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Abstract

We complete the investigation of loop corrections to hard spectator-scattering in
exclusive B meson to light meson transitions by computing the short-distance
coefficient (jet-function) from the hard-collinear scale. Adding together the two
coefficients from matching QCD → SCETI → SCETII, we investigate the size of
loop effects on the ratios of heavy-to-light meson form factors at large recoil. We
find the corrections from the hard and hard-collinear scales to be of approximately
the same size, and significant, but the perturbative expansions appear to be well-
behaved. Our calculation provides a non-trivial verification of the factorization
arguments. We observe considerable differences between the predictions based on
factorization in the heavy-quark limit and current QCD sum rule calculations of
the form factors. We also include the hard-collinear correction in the B → ππ tree
amplitudes, and find an enhancement of the colour-suppressed amplitude relative
to the colour-allowed amplitude.
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1 Introduction

The matrix elements of flavour-changing currents q̄Γib are important strong interaction
parameters in low-energy weak-interaction processes. The strong interaction dynamics
of semi-leptonic B decays is encoded in these form factors. They are also inputs to the
factorization formulae for hadronic two-body B decays [1] and radiative decays [2]. A
better understanding of such quantities improves the accuracy of the extraction of the
CKM matrix parameters from experimental data, and of searches for new phenomena in
flavour-changing processes. Thus efforts are being made to compute the form factors with
different methods including QCD lattice simulations [3], light-cone QCD sum rules [4]
and quark models [5].

It is also interesting to investigate these form factors in the heavy-quark expansion.
It is well-known that all B → D(∗) form factors reduce to a single (Isgur-Wise) function
[6] up to calculable short-distance corrections at leading order in this expansion. In this
paper we consider transitions of B mesons to light mesons in the large-recoil regime,
where the light meson momentum is parametrically of order of the heavy-quark mass.
In this regime a similar simplification applies to heavy-to-light form factors [7]: the
three (seven) independent B → pseudoscalar (vector) meson form factors reduce to
one (two) function(s) up to corrections that can be calculated in the hard-scattering
formalism at leading order in the heavy-quark expansion [8]. The different form factors
can therefore be related in a systematic way. The factorization formula that summarizes
these statements reads [8]

FB→M
i (E) = Ci(E) ξa(E) +

∫ ∞

0

dω

ω

∫ 1

0
dv Ti(E; lnω, v)φB+(ω)φM(v) (1)

with E the energy of the light meson M , ξa(E) the single non-perturbative form factor
(one of the two form factors when M is a vector meson), and φX the light-cone distribu-
tion amplitudes of the B meson and the light meson. The short-distance coefficients Ci

and the hard-scattering kernel Ti can be calculated in perturbation theory. The heavy-
to-light form factors are more complicated than both, the B → D(∗) form factors and
light-light meson transition form factors at large momentum transfer. Contrary to the
case of B → D(∗), a spectator-scattering correction, the second term on the right hand
side of (1), appears. On the other hand, the form factor cannot be expressed in terms of
a convolution of light-cone distribution amplitudes alone, because the corresponding con-
volution integrals are dominated by endpoint singularities [9]. In (1) these contributions
are factored into the the function ξa(E).

1 The factorization formula (1) has been shown
to be valid to all orders in perturbation theory [12] (see also [13, 14]) in the framework
of soft-collinear effective theory (SCET) [15, 16, 17]. In particular, since the two rele-
vant short-distance scales mb and (mbΛ)

1/2 (Λ is the characteristic scale of QCD) can be

1The statement that the endpoint contributions are not calculable is challenged in the PQCD ap-
proach [10], which assumes that Sudakov resummation renders them perturbative. This point is critically
examined in [11]. We also note here that our notation ξa(E) does not show the dependence of the form
factor on the nature of the meson M .
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separated in SCET, the short-distance coefficients Ti pertaining to spectator-scattering
are represented as convolutions C

(B1)
i ⋆ J with the two factors associated with the two

different scales.
In the limit that not only power corrections in Λ/mb but also radiative corrections

in the strong coupling αs are neglected, the second term on the right hand side of (1)
is absent, and parameter-free relations between ratios of form factors follow [7]. The αs

contributions to (1) have been computed in [8], and the spectator-scattering term Ti has
been found to dominate the correction. This motivates an investigation of the subsequent
term in the perturbative expansion of Ti. Since the leading αs term is due to a tree
diagram with gluon exchange between the current quarks and the spectator anti-quark,
this amounts to the computation of the 1-loop correction to spectator-scattering. Since
Ti = C

(B1)
i ⋆ Ja, the calculation splits into two parts. In a previous paper [18] (see also

[19]) we reported the first part of the calculation which consisted of the 1-loop correction

to the coefficients C
(B1)
i originating from the hard scale mb. In this paper we complete

the calculation with the 1-loop computation of the “jet-functions” Ja originating from
the “hard-collinear” scale (mbΛ)

1/2. The jet-functions have also been computed by Hill
et al. [19, 20]. Nevertheless, an independent calculation is useful, since the computation
is quite involved and a comparison showed that the result of [20] was originally not given
in a scheme consistent with the MS definition of the light-meson light-cone distribution
amplitude (see the discussion in [19, 20]). Furthermore, the numerical impact of these
calculations on the relation between form factors and other observables in B decays has
not yet been discussed in any detail in the literature.

The organization of the calculation of the short-distance coefficients Ci and Ti follows
closely the derivation of the factorization formula in [12]. In a first step, the effects from
the hard scale mb are computed and QCD is matched to an intermediate effective theory,
called SCETI. In SCETI the term ξa and the hard-scattering term are naturally defined
by the matrix elements of two distinct operator structures, the so-called A-type and
B-type operators. At this step, the form factors can be represented as

FB→M
i (E) = Ci(E) ξa(E) +

∫
dτ C

(B1)
i (E, τ) Ξa(τ, E). (2)

The point to note here is that the three (seven) form factors of a B → P (B → V )
transition can be expressed in terms of one (two) form factor(s) ξa(E) and one (two)
non-local form factor(s) Ξa(τ, E). A number of relations between form factors emerge
already at this stage. In Section 2 we define the SCETI operator basis, and express the
QCD heavy-to-light form factors in terms of the SCETI hadronic matrix elements, which
leads to (2). All the required short-distance coefficients of the SCETI operators can be
inferred from [18, 19].

Eq. (2) is useful only to a limited extent, because it introduces the form factors
Ξa(τ, E), which depend on two variables. However, it has been shown that, contrary
to the ξa(E), the Ξa(τ, E) can be factorized further into a convolution of light-cone
distribution amplitudes with a hard-scattering kernel (jet-function) [12]. This amounts
to performing a second matching to SCETII, in which the effects at the hard-collinear
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scale (mbΛ)
1/2 are computed. This is done in Section 3. Here we discuss in detail the 1-

loop calculation and renormalization of the jet-functions Ja that follow from representing
the SCETI matrix element of the B-type operators in the form

Ξa(τ, E) =
1

4

∫ ∞

0
dω

∫ 1

0
dv Ja(τ ; v, ω) f̂BφB+(ω)fMφM(v). (3)

Combining this with (2) we obtain the spectator-scattering term in (1). The calcula-
tion is done in dimensional regularization which requires dealing with evanescent Dirac
structures specific to d dimensions. As will be discussed, a subtlety arises due to the fact
that the factorization properties of SCETII require a specific choice of reduction scheme.
Together with Ja we also determine the anomalous dimensions of the B-type operators
confirming the results of [20].

The detailed numerical analysis of the corrections from the two matching steps is
contained in Sections 4 and 5. In addition to the next-to-leading order correction we also
include the summation of formally large logarithms from the ratio of the hard and hard-
collinear scale by deriving a renormalization group improved expression for the coefficient
functions C

(B1)
i . From the size of the 1-loop correction we conclude that the perturbative

calculation of spectator-scattering is under reasonable control despite the comparatively
low scale of order (mbΛ)

1/2 ∼ 1.5GeV. The combined hard and hard-collinear 1-loop
correction is about (50 − 70)% depending on the observable. This is also of interest in
the context of QCD factorization calculations of hadronic B decays, since the same jet-
function enters the spectator-scattering contributions to two-body decays [21]. Section 5
is devoted to a discussion of the symmetry-breaking effects on the form factor ratios
and a comparison of these ratios to QCD sum rule calculations. We then consider the
tensor-to-(axial-)vector form factor ratios that appear in electromagnetic and electroweak
penguin decays, and the numerical impact of our jet-function calculation on hadronic
decays to two pions. Here we find that the new contribution increases the ratio of the
colour-suppressed to the colour-allowed tree decay amplitude, which leads to a better
description of the branching fraction data. We conclude in Section 6.

In Appendix A we summarize the short-distance coefficients C
(B1)
i (E, τ) relevant to

(2). Some of the convolution integrals of the jet-functions and the coefficients C
(B1)
i (E, τ)

needed for the numerical analysis of the spectator-scattering term are collected in Ap-
pendix B.

2 Heavy-to-light form factors in SCETI

Our first task is to express the QCD form factors in terms of matrix elements of SCETI

currents and the corresponding short-distance coefficients. We use the position-space
SCET formalism and the notation of [12, 16, 18] to which we refer for further details.
The “collinear” fields ξ and Ac that appear in this section describe both, hard-collinear
(virtuality mbΛ) and collinear (virtuality Λ2) modes. The reference vectors v, n∓ are
defined such that v2 = 1, n2

− = n2
+ = 0, n−n+ = 2. Except for Section 2.1 we adopt a
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frame of reference where n−v = 1 and v = (n− + n+)/2. In scalar products of n−, n+

with other vectors we omit the scalar-product “dot”.

2.1 Operator basis

The relevant terms in the SCETI expansion of a heavy-to-light current ψΓiQ read [12,
14, 18]

(ψ̄ΓiQ)(0) =
∫
dŝ
∑

j

C̃
(A0)
ij (ŝ)O

(A0)
j (s; 0)

+
∫
dŝ
∑

j

C̃
(A1)
ijµ (ŝ)O

(A1)µ
j (s; 0)

+
∫
dŝ1dŝ2

∑

j

C̃
(B1)
ijµ (ŝ1, ŝ2)O

(B1)µ
j (s1, s2; 0) + · · · , (4)

where

O
(A0)
j (s; x) ≡ (ξ̄Wc)(x+ sn+)Γ

′
jhv(x−) ≡ (ξ̄Wc)sΓ

′
jhv,

O
(A1)
jµ (s; x) ≡ (ξ̄i

←−
D⊥cµ(in−vn+

←−
D c)

−1Wc)sΓ
′
jhv,

O
(B1)
jµ (s1, s2; x) ≡

1

mb
(ξ̄Wc)s1(W

†
c iD⊥cµWc)s2Γ

′
jhv, (5)

and ŝi ≡ simb/n−v. Since the collinear fields ξ and Ac describe modes of different virtu-
ality, no simple Λ/mb-scaling rules apply to these fields. The power-counting argument
that shows that the three types of operators contribute to the form factors at leading
power in the heavy-quark expansion has been given in [12]. The main difference between
the two types of operators is their dependence on position arguments. The B-type op-
erators are tri-local, and for this reason are sometimes also referred to as “three-body”
operators. The 1-loop corrections to the coefficient functions of the A-type currents have
been calculated in [15, 18], to those of the B-type currents in [18, 19].

