) 048.
- [16] J. Bijnens and J. Prades, JHEP06 (2000) 035.
- [17] Y. Grossman and Y. Nir, Phys. Lett. B 398, 163 (1997).
- [18] E. Blucher, plenary talk at the XXII Lepton-Photon Symposium, June 2005, Uppsala, Sweden.
- [19] G. Buchalla, A.J. Buras and M.E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996).
- [20] I. Stewart, plenary talk at the XXII Lepton-Photon Symposium, June 2005, Uppsala, Sweden.
- [21] A. Gray et al. [HPQCD Collab.], hep-lat/0507015.
- [22] The summer 2005 result by K. Abe *et al.* [Belle Collab.], hep-ex/0507037, reports a low value of $\sin 2\phi_1 = 0.652 \pm 0.039 \pm 0.020$, but this is for $B^0 \to J/\psi K^0$ mode only, and it is too early to draw any conclusion.
- [23] E. Nakano *et al.* [Belle Collab.], hep-ex/0505017. This new result is in agreement with PDG 2005 with slightly better errors.

[24] Recent kaon decay results imply a more stringent bound [18] of $1 - |V_{ud}|^2 - |V_{us}|^2 = 0.0004 \pm 0.0011 \ (|V_{ub}|^2$ is negligible), or $|V_{ub'}| < 0.047$ at 90% C.L., which is still

satisfied by our value.