The basis (5) is motivated by the simple expressions of the tree-level matching coef-

ficients in this basis [16]. However, the analysis of [12] shows that O
(A1)
jµ and O

(B1)
jµ are

operators relevant at leading power in the 1/mb-expansion only because of the trans-
verse collinear gluon field in the covariant derivative D⊥c. It is therefore advantageous
to perform a basis redefinition such that the transverse collinear gluon field appears only
in O

(B1)
jµ . This can be done by replacing O

(A1)
jµ by

(ξ̄Wc)s i
←−
∂⊥µ(in−vn+

←−
∂ )−1Γ′

jhv, (6)

which is the choice that has been adopted in [19, 20]. The redefinition involves the
identity

(ξ̄i
←−
D⊥cµ(in−vn+

←−
D c)

−1Wc)sΓ
′
jhv = (ξ̄i

←−
D⊥cµWc)s

1

in−vn+
←−
∂

Γ′
jhv
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= (ξ̄Wc)s
i
←−
∂ ⊥µ

in−vn+
←−
∂

Γ′
jhv − (ξ̄Wc)s(W

†
c iD⊥cµWc)s

1

in−vn+
←−
∂

Γ′
jhv (7)

= (ξ̄Wc)s
i
←−
∂ ⊥µ

in−vn+
←−
∂

Γ′
jhv − i

∫ ∞

−∞
dr̂
θ(r̂ − ŝ)
mb

(ξ̄Wc)r(W
†
c iD⊥cµWc)rΓ

′
jhv.

The second term modifies C̃
(B1)
ijµ (ŝ1, ŝ2) in the new basis by an amount proportional to

C̃
(A1)
ijµ (ŝ).2 In the new basis only the A0- and B-type operators contribute to the form

factors at leading power in the 1/mb-expansion. Our new basis of operators for a given
Dirac structure Γi is:

• Scalar current J = ψ̄Q:

J (A0) = (ξ̄Wc)
(
1− i

←−
∂/⊥

in+
←−
∂

n/+
2

)
hv

J (B1) =
1

mb

(ξ̄Wc)[W
†
c i 6D⊥cWc]hv (8)

• Vector current Jµ = ψ̄γµQ:

J (A0)1−2
µ = (ξ̄Wc)

(
1− i

←−
∂/⊥

in+
←−
∂

n/+
2

)
{γµ, vµ}hv

J (A0)3
µ = (ξ̄Wc)

(
1− i

←−
∂/⊥

in+
←−
∂

n/+
2

)
n−µ

n−v
hv +

2

n−v
(ξ̄Wc)

i
←−
∂ µ⊥

in+
←−
∂
hv

J (B1)1−3
µ =

1

mb
(ξ̄Wc)[W

†
c i 6D⊥cWc]{vµ,

n−µ

n−v
, γµ⊥
}hv

J (B1)4
µ =

1

mb

(ξ̄Wc)γµ⊥
[W †

c i 6D⊥cWc]hv (9)

• Tensor current Jµν = ψ̄iσµνQ:

J (A0)1−2
µν = (ξ̄Wc)

(
1− i

←−
∂/⊥

in+
←−
∂

n/+
2

)
{γ[µγν], v[µγν]}hv

J (A0)3−4
µν = (ξ̄Wc)

(
1− i

←−
∂/⊥

in+
←−
∂

n/+
2

){n−[µγν]
n−v

,
n−[µvν]
n−v

}
hv

+
2

n−v
(ξ̄Wc)

i
←−
∂ [µ⊥

in+
←−
∂
{γν], vν]}hv

2In momentum space the generic modification is C
(B1)
new (E, τ) = C

(B1)
old (E, τ)+mb/(2E)C

(A1)
old (E), see

also Appendix A.
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J (B1)1−2
µν =

1

mb
(ξ̄Wc)[W

†
c i 6D⊥cWc]

{
v[µγν⊥],

n−[µγν⊥]

n−v

}
hv

J (B1)3−4
µν =

1

mb

(ξ̄Wc)
{
v[µγν⊥],

n−[µγν⊥]

n−v

}
[W †

c i 6D⊥cWc]hv

J (B1)5−6
µν =

1

mb
(ξ̄Wc)[W

†
c i 6D⊥cWc]

{n−[µvν]
n−v

, γ[µ⊥
γν⊥]

}
hv

J (B1)7
µν =

1

mb

(ξ̄Wc)γ[µ⊥
γν⊥][W

†
c i 6D⊥cWc] hv + J (B1)6

µν (10)

Here a[µbν] = aµbν − aνbµ. The operator J (B1)7
µν vanishes in four dimensions, but

must be kept since we regularize dimensionally.

Here we dropped the position indices s1,2 which should be clear from (5). We also
dropped the operators involving explicit factors of position xµ, which come from the
multipole expansion (see [16]), since we can always work with the QCD currents at x = 0.
The choice of the A0 operators is identical to that of [20], but the basis of B-operators
is slightly different. As in [20] we combined the A1-operators with the A0-operators
using that their coefficient functions are related [18, 22]. Since the A1-operators without
the transverse hard-collinear gluon field do not contribute to the form factors at leading
power [12], these extra terms to the J (A0) will not be considered in the following. The
SCET representation of the QCD current JX(0) is then

JX(0) =
∑

i

C̃
(A0)i
X ⋆ J

(A0)i
X +

∑

k

C̃
(B1)k
X ⋆ J

(B1)k
X + . . . , (11)

which defines the coefficient functions for the scalar (X = S), pseudoscalar (P ), vector
(V ), axial-vector (A) and tensor (T ) currents. The star-product of coefficient function
and operator in position space is a convolution over the arguments ŝi as in (4).

The basis of the pseudoscalar (axial-vector) operators can be inferred from the scalar
(vector) basis by the replacement (ξ̄Wc) → (ξ̄Wc)γ5. In a renormalization with anti-
commuting γ5 (as adopted in [18] and in this paper), the short-distance coefficients

C̃
(A0)i
X , C̃

(B1)k
X of the scalar and pseudoscalar current are then equal, as are those of the

vector and the axial-vector current Jµ5 = ψ̄γ5γµQ (note the order of γ5 and γµ). In
Appendix A we give the transformation of the momentum-space coefficient functions
calculated in [18] to the new basis. For the remainder of the paper we adopt the frame
where n−v = 1 and v = (n− + n+)/2.

2.2 Definition of the QCD form factors

The matrix elements of the QCD currents are decomposed into Lorentz-invariant form
factors. Following the conventions of [8] the independent form factors are

〈P (p′)|q̄γµb|B̄(p)〉 = f+(q
2)
[
pµ + p′µ − m2

B −m2
P

q2
qµ
]
+ f0(q

2)
m2

B −m2
P

q2
qµ,

6



〈P (p′)|q̄σµνqνb|B̄(p)〉 = ifT (q
2)

mB +mP

[
q2(pµ + p′µ)− (m2

B −m2
P )q

µ
]

(12)

for pseudoscalar mesons, and

〈V (p′, ǫ∗)|q̄γµb|B̄(p)〉 = 2iV (q2)

mB +mV

ǫµνρσǫ∗νp
′
ρpσ,

〈V (p′, ǫ∗)|q̄γµγ5b|B̄(p)〉 = 2mVA0(q
2)
ǫ∗ · q
q2

qµ + (mB +mV )A1(q
2)
[
ǫ∗µ − ǫ∗ · q

q2
qµ
]

−A2(q
2)

ǫ∗ · q
mB +mV

[
pµ + p′µ − m2

B −m2
V

q2
qµ
]
,

〈V (p′, ǫ∗)|q̄iσµνqνb|B̄(p)〉 = 2iT1(q
2)ǫµνρσǫ∗νp

′
ρpσ,

〈V (p′, ǫ∗)|q̄iσµνγ5qνb|B̄(p)〉 = T2(q
2)
[
(m2

B −m2
V )ǫ

∗µ − (ǫ∗ · q)(pµ + p′µ)
]

+T3(q
2)(ǫ∗ · q)

[
qµ − q2

m2
B −m2

V

(pµ + p′µ)
]

(13)

for vector mesons. We define q = p − p′ and use the convention ǫ0123 = −1. From now
on we neglect terms quadratic in the light meson masses mP,V , but keep linear terms.
In this approximation we can put p′ = En− with E = n+p

′/2 = (m2
B − q2)/(2mB), and

ǫ∗ · n− = 0.

2.3 Definition of the SCETI form factors

Taking into account the quantum numbers of the mesons, it is straightforward to relate
the matrix elements of the operators defined in (8) to (10) and the corresponding pseu-
doscalar and axial-vector operators to a few non-vanishing SCETI matrix elements. We
first note that one of the ŝi-integrations in (4) can be done explicitly using collinear mo-
mentum conservation [12]. This allows us to focus on matrix elements of A0-operators
with s = 0 and of B-type operators with s1 = 0. To see this for the case of the B-type
operators, we represent the position-space coefficient functions in terms of

C̃
(B1)
ijµ (ŝ1, ŝ2) =

∫
dx1
2π

dx2
2π

e−i(x1ŝ1+x2ŝ2)C
(B1)
ijµ (x1, x2), (14)

where the arguments xi of the momentum-space coefficient functions correspond to
the momentum fractions xi = n+p

′
i/mb of the collinear building blocks (ξ̄Wc)s1 and

(W †
c iD

µ
⊥cWc)s2 of the current operator. Then with (4) and (5) we obtain

〈M(p′)|
∫
dŝ1dŝ2 C̃

(B1)
ijµ (ŝ1, ŝ2)O

(B1)µ
j (s1, s2; 0)|B̄v〉 =

1

mb

∫
dτ C

(B1)
ijµ

(
2Eτ̄

mb
,
2Eτ

mb

)

× (2E)
∫
dr

2π
e−i 2Eτr 〈M(p′)|(ξ̄Wc)(0)(W

†
c iD

µ
⊥cWc)(rn+)Γ

′
jhv(0)|B̄v〉 (15)

7



with τ̄ = 1 − τ . Abusing notation we will write the coefficient functions simply as
C

(B1)
ijµ (E, τ) in the following. Next, the J (B1)-operators (except for the tensor operators

with two transverse indices, which we do not need in the following) can be written as
(Fourier transforms of) linear combinations of

Jk(τ) = 2E
∫
dr

2π
e−i 2Eτr (ξ̄Wc)(0)(W

†
c iD

µ
⊥cWc)(rn+)Γkhv(0), (16)

where for k = 1, 2, 3 the Dirac matrix Γk can take one of the three expressions

Γk = {(γ5)γµ⊥ , (γ5)γν⊥γ
µ⊥ , (γ5)γ

µ⊥γν⊥}, (17)

and r̂ = rmb. Here the γ5 in brackets means that this factor may be added. This notation
is convenient, because many of the results below do not depend on the extra factor of
γ5. In the following definitions we leave out the position argument of a field, when it is
x = 0. Eq. (15) suggests defining the B-type form factors as the matrix elements of the
operators Jk(τ).

We therefore define the two leading-power SCETI form factors for pseudoscalar
mesons through

〈P (p′)|(ξ̄Wc)hv|B̄v〉 = 2E ξP (E),

〈P (p′)|(ξ̄Wc)(W
†
c iD/c⊥Wc)(rn+)hv|B̄v〉 = 2mbE

∫
dτ ei 2Eτr ΞP (τ, E). (18)

Here |B̄v〉 denotes the B̄ meson state in the static limit (see the Lagrangian (32) below)
normalized to 2mB (rather than 1 as is conventional in heavy quark effective theory).
The second definition is such that

ΞP (τ, E) = (2mbE)
−1 〈P (p′)|J1(τ)|B̄v〉 (19)

(no γ5 in J1(τ)). Similarly, for vector mesons

〈V (p′)|(ξ̄Wc)γ5hv|B̄v〉 = −2E ǫ∗ · v ξ‖(E),

〈V (p′)|(ξ̄Wc)γ5γµ⊥
hv|B̄v〉 = −2E (ǫµ − ǫ · v n−µ) ξ⊥(E),

〈V (p′)|(ξ̄Wc)γ5(W
†
c iD/c⊥Wc)(rn+)hv|B̄v〉

= −2mbE ǫ
∗ · v

∫
dτ ei 2Eτr Ξ‖(τ, E),

〈V (p′)|(ξ̄Wc)γ5γµ⊥(W
†
c iD/c⊥Wc)(rn+)hv|B̄v〉

= −2mbE (ǫ∗µ − ǫ∗ · v n−µ)
∫
dτ ei 2Eτr Ξ⊥(τ, E),

〈V (p′)|(ξ̄Wc)γ5(W
†
c iD/c⊥Wc)(rn+)γµ⊥

hv|B̄v〉

= −2mbE (ǫ∗µ − ǫ∗ · v n−µ)
∫
dτ ei 2Eτr Ξ̃⊥(τ, E). (20)

8



The tensor operators J (B1)6
µν , J (B1)7

µν must have vanishing matrix elements between a
pseudoscalar B meson and a pseudoscalar or vector meson, so the set of B-type operators
J1−3(τ) (now including γ5) is complete. We shall find in Section 3 that the matrix element
that defines Ξ̃⊥(τ, E) (corresponding to J3(τ)) vanishes at leading order in the 1/mb-
expansion, hence we set Ξ̃⊥(τ, E) = 0 in the remainder of this section. The dependence
on the polarization vector ǫ∗ shows that the form factors with subscript a = ‖ (a =⊥)
refer to longitudinally (transversely) polarized vector mesons.

2.4 Form factor expressions

Taking the matrix element of (11), using (15), and inserting the definitions of the QCD
and the SCETI form factors we derive expressions for the QCD form factors, in which
the effects at the scale mb are explicitly factorized. For the pseudoscalar meson form
factors, we find

f+(E) = C
(A0)
f+

(E) ξP (E) +
∫
dτ C

(B1)
f+

(E, τ) ΞP (τ, E) ,

mB

2E
f0(E) = C

(A0)
f0

(E) ξP (E) +
∫
dτ C

(B1)
f0

(E, τ) ΞP (τ, E) ,

mB

mB +mP

fT (E) = C
(A0)
fT

(E) ξP (E) +
∫
dτ C

(B1)
fT

(E, τ) ΞP (τ, E). (21)

Similarly, for the form factors of vector mesons

mB

mB +mV

V (E) = C
(A0)
V (E) ξ⊥(E) +

∫
dτ C

(B1)
V (E, τ) Ξ⊥(τ, E) ,

mV

E
A0(E) = C

(A0)
f0

(E) ξ‖(E) +
∫
dτ C

(B1)
f0

(E, τ) Ξ‖(τ, E) ,

mB +mV

2E
A1(E) = C

(A0)
V (E) ξ⊥(E) +

∫
dτ C

(B1)
V (E, τ) Ξ⊥(τ, E) ,

mB +mV

2E
A1(E) −

mB −mV

mB
A2(E)

= C
(A0)
f+

(E) ξ‖(E) +
∫
dτ C

(B1)
f+

(E, τ) Ξ‖(τ, E) ,

T1(E) = C
(A0)
T1

(E) ξ⊥(E) +
∫
dτ C

(B1)
T1

(E, τ) Ξ⊥(τ, E) ,

mB

2E
T2(E) = C

(A0)
T1

(E) ξ⊥(E) +
∫
dτ C

(B1)
T1

(E, τ) Ξ⊥(τ, E) ,

mB

2E
T2(E)− T3(E) = C

(A0)
fT

(E) ξ‖(E) +
∫
dτ C

(B1)
fT

(E, τ) Ξ‖(τ, E). (22)

We recall that E denotes the energy of the light meson. The coefficient functions C
(A0)
F

and C
(B1)
F are defined as linear combinations of momentum-space coefficients functions
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of A0- and B-type operators. Remarkably, the ten different form factors involve only five
independent linear combinations of the A0- and B-type coefficients as a consequence of
helicity conservation of the strong interactions at leading power in the 1/mb-expansion.
This implies

mB

mB +mV

V (E) =
mB +mV

2E
A1(E), T1(E) =

mB

2E
T2(E) (23)

up to power corrections [23], and the equality of the coefficients pertaining to pseu-

doscalar mesons and longitudinally polarized vector mesons. The five pairs (C
(A0)
F , C

(B1)
F )

constitute the main result of the first matching step from QCD to SCETI. The 1-loop
expressions can be inferred from [18, 19]. They are collected in Appendix A.

2.5 Physical form factor scheme

Since the SCETI form factors ξa(E) are not known, it has been suggested in [8] to define
them in terms of three QCD (or “physical”) form factors. Let

ξFFP ≡ f+, ξFF⊥ ≡
mB

mB +mV
V, ξFF‖ ≡

mB +mV

2E
A1 −

mB −mV

mB
A2, (24)

which corresponds to [8] except for the longitudinal form factor ξFF‖ . The above definition,
which has already been adopted in [24], is preferred, since it preserves the equality of
the short-distance coefficients for the pseudoscalar meson and longitudinal vector meson
form factors.

In the physical form factor scheme we have again the two identities (23), and the five
remaining form factors read

mB

2E
f0 = R0 ξ

FF
P +

(
C

(B1)
f0
− C(B1)

f+
R0

)
⋆ ΞP ,

mB

mB +mP
fT = RT ξ

FF
P +

(
C

(B1)
fT
− C(B1)

f+
RT

)
⋆ ΞP ,

T1 = R⊥ ξ
FF
⊥ +

(
C

(B1)
T1
− C(B1)

V R⊥

)
⋆ Ξ⊥,

mV

E
A0 = R0 ξ

FF
‖ +

(
C

(B1)
f0
− C(B1)

f+
R0

)
⋆ Ξ‖,

mB

2E
T2 − T3 = RT ξ

FF
‖ +

(
C

(B1)
fT
− C(B1)

f+
RT

)
⋆ Ξ‖. (25)

Here the asterisk is a shorthand for the convolution integral over τ . The ratios R of
A0-coefficients take much simpler expressions than the individual coefficients given in
Appendix A. Up to one loop [8]

R0 ≡
C

(A0)
f0

C
(A0)
f+

= 1 +
αsCF

4π

[
2− 2ℓ

]
,
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RT ≡
C

(A0)
fT

C
(A0)
f+

= 1 +
αsCF

4π

[
ln
m2

b

ν2
+ 2ℓ

]
,

R⊥ ≡
C

(A0)
T1

C
(A0)
V

= 1 +
αsCF

4π

[
ln
m2

b

ν2
− ℓ

]
(26)

with

ℓ ≡ − 2E

mb − 2E
ln

2E

mb
, (27)

CF = 4/3, and ν the renormalization scale of the QCD tensor current. In the phys-
ical form factor scheme there are only three non-trivial ratios R and three non-trivial
combinations of B-coefficients.

3 Jet-functions

In this section we turn to the main part of this paper, the calculation of the SCETI form
factors Ξa(τ, E). Technically, this amounts to matching the B-type SCETI currents,
Jk(τ), whose matrix elements define the Ξa(τ, E), to four-fermion operators in SCETII.
These four-fermion operators factorize into a product of two light-cone distribution am-
plitudes resulting in the desired expression (3). That this can be done follows from [12],
where it has been shown that at leading power in the heavy quark expansion the B-type
currents match only to four-fermion operators with convergent convolution integrals. In
terms of operators, we derive the matching relation

Jk(τ) = 2E
∫
dr

2π
e−i 2Eτr (ξ̄Wc)(0)(W

†
c iD⊥cµWc)(rn+)Γkhv(0)

=
∫
dωdv Jk(τ ; v, ω)

[
(ξ̄Wc)(sn+)

n/+
2
Γc
k(W

†
c ξ)(0)

]

FT

[
(q̄sYs)(tn−)

n/−
2
γ5(Y

†
s hv)(0)

]

FT

+ . . . (28)

to the 1-loop order, where the ellipses denote terms that have vanishing matrix elements
between B̄ mesons and pseudoscalar or vector mesons, or are power-suppressed in 1/mb,
Γc
k will be defined after (57), and the subscript “FT” denotes a Fourier transformation

with respect to the light-cone variables s, t that will be made more precise later (see
(45)). The functions Jk are the short-distance coefficients of the SCETII operators, which
contain the hard-collinear effects from the scale (mbΛ)

1/2 integrated out in passing to
SCETII. These short-distance coefficients will be called “jet-functions”.

3.1 Set-up of the calculation

The jet-functions Jk(τ ; v, ω) are extracted by computing both sides of (28) between
appropriate quark states. We therefore consider the four-quark matrix element of the
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operators Jk(τ),
Ak(τ ; v, ω) = 〈q(p′1)q̄(p′2)|Jk(τ)|q̄(l)b(mbv)〉, (29)

where k = 1, 2, 3, and the momenta l, p′i (i = 1, 2) are soft and collinear, respectively.
q denotes a light quark, b the b-quark. The quark and anti-quark in the final state
may be of different flavour, but the flavours of the initial and final state anti-quark
are identical. The quark-antiquark initial and final states are assumed to be in a colour-
singlet state. Since the operators on the right-hand side of (28) do not contain derivatives,
the transverse momenta of the collinear states can be set to zero, and we can define
p′1 = vp′ = vEn−, p

′
2 = v̄p′ with v̄ ≡ 1− v. Likewise for the soft states the momenta can

be taken to be mbv for the heavy quark and l = ωn+/2 for the light anti-quark. The
four functions Ξa(τ, E) defined in (18), (20) correspond to setting Γk = (γ5)γ

µ⊥ (ΞP ,Ξ‖),

Γk = γ5γν⊥γ
µ⊥ (Ξ⊥), and Γk = γ5γ

µ⊥γν⊥ (Ξ̃⊥).
The operators Jk(τ) generate momentum-space vertices with an arbitrary number of

n+Ac gluons due to the Wilson lines Wc. Of these only the one- and two-gluon vertices
are needed in the 1-loop calculation. The corresponding Feynman rules read (collinear
quark lines dashed, all gluon momenta are out-going)

Γk, µ

k, ρ, A

p′1 gs δ

(
τ − n+k

n+p′

)(
gµρ⊥ −

nρ
+k

µ
⊥

n+k

)
TA Γk, (30)

Γk, µ

k1, ρ, A k2, σ, B

p′1 g2s

{(
δ

(
τ − n+k2

n+p′

)
− δ

(
τ − n+(k1 + k2)

n+p′

))

× nρ
+

n+k1

(
gµσ⊥ −

nσ
+k

µ
2⊥

n+k2

)
+ δ

(
τ − n+(k1 + k2)

n+p′

)

× nσ
+

n+k2

(
gµρ⊥ −

nρ
+(k1 + k2)

µ
⊥

n+(k1 + k2)

)}
TATB Γk

+(k1 ↔ k2, A↔ B, ρ↔ σ). (31)

In light-cone gauge n+Ac = 0 the variable τ corresponds to the fraction of total collinear
longitudinal momentum n+p

′ carried by the transverse hard-collinear gluon.
In addition the calculation requires the collinear interactions from the leading-power

SCET Lagrangian,

L = ξ̄

(
in−D + iD/⊥c

1

in+Dc

iD/⊥c

)
n/+
2
ξ − 1

2
tr (F µν

c Fµνc)

+ h̄vivDshv + q̄siD/sqs −
1

2
tr (F µν

s Fµνs) , (32)
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as well as the sub-leading interaction [16]

L(1)
ξq = q̄sW

†
c iD/⊥cξ − ξ̄i

←−
D/⊥cWcqs (33)

that converts the soft spectator anti-quark in the B̄ meson into an energetic, collinear
anti-quark. The Feynman rules for the collinear interactions can be found in [15], while
(33) implies the vertices (collinear quark line dashed, soft quark line solid, gluon momenta
outgoing)

k, ρ, A

p
igsT

A

(
γρ⊥ −

nρ
+p/⊥
n+p

)
, (34)

k1, ρ, A k2, σ, B

p − ig2sT
ATB nρ

+

n+k1

(
γσ⊥ −

nσ
+p/⊥
n+p

)

+(k1 ↔ k2, A↔ B, ρ↔ σ). (35)

We note that n+p = n+(k1 + k2) and p⊥ = (k1 + k2)⊥, since the corresponding soft
momentum components are neglected in collinear-soft interaction vertices (multipole
expansion).

3.2 Unrenormalized matrix element

3.2.1 Tree

The tree contribution to (29) is shown in Figure 1. The gluon momentum (outgoing
from the operator vertex) is given by k = p′2 − l, and with k2 = −v̄n+p

′n−l = −2Eωv̄,
we obtain

A(0)
k (τ ; v, ω) = −g

2
sCF

Nc

1

2Eωv̄
δ(τ − v̄) Γk ⊗ γµ⊥ , (36)

(hc)

mbv (s)

l (s)

p′1 (c)

p′2 (c)

1

Figure 1: Tree diagram.
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(1) (2) (3) (4)

(5) (6)

(7) (8) (9)

(10) (11)

Figure 2: 1-loop diagrams. The first diagram summarizes all gluon propagator correc-
tions. Diagrams without numbers are omitted when the calculation is done by expansion
of QCD diagrams.

where Γ1 ⊗ Γ2 means ūc(p
′
1)Γ1uh(mbv) v̄(l)Γ2vc(p

′
2). The heavy quark spinor satisfies

v/uh(mbv) = uh(mbv), and for the collinear spinors n/−vc(p
′
2) = ūc(p

′
1)n/− = 0.

3.2.2 One loop

A generic 1-loop diagram in SCETI contains contributions from the hard-collinear,
collinear and soft momentum region. For our external momentum configuration soft
and collinear loop integrals are scaleless, so the diagram computation extracts the hard-
collinear contribution. The SCETI diagrams are shown in Figure 2, omitting diagrams
that are obviously scaleless. We use dimensional regularization (d = 4 − 2ǫ) for both
ultraviolet and infrared singularities, hence scaleless integrals vanish.

We computed the 1-loop diagrams in two different ways. First, we used the SCETI

Feynman rules as given above and computed the diagrams as shown in the figure. Second,
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we computed the matrix element (29) with full QCD Feynman rules, but expanded the
Feynman integrand under the assumption that the loop momentum is hard-collinear,
and the external momenta collinear and soft, respectively. This method, also known as
the “strategy of expanding by regions” [25, 26], gives precisely the same result as the
first computation, but it turns out to be algebraically simpler, because it avoids having
to use the more complicated vertex Feynman rules generated by the SCET Lagrangian.
There are also fewer diagrams to compute. There are no two-gluon qq̄gg vertices in full
QCD, and the unnumbered diagrams in Figure 2 are absent. In both computations we
write

ddk

(2π)d
=

1

8π2
dn+kdn−k

dd−2k⊥
(2π)d−2

, (37)

and first perform the n−k-integral by contour integration. The k⊥-integral reduces to
a conventional Feynman integral; the n+k-integration is eliminated by the δ-function in
(30) or (31) with the exception of diagrams such as (1), (5) or (6).

It is convenient to perform the calculation without specifying the Dirac matrix Γk of
the SCETI operator. The unrenormalized matrix element (29) can be written as

A(ur)
k =

[
A(0)+ A(1)

]
Γk ⊗ γµ⊥ +B(1)γρ⊥γµ⊥Γk ⊗ γρ⊥ + C(1)γρ⊥γλ⊥Γk ⊗ γµ⊥γλ⊥

γρ⊥ (38)

in terms of Dirac structures that cannot be reduced further in d dimensions. The notation
is such that for any quantity the superscript (0) denotes the tree and (1) the 1-loop
contribution. The coefficients of all three structures are infrared divergent, but only A(1)

and B(1) are ultraviolet divergent. It follows that all B-type currents can be renormalized
with only two independent renormalization constants. Specifically, inserting the three
Dirac structures (17), we obtain

A(ur)
1 = [A+ (d− 2)B] (γ5)γµ⊥

⊗ γµ⊥ + C (γ5)γ
ρ⊥γλ⊥γµ⊥ ⊗ γµ⊥

γλ⊥
γρ⊥,

A(ur)
2 = A (γ5)γν⊥γµ⊥

⊗ γµ⊥ + (4− d)B (γ5)γµ⊥
γν⊥ ⊗ γµ⊥

+C (γ5)γ
ρ⊥γλ⊥γν⊥γ

µ⊥ ⊗ γµ⊥
γλ⊥

γρ⊥,

A(ur)
3 = [A+ (d− 2)B] (γ5)γµ⊥

γν⊥ ⊗ γµ⊥ + C (γ5)γ
ρ⊥γλ⊥γµ⊥γν⊥ ⊗ γµ⊥

γλ⊥
γρ⊥. (39)

Here and in the following we use anti-commuting γ5, and the bracket around γ5 refers
to the two cases, where γ5 is or is not included in Γk. From this it can be seen that the
UV divergent parts have the same Dirac structure as the original operator. Hence, the
operators Jk(τ) and all the B-type current operators do not mix under renormalization
(in the basis adopted here). The renormalization constant for the operator Jk(τ) with
Γ1,3 is related to the divergent part of A(1) + 2B(1), the one for Jk(τ) with Γ2 to A(1).

3.3 Ultraviolet counterterms

The counterterm diagrams are obtained from the tree diagram by insertions of a coun-
terterm vertex into the gluon propagator, the quark gluon vertex and the operator vertex.

15



Finally, the on-shell matrix element must be multiplied by the propagator residue factors
R

1/2
hv
R1/2

qs Rξ. They are related to the field renormalization constants by

RX =
ZOS

X

ZX
, (40)

where ZOS
X is the renormalization constant of field X in the on-shell scheme (by definition

ROS
X = 1) and ZX is the field renormalization constant in the MS scheme.
The Lagrangian counterterms are standard. As regards the operator counterterms,

we note that the three operators Jk(τ) do not mix (see above), hence the renormalized
operator is related to the bare operator (expressed in terms of bare fields) by

J1,3(τ) =
∫
dτ ′ Z‖(τ, τ

′)J bare
1,3 (τ ′),

J2(τ) =
∫
dτ ′ Z⊥(τ, τ

′)J bare
2 (τ ′), (41)

which defines the operator renormalization kernels. Here we used that J1(τ) and J3(τ)
renormalize identically.

Putting together all the renormalization constants, the on-shell ultraviolet-renorma-
lized matrix elements of J1 and J3 follow from (39) by the replacement

A+ (d− 2)B → A+ (d− 2)B + Z
(1)
‖ ⋆ A(0)

+
(
2Z(1)

g +
1

2

(
Z

OS(1)
hv

+ ZOS(1)
qs + 2Z

OS(1)
ξ

))
A(0), (42)

while the renormalized matrix element of J2 is the second line of (39) with

A → A + Z
(1)
⊥ ⋆ A(0)

+
(
2Z(1)

g +
1

2

(
Z

OS(1)
hv

+ ZOS(1)
qs + 2Z

OS(1)
ξ

))
A(0). (43)

The asterisk denotes convolution in the variable τ ′ as in the definition of the operator
renormalization kernels. The on-shell field renormalization factors are all equal to 1
in dimensional regularization, so Z

OS(1)
X = 0. Zg is the standard MS strong coupling

renormalization factor, gbares = Zggs with (CA = 3, Tf = 1/2)

Zg = 1− αsβ0
8πǫ

, β0 =
11CA

3
− 4

3
nfTf . (44)

The matrix elements (39) with the substitutions (42), (43) are now ultraviolet finite, but
infrared divergent. The infrared divergences are reproduced by the SCETII computation
of the matrix element, resulting in a finite jet-function. This can be used to determine

the operator renormalization kernels Z‖ and Z⊥ alternative to the direct computation
of the operators’ ultraviolet singularities performed in [20]. That is, after extracting the
jet-function, we shall obtain the renormalization factors by requiring that they render
the result finite.
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3.4 Matching to SCETII and extraction of the jet function

3.4.1 SCETII matrix element

To obtain the jet-function, we need the SCETII matrix elements on the right hand
side of the matching equation (28) to the 1-loop order. In the absence of collinear-
soft interactions in SCETII the four-quark operator factorizes into a collinear and a soft
bilinear. We define

Q[Γc
k](v) =

[
(ξ̄Wc)(sn+)

n/+
2
Γc
k(W

†
c ξ)(0)

]

FT

=
n+p

′

2π

∫
ds e−isvn+p′ (ξ̄Wc)(sn+)

n/+
2
Γc
k(W

†
c ξ)(0),

P (ω) =
[
(q̄sYs)(tn−)

n/−
2
γ5(Y

†
s hv)(0)

]

FT

=
1

2π

∫
dt eitω (q̄sYs)(tn−)

n/−
2
γ5(Y

†
s hv)(0), (45)

and the quark matrix elements

Φqq̄(v
′, v) = 〈q(p′1)q̄(p′2)|Q[Γc

k](v
′)|0〉,

Φbq̄(ω
′, ω) = 〈0|P (ω′)|q̄(l)bv(0)〉. (46)

The Dirac matrices Γc
k will be determined later by the Fierz transformation of the first

Dirac matrix product on the right-hand sides of (39). Note that the hadronic ma-
trix elements of Q and P are precisely the meson light-cone distribution amplitudes.
Collinear-soft factorization3 in SCETII means that the matrix element of Q[Γc

k](v)P (ω),
which appears in (28), factorizes into

〈M(p′)|Q[Γc
k](v)P (ω)|B̄v〉 = 〈M(p′)|Q[Γc

k](v)|0〉〈0|P (ω)|B̄v〉, (47)

which is a product of light-cone distribution amplitudes.
With these definitions the tree quark matrix element of the SCETII four-quark oper-

ator is given by

〈q(p′1)q̄(p′2)|Q[Γc
k](v

′)P (ω′)|q̄(l)b(mbv)〉(0) = δ(v − v′)δ(ω − ω′)
n/+
2
Γc
k ⊗̃

n/−
2
γ5, (48)

where now Γ1 ⊗̃Γ2 means ūc(p
′
1)Γ1vc(p

′
2) v̄(l)Γ2uh(mbv). The “tensor products” ⊗ and

⊗̃ are related by a Fierz transformation as discussed below.

3We recall here that in general the apparent factorization of collinear and soft degrees of freedom
in SCETII is not valid [12, 27] due to the non-existence of a regulator that preserves factorization.
The unregulated integrals correspond to endpoint-divergent convolution integrals. However, it has been
shown that for the particular case of the matrix elements of the B-type currents, the convolution integrals
must be convergent [12], so collinear-soft factorization is valid here.
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The SCETII computation of the matrix elements (46) is very simple, since in the
collinear sector SCETII is equivalent to full QCD, and in the soft sector to heavy quark
effective theory [12]. The external momenta do not allow to form a non-vanishing kine-
matic invariant, hence all loop integrals are scaleless and vanish. The matrix elements
are given by tree diagrams including tree diagrams with counterterm insertions. We can
therefore write

Φqq̄(v
′, v) = ZQ(v

′, v)
n/+
2
Γc
k,

Φbq̄(ω
′, ω) = ZP (ω

′, ω)
n/−
2
γ5, (49)

with ZQ(v
′, v) and ZP (ω

′, ω) the renormalization kernels that relate the renormalized
operator to the bare operator expressed in terms of the bare fields,

Q[Γc
k](v) =

∫ 1

0
dwZQ(v, w)Q[Γ

c
k]

bare(w),

P (ω) =
∫ 1

0
dω′ZP (ω, ω

′)P bare(ω′). (50)

The required 1-loop renormalization factors have been computed in other contexts.
For the collinear operator ZQ(v, w) is the Brodsky-Lepage kernel [28]

ZQ(v, w) = δ(v − w) + Z
(1)
Q (v, w) + . . . ,

Z
(1)
Q (v, w) = −αsCF

2πǫ

{
1

ww̄

[
vw̄

θ(w − v)
w − v + v̄w

θ(v − w)
v − w

]

+

− 1

2
δ(v − w) + ∆

(
v

w
θ(w − v) + v̄

w̄
θ(v − w)

)}
, (51)

where ∆ = 1 applies to Γc
k = (γ5)1 (pseudoscalar meson, longitudinally polarized vector

meson distribution amplitudes) and ∆ = 0 to Γc
k = γν⊥ (transversely polarized vector

meson distribution amplitude), and the plus-distribution is defined for symmetric kernels
f as

∫
dw[f(v, w)]+ g(w) =

∫
dwf(v, w) (g(w)− g(v)) . (52)

Similarly, the renormalization of P (ω) has been worked out in [29] with the result

ZP (ω, ω
′) = δ(ω − ω′) + Z

(1)
P (ω, ω′) + . . . ,

Z
(1)
P (ω, ω′) =

αsCF

4π

[ (
1

ǫ2
+

2

ǫ
ln
µ

ω
− 5

2ǫ

)
δ(ω − ω′)

− 2ω

ǫ

(
1

ω′

θ(ω′ − ω)
ω′ − ω +

1

ω

θ(ω − ω′)

ω − ω′

)

+

]
. (53)
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3.4.2 Extraction of the jet-function

The jet-function is extracted from the quark matrix element of (28),

Ak(τ ; v, ω) =
∫ ∞

0
dω′

∫ 1

0
dv′ Jk(τ ;ω

′, v′) Φbq̄(ω
′, ω) Φqq̄(v

′, v). (54)

This gives

J
(0)
k (τ ;ω, v)

n/+
2
Γ̃c
k⊗̃

n/−
2
γ5 = A(0)(τ ; v, ω), (55)

at tree level, and

J
(1)
k (τ ;ω, v)

n/+
2
Γ̃c
k⊗̃

n/−
2
γ5 = A(1)

k (τ ; v, ω)−
[ ∫ ∞

0
dω′Z

(1)
P (ω′, ω) J

(0)
k (τ ;ω′, v)

+
∫ 1

0
dv′Z

(1)
Q (v′, v) J

(0)
k (τ ;ω, v′)

]
n/+
2
Γ̃c
k⊗̃

n/−
2
γ5 (56)

at the 1-loop order. A(1)
k (τ ; v, ω) is the ultraviolet-renormalized but infrared divergent

1-loop matrix element of Jk(τ). The subtraction on the right-hand side precisely cancels
the infrared divergences, so that the short-distance jet-function is finite as it should
be. There is however a difficulty in executing the subtraction in the form of (56), since

A(1)
k (τ ; v, ω) is expressed in terms of the spinor product ⊗, corresponding to SCETII

operators with spinor indices contracted in [ξ̄hv] [q̄sξ], while the left-hand side and the
subtraction term involve the product ⊗̃, corresponding to operators with spinor indices
contracted in [ξ̄ξ] [q̄shv]. The standard Fierz identities that relate these structures are
valid only in four dimensions. We shall discuss this issue together with the reduction of
evanescent Dirac structures appearing in (39) in the following subsection.

None of this applies to the tree-level equation (55), where all quantities are finite.
We can therefore apply the four-dimensional Fierz identities to the tree-level terms in
(39), so that for

k = 1 : (γ5)γµ⊥
⊗ γµ⊥ = (±1) n/+

2
γ5(γ5) ⊗̃

n/−
2
γ5 + . . . ,

k = 2 : (γ5)γν⊥γµ⊥
⊗ γµ⊥ = −n/+

2
γν⊥γ5(γ5) ⊗̃

n/−
2
γ5 + . . . ,

k = 3 : (γ5)γµ⊥
γν⊥ ⊗ γµ⊥ = . . . . (57)

The Fierz transformation produces a number of 4-fermion operators with different Dirac
structures. In the following we discuss only those operators (jet-functions) that con-
tribute to the decay of a pseudoscalar B̄ meson. The ellipses denote terms involving n/−/2
and n/−/2 γν⊥(γ5) to the right of ⊗̃, which vanish when the matrix element 〈0|q̄s[. . .]hv|B̄〉
with the pseudoscalar B̄ meson state is evaluated. Hence, these terms will not be consid-
ered further. The upper (lower) sign refers to the operators on the left-hand side without
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(with) the γ5 factor. Here and below the Fierz identities are given for four-fermion op-

erators and the extra minus sign from the field permutation relative to the identities for
matrix products is already included. Comparison of (57) with the definition (45) of Q[Γc

k]
determines the Dirac matrix Γc

k in the collinear SCETII operator. For k = 1, we have
Γk = (γ5)γµ⊥

and the corresponding Γ̃c
k = (±1)γ5(γ5); for k = 2, Γk = (γ5)γν⊥γµ⊥

and
Γ̃c
k = −γν⊥γ5(γ5); for k = 3, Γk = (γ5)γµ⊥

γν⊥ and Γ̃c
k = 0, i.e. there is no contribution

for pseudoscalar B mesons. Hence, comparing (55), (57) to (36) leads to the tree-level
jet function

J
(0)
k (τ ; v, ω) = −g

2
sCF

Nc

1

2Eωv̄
δ(τ − v̄) (58)

for k = 1, 2, and 0 for k = 3.
Using the 1-loop expressions for the SCETII renormalization kernels, we can evaluate

the subtraction term in square brackets in (56) with the result

− g2sCF

Nc

1

2Eωv̄

{
αsCF

4π
δ(τ − v̄)

(
1

ǫ2
+

2

ǫ
ln
µ

ω
− 5

2ǫ

)
+
v̄

τ
Z

(1)
Q (τ̄ , v)

}
. (59)

3.4.3 Evanescent operators and Fierz transformation

We now discuss the reduction of the Dirac structure and the Fierz transformation. We
consider in detail the case Γk = γµ⊥ . According to the first equation of (39) the UV
renormalized matrix element of the corresponding SCETI current J1(τ) is

A1(τ ; v, ω) = Â γµ⊥
⊗ γµ⊥ + C γρ⊥γλ⊥γµ⊥ ⊗ γµ⊥

γλ⊥
γρ⊥, (60)

where Â stands for the right hand side of (42). The second Dirac structure reduces to a
multiple of the first one in four dimensions, and the first one satisfies the Fierz relation
(57) in four dimensions. In the following we discuss separately the reduction of the
Dirac structure and the Fierz transformation in d dimensions, although it is possible to
perform both reductions in a single step.

Indicating only the field content and Dirac structure we define the operators O1 =
(ξ̄γµ⊥

hv)(q̄sγ
µ⊥ξ) and O′

1 = (ξ̄γρ⊥γλ⊥γµ⊥hv)(q̄sγµ⊥
γλ⊥

γρ⊥ξ), and rewrite the previous
equation as

A1(τ ; v, ω) =
[
Â(0) + Â(1)

]
〈O1〉(0) + C(1)〈O′

1〉(0), (61)

where the tree-level matrix elements of O
(′)
1 just reproduce the Dirac structures, i.e.

〈O1〉(0) = ūc(p
′
1)γ

µ⊥uh(mbv) v̄(l)γµ⊥
vc(p

′
2) etc. In d = 4, O′

1 = 4O1, so we define the
evanescent operator E = O′

1 − f(ǫ)O1, where f(0) = 4, but otherwise f(ǫ) is arbitrary.
Hence,

A1(τ ; v, ω) =
[
Â(0) + Â(1) + f(ǫ)C(1)

]
〈O1〉(0) + C(1)〈E〉(0). (62)

Since C(1) has a 1/ǫ infrared divergence, the coefficient of the “physical” operator O1

depends on the up to now arbitrary prescription f(ǫ) in the definition of the evanescent
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operator. The jet-functions are obtained by expressing this equation in terms of the
renormalized operator matrix elements. To the 1-loop order it is sufficient to use

〈O1〉 =
(
1 +M

(1)
O1

)
〈O1〉(0) +M

(1)
O1E〈E〉(0), 〈E〉 = 〈E(0)〉, (63)

which results in

A1(τ ; v, ω) =
[
Â(0) + Â(1) + f(ǫ)C(1) − Â(0)M

(1)
O1

]
〈O1〉+

[
C(1) − Â(0)M

(1)
O1E

]
〈E〉

d→4→
[
J
(0)
O1

+ J
(1)
O1

]
〈O1〉. (64)

The coefficients of the operator matrix elements in the first line of this equation are now
infrared-finite short-distance quantities, and the equation is interpreted as an operator
matching relation valid also when the matrix elements are taken between hadronic final
states. Hence we can take the limit d → 4 in which 〈E〉 = 0, since the tree-level

matrix element vanishes in four dimensions.4 The 1-loop jet-function J
(1)
O1

can be read
off from (64). It depends on the choice of the evanescent operator, i.e. the order-ǫ
term of f(ǫ), but so does 〈O1〉 as can be seen from (63), and the physical amplitude is
scheme-independent.

The jet-function JO1
is not the desired result, because instead of O1 we must use the

Fierz-transformed operator

P1 =
(
ξ̄
n/+
2
γ5 ξ

) (
q̄s
n/−
2
γ5hv

)
+ . . . , (65)

where the ellipses denote terms that are irrelevant for us, as in (57). This Fierz-ordering
is uniquely singled out by collinear-soft factorization in SCETII. Radiative corrections
to P1 occur only within the collinear factor or within the soft factor, hence the Dirac
structures in arbitrary loop diagrams can be reduced to the tree structure P1. It follows
that whatever evanescent operator one may write down in this Fierz-ordering decouples
from P1, and can simply be ignored. Hence, even in d dimensions we have

A1(τ ; v, ω) =
[
J
(0)
P1

+ J
(1)
P1

]
〈P1〉, (66)

with J
(1)
P1

the desired 1-loop jet-function. Comparing this equation to (64) we have
JP1

= JO1
, if the renormalized matrix elements 〈P1〉 and 〈O1〉 are equal. In general this

is not the case, because the Fierz identity that relates O1 and P1 in four dimensions is
not valid for d 6= 4. Now, the renormalization scheme for P1 is fixed by the requirement
that the collinear and soft matrix elements coincide with the standard MS definition
of the light meson and heavy meson light-cone distribution amplitudes, respectively, so
〈P1〉 is completely defined. However, by choosing f(ǫ), we can adjust the definition of
O1, such that the infrared-finite matrix elements are equal in the limit d→ 4.

4In higher orders one usually uses a non-minimal subtraction scheme to ensure that 〈E〉 = 0, but
this is not relevant to the present calculation.
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Since the jet-functions are independent of the infrared regularization, any one can
be chosen for the calculation, and it is convenient to compare the matrix elements of
O1 and P1 by assuming an off-shell infrared regularization. The ultraviolet-renormalized
1-loop matrix elements are

〈O1〉 =
(
1 +Moff

O1

)
〈O1〉(0) +Moff

O1E〈E〉
(0),

〈P1〉 =
(
1 +Moff

P1

)
〈P1〉(0). (67)

There are no 1/ǫ poles in these equations due to the use of off-shell IR regularization,
so the evanescent term drops out for d→ 4. Furthermore, 〈O1〉(0) = 〈P1〉(0) by the four-
dimensional Fierz-equivalence of O1 and P1, hence we need to define O1 such that the
difference Moff

O1
−Moff

P1
= 0. At the 1-loop order one finds that the self-energy corrections

and the vertex correction, where the gluon is exchanged between the soft light quark and
the heavy quark, drop out, because the coupling to the heavy quark is proportional to
vµ and does not introduce a new Dirac structure. Only the gluon exchange between the
collinear ξ-fields can give a non-zero difference. In the case of O1 the part of this diagram
that does not cancel in the difference Moff

O1
−Moff

P1
involves γρ⊥γλ⊥γµ⊥ ⊗ γµ⊥

γλ⊥
γρ⊥, and

its contribution to MO1
is therefore proportional to f(ǫ). In the case of P1, the Dirac

structure is

γα⊥γβ⊥
n/+
2
γβ⊥

γα⊥
⊗̃n/−

2
= (d− 2)2〈P1〉(0). (68)

Including the overall coefficient, we find

Moff
O1
−Moff

P1
= −[C(1)]div

(
f(ǫ)− (d− 2)2

)
〈P (0)

1 〉 (69)

where [C(1)]div is the divergent part of C(1). In order for this to vanish, we must choose
f(ǫ) = (d− 2)2. In other words, we must define

γρ⊥γλ⊥γµ⊥ ⊗ γµ⊥
γλ⊥

γρ⊥ = (d− 2)2 γµ⊥ ⊗ γµ⊥
. (70)

With this JP1
= JO1

, so returning to (64) we have

J
(1)
P1

= lim
d→4

(
Â(1) + (d− 2)2C(1) − Â(0)M

(1)
P1

)
. (71)

The term Â(0)M
(1)
P1

is nothing but the subtraction term (59) that appears in (56), while

Â(1) and C(1) can be read off from the 1-loop calculation that leads to (38) and (42), so
the previous equation gives the final result for the correctly renormalized and subtracted
jet-function. The above argument can be repeated for Γk = γ5γ

µ⊥, and one finds that
the jet-function is identical to the one for Γk = γµ⊥ as was expected.

The case of B-type currents J2,3(τ) with one uncontracted transverse index is slightly
more complicated than the scalar case, because there are two physical and two evanes-
cent operators. Corresponding to Γk = (γ5)γ

ν⊥γµ⊥ and (γ5)γ
µ⊥γν⊥ we define the two
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physical operators O2 = (ξ̄(γ5)γν⊥γµ⊥
hv)(q̄sγ

µ⊥ξ) and O3 = (ξ̄(γ5)γµ⊥
γν⊥hv)(q̄sγ

µ⊥ξ).
Requiring that the renormalized matrix elements of O2,3 equal the renormalized matrix
elements of the corresponding operators P2,3 in the other Fierz-ordering fixes uniquely
the prescription for reducing the Dirac structures multiplying C in (39) and ensures that
the SCETII operators are correctly minimally subtracted. A short calculation analogous
to the one discussed above gives

(γ5)γ
ρ⊥γλ⊥γν⊥γ

µ⊥ ⊗ γµ⊥
γλ⊥

γρ⊥ = (d− 4)2 (γ5)γν⊥γµ⊥
⊗ γµ⊥,

(γ5)γ
ρ⊥γλ⊥γµ⊥γν⊥ ⊗ γµ⊥

γλ⊥
γρ⊥ = (d− 2)2 (γ5)γµ⊥

γν⊥ ⊗ γµ⊥. (72)

Referring to (57) we see that the matrix element of O3 vanishes for a pseudoscalar B̄
meson. Hence the B-type operator J3(τ) with Γk = (γ5)γµ⊥

γν⊥ has a vanishing jet-
function just as at tree level. On the other hand, inserting the first equation of (72) into
the second of (39), we find that the B-type operator J2(τ) matches to JP2

P2 with

J
(1)
P2

= lim
d→4

(
A(1) + (d− 4)2C(1) −A(0)M

(1)
P2

)
. (73)

Here A(1) and C(1) are defined by (39) and (43) and the subtraction term is given by
(56) except that now ∆ = 0 must be used in the Brodsky-Lepage kernel. Since C(1) has
only a single 1/ǫ pole, the term (d − 4)2C(1) does not contribute to the final result for
the jet-function.

3.5 Final results for the jet-functions and B-type current re-

normalization kernels

We shall now denote the jet-function JP1
(JP2

) that arises in the matching of J1(τ)
(J2(τ)) as J‖ (J⊥). To the 1-loop order we write

Ja = −g
2
sCF

Nc

1

2Eωv̄

(
δ(τ − v̄) + αs

4π
ja(τ ; v, ω)

)
(74)

with a = ‖,⊥. Applying the subtraction procedure described in the previous subsections
we obtain the ultraviolet and infrared finite 1-loop corrections ja(τ ; v, ω). The resulting
expressions still depend on the yet undetermined renormalization factors Z(1)

a of the B-
type currents through (42), (43). They can now be determined by the condition that
ja(τ ; v, ω) must not contain 1/ǫ poles. We choose the MS scheme to be consistent with
the definition of the B-type short-distance coefficients in [18].

3.5.1 Renormalization kernels

We expand the Z-factors in (41) as

Za(τ, τ
′) = δ(τ − τ ′) + αs

4π
z(1)a (τ, τ ′), (75)

23



and obtain

z
(1)
‖ (τ, τ ′) = (−CF )

(
1

ǫ2
+

2

ǫ
ln

µ

2E

)
δ(τ − τ ′)− 1

ǫ

[
z1(τ, τ

′) + z2(τ, τ
′)
]
,

z
(1)
⊥ (τ, τ ′) = (−CF )

(
1

ǫ2
+

2

ǫ
ln

µ

2E

)
δ(τ − τ ′)− z1(τ, τ

′)

ǫ
, (76)

with

z1(τ, τ
′) = δ(τ − τ ′)

{
CF

[
−2 ln τ̄ + 5

2

]
+ CA ln

τ̄

τ

}

+CA

[
θ(τ − τ ′)
τ − τ ′ +

θ(τ ′ − τ)
τ ′ − τ

]

+

+
(
CF −

CA

2

)
2τ̄

ττ ′
θ(τ − τ̄ ′)

−CA

(
1

τ τ̄ ′
θ(τ − τ ′) + 1

τ ′
θ(τ ′ − τ)

)
,

z2(τ, τ
′) = (−2)

(
CF −

CA

2

)(
ττ ′

τ̄ ′
θ(τ̄ ′ − τ) + τ̄

(
1 +

1

τ
+

1

τ ′

)
θ(τ − τ̄ ′)

)

+CA

(
τ̄ τ ′

τ̄ ′

(
1 +

1

τ

)
θ(τ − τ ′) + τ

(
1 +

1

τ ′

)
θ(τ ′ − τ)

)
. (77)

The anomalous dimensions of the B-type operators are derived from the renormalization
kernels in the standard way (see (99) below). Our result is in complete agreement
with [20], where the anomalous dimension has been obtained by extracting directly the
ultraviolet divergent parts of the SCETI diagrams.5

3.5.2 Jet-functions

The 1-loop jet-functions read

j‖(τ ; v, ω) = Aδ(τ − v̄) +
(
CF −

CA

2

)
[2B]+

+CF

[
θ(v̄ − τ) 2τ̄

vv̄

(
L+ ln

(v̄ − τ)τ
v̄

+
v(v̄ − τ)
τ τ̄

)
− 2v̄τ̄

v

(
L+ ln τ τ̄ +

vτ̄

v̄τ

)]

−
(
CF −

CA

2

)[
θ(τ − v) 2(v − τ)

2

vv̄τ

(
L+ ln

(τ − v)τ̄
v̄

− vτ̄

(v − τ)2
)

+ θ(v̄ − τ) 2(v − τ)
vv̄

(
L+ ln(v̄ − τ) + τ τ̄

(v̄ − τ)(v − τ) ln
v̄

τ
− v

v − τ

)

+ θ(τ − v̄) 2
τ

(
L+ ln(τ − v̄) + v̄

τ − v̄ ln
v

τ̄
− τ̄

v

)]
, (78)

5The variable u in [20] corresponds to our τ̄ = 1− τ , their v to our τ̄ ′.
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j⊥(τ ; v, ω) = Aδ(τ − v̄) +
(
CF −

CA

2

)
[2B]+

+CF

[
θ(v̄ − τ) 2

v̄

(
L+ ln

(v̄ − τ)τ
v̄

− 1
)
− θ(τ − v̄) 2τ̄

vτ

]

−
(
CF −

CA

2

)[
θ(τ − v) 2τ̄

v̄τ

(
L+ ln

(τ − v)τ̄
v̄

− v − τ
vτ̄

)

+ θ(v̄ − τ) 2
v̄

(
L+ ln(v̄ − τ) + τ

v̄ − τ ln
v̄

τ
− 1

v

)

+ θ(τ − v̄) 2

vτ

(
L+ ln(τ − v̄) + v̄τ̄

τ − v̄ ln
v

τ̄
− 1

)]
(79)

with

A = CF

[(
L+ ln v̄

)2 − 13

3

(
L+ ln v̄

)
− π2

6
+

80

9

]

+
(
CF −

CA

2

)[(
L+ ln v

)2 −
(
L+ ln v̄

)2
+

22

3

(
L+ ln v̄

)
+

2π2

3
− 152

9

]

+nfTf

[
4

3

(
L+ ln v̄

)
− 20

9

]
,

B =
θ(τ − v̄)
τ − v̄

(
L+ ln(τ − v̄)

)
+
θ(v̄ − τ)
v̄ − τ

(
L+ ln(v̄ − τ)

)
(80)

and L = ln(n+p
′n−l/µ

2) = ln(2Eω/µ2). The SU(3) group factors are CF = 4/3, CA = 3,
Tf = 1/2, and nf denotes the number of light quark flavours. Once again we find
agreement with [19, 20].

3.5.3 Hard-scattering form factors

Here we express the hard-scattering (SCETI) form factors Ξ(τ, E) defined in (18), (20)
as convolutions of the above jet-functions and light-cone distribution amplitudes.

The light-cone distribution amplitudes of the light mesons follow from the matrix
element of Q[Γc

k](v) defined in (45),

〈M(p′)|Q[Γc
k](v)|0〉 =






−ifPE φP (v) Γc
k =

n/+
2
γ5

−ifV ‖E
mV ǫ

∗ · v
E

φV ‖(v) Γc
k =

n/+
2

−ifV ⊥E (ǫ∗α − ǫ∗ · v nα
−)φV⊥(v) Γc

k =
n/+
2
γα⊥

(81)

The three cases correspond to M being a pseudoscalar meson, longitudinally polarized
or transversely polarized vector meson, respectively. Similarly, the B meson distribution
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amplitude is related to the matrix element of P (ω) in (45) such that

〈0|P (ω)|B̄v〉 =
if̂BmB

2
φB+(ω) (82)

with f̂B the HQET B meson decay constant (but defined such that is has mass dimension
1)6, that is

fB = K(µ) f̂B(µ) =
K(µ)Fstat(µ)√

mB
(83)

with Fstat(µ) the mB-independent decay constant in the static limit (HQET) and

K(µ) = 1 +
αsCF

4π

(
3 ln

mb

µ
− 2

)
(84)

a short-distance coefficient [30].
We can now evaluate

〈P (p′)|J1(τ)|B̄v〉 = 2E
∫
dr

2π
e−i 2Eτr 〈P (p′)|(ξ̄Wc)(0)(W

†
c iD/⊥cWc)(rn+)hv(0)|B̄v〉

=
∫
dωdv J‖(τ ; v, ω)〈P (p′)|Q

[n/+
2
γ5
]
(v)P (ω)|B̄v〉

=
mBE

2

∫
dωdv J‖(τ ; v, ω) f̂BφB+(ω) fPφP (v), (85)

where we have used (28) and (47). Comparing this to the definition (18) and (19) gives
the expression for ΞP . Proceeding in the same way for the other form factors we obtain

ΞP (τ, E) =
mB

4mb
f̂BφB+ ⋆ fPφP ⋆ J‖,

E

mV
Ξ‖(τ, E) =

mB

4mb
f̂BφB+ ⋆ fV ‖φV ‖ ⋆ J‖,

Ξ⊥(τ, E) =
mB

4mb
f̂BφB+ ⋆ fV⊥φV⊥ ⋆ J⊥,

Ξ̃⊥(τ, E) = 0. (86)

The asterisk stands for the convolutions in ω and v as in (85). This together with
the explicit expressions for the 1-loop jet-functions is the main technical result of this
paper. Using this result in (25) allows us to investigate numerically the corrections to the
symmetry relations for heavy-to-light form factors at the 1-loop order. The subsequent
sections are devoted to this numerical investigation.

6With the conventions of heavy-quark effective theory our |B̄v〉 corresponds to
√
mB|B̄v〉, and the

right-hand side of (82) is mB-independent when expressed in terms of Fstat.
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4 Numerical analysis

4.1 Jet-functions

It will be seen below that the jet-function appears in the form factors in the form of the
integral

Ia ≡
λB
〈v̄−1〉M

∫ 1

0

dv

v̄
φM(v)

∫ ∞

0

dω

ω
φB+(ω)

∫ 1

0
dτ
(
δ(τ − v̄) + αs

4π
ja(τ ; v, ω)

)
, (87)

which is normalized to 1 in the absence of the αs-correction. We now evaluate the 1-loop
correction.

4.1.1 Light-cone distribution amplitudes

The light-cone distribution amplitude (LCDA) of the light meson, φM(v), is convention-
ally expanded into the eigenfunctions of the 1-loop renormalization kernel,

φM(v) = 6vv̄

[
1 +

∞∑

n=1

aMn C
(3/2)
n (2v − 1)

]
, (88)

where aMn and C(3/2)
n (v) are the Gegenbauer moments and polynomials, respectively. We

define the quantity

〈v̄−1〉M ≡
∫ 1

0

dv

v̄
φM(v) = 3

(
1 +

∞∑

n=1

aMn

)
. (89)

In practice the expansion will be truncated after the second term, since it is believed
that the higher Gegenbauer moments are negligible, or accounted for approximately by
phenomenological determinations of the first two moments. The LCDAs and Gegen-
bauer moments are scale- and scheme-dependent. Our computation of the jet-function
corresponds to the modified minimal subtraction (MS) scheme and the renormalization
scale µ of the LCDA (not indicated by its arguments) is equal to the scale µ that appears
in the expressions (78), (79) for the jet-functions. In particular the scale-dependence of
〈v̄−1〉M is given by

µ
d

dµ
〈v̄−1〉M =

αsCF

π

∫ 1

0

dv

v̄
φM(v)

{
4−∆

2
+

ln v̄

v

[
1− v̄∆

]}
, (90)

which follows from (51).7 We recall that ∆ = 0 for transversely polarized vector mesons
M , and ∆ = 1 for pseudoscalar mesons or longitudinally polarized vector mesons.

7Note that (51) describes the scale dependence of fMφM (v), and

µ
d

dµ
fM =

αsCF

π

∆− 1

2
fM .
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The first inverse moment of the LCDA of the B meson,

1

λB
≡
∫ ∞

0

dω

ω
φB+(ω) (91)

is a key quantity in exclusive B decays [1]. We define the averages

〈f(ω)〉 ≡ λB

∫ ∞

0

dω

ω
φB+(ω)f(ω). (92)

The LCDA and λB are scale-dependent. Our computation of the jet-function corresponds
to the modified minimal subtraction scheme and the renormalization scale µ is equal to
the scale µ that appears in the expressions for the jet-functions. The scale-dependence
of 1/λB is given by

µ
d

dµ

(
f̂B
λB

)
=
αsCF

π

f̂B
λB

{
3

4
+

1

2
−
〈
ln
µ

ω

〉}
(93)

which follows from (53). The first term in the bracket comes from the scale-dependence
of the static decay constant f̂B.

Since ω is of order Λ, only logarithmic modifications of the first inverse moment
appear at leading order in the 1/mb-expansion. It can be seen from (78) and (79) that the
1-loop calculation involves the two logarithmic moments 〈L〉, 〈L2〉 with L = ln(2Eω/µ2).
The entire energy and scale-dependence of the 1-loop jet-functions is contained in these
two quantities. We adopt a simple one-parameter model for the shape of the distribution
amplitude [31],

φB+(ω) =
ω

λ2B
e−ω/λB , (94)

which relates the two logarithmic moments to the parameter λB,

〈L〉 = ln
2EλBe

−γE

µ2
, 〈L2 〉 = ln2 2EλBe

−γE

µ2
+
π2

6
(95)

with γE = 0.577216 . . ..
The functional form (94) and the Gegenbauer moments aMn are assumed to be given

at some reference scale µ0 of order (mbΛ)
1/2. This avoids having to evolve the me-

son parameters from the hadronic scale Λ to the hard-collinear scale with the SCETII

renormalization group equations.8

4.1.2 Integrated jet-functions

We proceed to the evaluation of Ia. The integrals
∫ 1
0 dτ ja(τ ; v, ω) are given in analytic

form in Appendix B. Integration over ω introduces the logarithmic moments 〈L〉, 〈L2〉
defined above. The final v-integration can be done numerically, or term by term in the

8The corresponding anomalous dimensions are given by (51), (53).
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Gegenbauer expansion of the light meson light-cone distribution amplitude. Up to the
second moment, we obtain

I‖ = 1 +
αs(µ)

4π

3

〈v̄−1〉M

(
4

3

[
1 + aM1 + aM2

]
〈L2〉 −

[
5.24 + 8.93aM1 + 10.86aM2

]
〈L〉

+
[
3.99 + 8.67aM1 + 13.47aM2

])
,

I⊥ = 1 +
αs(µ)

4π

3

〈v̄−1〉M

(
4

3

[
1 + aM1 + aM2

]
〈L2〉 −

[
4.90 + 8.93aM1 + 10.81aM2

]
〈L〉

+
[
0.73 + 6.78aM1 + 11.48aM2

])
, (96)

with9 nf = 4, Tf = 1/2, CF = 4/3 and CA = 3. The analytic expressions of these
convolutions are also given in Appendix B.

These results do not contain large logarithms, when µ is of order of the hard-collinear
scale (mbΛ)

1/2 ≈ 1.5GeV, i.e. 〈L〉, 〈L2〉 are of order 1 for E ∼ mb and µ ∼ (mbΛ)
1/2.

Since αs(1.5GeV)/(4π) is approximately 0.029, 〈L2〉 ≈ 2.5 and 〈L〉 ≈ −1 (for typical
parameters), the perturbative corrections to the jet-functions are about (20-50)%, de-
pending on a =‖,⊥ and the precise values of the Gegenbauer moments. We may therefore
conclude that perturbative corrections to hard spectator-scattering are non-negligible.
At the same time there is no sign that the series expansion is not well-behaved despite the
comparatively low scale, lending support to the possibility of performing perturbative
factorization at the hard-collinear scale. This is an important result, already mentioned
in [20, 32], since theoretical calculations of exclusive B decays in general rely on this
possibility. The present calculation and the one in [19, 20] are the first computations of
quantum corrections to spectator-scattering.

4.2 Renormalization group improvement of the C(B1) coeffi-

cients

The complete hard-scattering term involves
∫ 1
0 dτ [C

B1⋆J ], so we now turn to the evalua-
tion of the CB1. With µ of order (mbΛ)

1/2, the jet-function is free from large logarithms,
but CB1 involves up to two powers of logarithms ln(mb/Λ) per loop from the ratio of the
hard to the hard-collinear scale. In the following we derive an expression that sums the
leading-logarithmic and double-logarithmic terms to all orders in perturbation theory.
We shall refer to this simply as the leading-logarithmic approximation (LL).10

9We assume four massless quark flavours throughout this numerical analysis for simplicity. This is
not a good approximation for the charm quark, whose mass is of the same order as the hard-collinear
scale. A more precise treatment would keep the charm quark mass in the fermion loop correction to the
jet-function. This could be done without difficulty if such precision were required.

10In the literature on Sudakov resummation the analogous approximation is usually called “next-
to-leading-logarithmic approximation”. We prefer the term “leading-logarithmic”, since, as in other
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4.2.1 Solution to the renormalization group equation

The renormalization-group formalism that accomplishes this summation is standard and
has been applied to the B-type SCETI currents in [20]. We shall recapitulate the relevant
expressions to define the notation. In the following we drop the superscript “B1” on C(B1)

and denote by C(E, τ ;µ) a generic short-distance coefficient. With the renormalization
kernels (76), (77) the renormalization group equation is derived from the requirement
that C(E, τ ;µ) J (B1)(µ) is independent of the QCD/SCETI factorization scale. This
implies

µ
d

dµ
C(E, τ ;µ) = −Γcusp(αs) ln

µ

2E
C(E, τ ;µ) +

∫ 1

0
dτ ′γa(τ

′, τ)C(E, τ ′;µ) (97)

with

Γcusp(αs) =
∞∑

n=0

Γn

(
αs

4π

)n+1

(98)

the so-called universal cusp anomalous dimension. Comparison with (76), (77) gives
Γ0 = 4CF and

γa(τ, τ
′) = −αs(µ)

2π
[z1(τ, τ

′) + ∆a z2(τ, τ
′)] , (99)

where ∆a = 1 for a = ‖ and ∆a = 0 for a =⊥. Due to the presence of double logarithms
we also need the two-loop cusp anomalous dimension [33]

Γ1 = 4CF

([
67

9
− π2

3

]
CA −

20

9
nfTf

)
. (100)

The short-distance coefficients of the B-type operators (8) to (10) and the coefficients
appearing in (21), (22) evolve with the anomalous dimensions γa(τ

′, τ) as follows:

a = ‖ C
(B1)
S,P , C

(B1)1−3
V,A , C

(B1)1,2,5−7
T , C

(B1)
f+

, C
(B1)
f0

, C
(B1)
fT

,

a =⊥ C
(B1)4
V,A , C

(B1)3,4
T , C

(B1)
V , C

(B1)
T1

. (101)

The general solution to the renormalization group equation (97) reads

C(E, τ ;µ) = e−S(E;µh,µ)
∫ 1

0
dτ ′ Ua(τ, τ

′;µh, µ)C(E, τ
′;µh), (102)

where

S(E;µh, µ) =
∫ αs(µ)

αs(µh)
dαs

Γcusp(αs)

β(αs)

∫ αs

αs(2E)

dα′
s

β(α′
s)

=
∫ αs(µ)

αs(µh)
dαs

Γcusp(αs)

β(αs)

∫ αs

αs(µh)

dα′
s

β(α′
s)

+ ln
µh

2E

∫ αs(µ)

αs(µh)
dαs

Γcusp(αs)

β(αs)
(103)

applications of renormalization-group improved perturbation theory, the approximation requires only
the 1-loop anomalous dimension of a generic operator. The complication from double-logarithms is
reflected by the presence of the so-called cusp anomalous dimension, for which the 2-loop coefficient is
needed already in the leading-logarithmic approximation.
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with the QCD β-function

β(αs) = µ
dαs

dµ
= −2αs

∞∑

n=0

βn

(
αs

4π

)n+1

,

β0 =
11

3
CA −

4

3
nfTf , β1 =

34

3
C2

A −
(
20

3
CA + 4CF

)
nfTf . (104)

The evolution kernel Ua(τ, τ
′;µh, µ) satisfies the integro-differential equation

µ
d

dµ
Ua(τ, τ

′;µh, µ) =
∫ 1

0
dτ ′′γa(τ

′′, τ)Ua(τ
′′, τ ′;µh, µ) , (105)

with initial condition Ua(τ, τ
′;µh, µh) = δ(τ−τ ′). To sum the large logarithms the initial

scale µh should be of order mb, and the evolution ends at µ of order (mbΛ)
1/2.

Several simplifications occur in the leading-logarithmic approximation. Eq. (103) can
be integrated to

S(E;µh, µ) = −
Γ0

2β0
ln r ln

µh

2E
+

Γ0

4β2
0

(
4π

αs(µh)

[
ln r − 1 +

1

r

]
− β1

2β0
ln2 r

+

(
Γ1

Γ0

− β1
β0

)
[r − 1− ln r]

)
, (106)

with r = αs(µ)/αs(µh) > 1. Furthermore, the initial condition is given by the tree-level
expression for C(E, τ ;µh), which is independent of τ (and µh), hence the τ ′ integration
in (102) can be done. We then have

C(LL)(E, τ ;µ) = e−S(E;µh,µ) Ua(τ ;µh, µ)C
(0)(E) , (107)

where C(0)(E) is the tree coefficient, and Ua(τ ;µh, µ) =
∫ 1
0 dτ

′ Ua(τ, τ
′;µh, µ) satisfies

µ
d

dµ
Ua(τ ;µh, µ) =

∫ 1

0
dτ ′γa(τ

′, τ)Ua(τ
′;µh, µ) , (108)

with initial condition Ua(τ ;µh, µh) = 1. This equation must be solved numerically. We
always use two-loop running of αs(µ), and put µh = mb = 4.8GeV. As input we take
αs(4.8GeV) = 0.215, which gives αs(1.5GeV) = 0.359 (four massless flavours). The
result of this integration is shown in Figure 3 for µ = 1.5GeV. We have found that the
solution to

µ
d

dµ
Uapp
a (τ, µh, µ) =

[∫ 1

0
dτ ′γa(τ

′, τ)
]
Uapp
a (τ, µh, µ), (109)

given by

Uapp
a (τ, µh, µ) =

(
αs(µ)

αs(µh)

)−γa(τ)/(2β0)

(110)
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Figure 3: Ua(τ, µh, µ) for µh = mb = 4.8 GeV and µ = 1.5 GeV. The upper curves refer
to U‖, the lower ones to U⊥. Solid lines: exact numerical integration. Dashed lines:
approximate solutions.

with αs

4π
γa(τ) =

∫ 1
0 dτ

′γa(τ
′, τ) and

γ‖(τ) = −CF + 4
(
CF −

CA

2

)
ln τ̄

τ
,

γ⊥(τ) = −CF

(
4τ ln τ

τ̄
+ 1

)
+ 4

(
CF −

CA

2

)(
1 + τ

τ
ln τ̄ +

τ ln τ

τ̄

)
(111)

provides a very good approximation (better than 1%) to the exact solution, provided
one uses 1-loop running for αs with αs(4.8GeV) = 0.215 in the approximate solution.
The approximate expressions are also shown in Figure 3.

4.2.2 NLO+LL approximation

We are now in the position to give expressions for the B-type short-distance coeffi-
cients C(E, τ ;µ), which include the complete 1-loop correction as well as the leading-
logarithmic terms. The formula is

C(E, τ ;µ) = C(0)(E) + C(1)(E, τ ;µ)− C(0)(E)
[
e−S Ua

]

αs

(E, τ ;µ)

+C(0)(E)
[
e−S Ua − 1

]
(E, τ ;µ). (112)

The meaning of the four terms on the right-hand side is as follows: the first and second
terms are the tree and 1-loop coefficients, respectively. Together they constitute the
next-to-leading order (NLO) approximation to C(E, τ ;µ). The fourth term is the sum
of leading-logarithmic terms to all orders minus the tree. Finally, the third term subtracts
the logarithmic terms already included in the full 1-loop correction C(1)(E, τ ;µ). The
subtraction is given by

[
e−S Ua

]

αs

(E, τ ;µ) =
αs(µ)

4π

{
− Γ0

2

[
ln2

(
µ

µh

)
+ 2 ln

(
µh

2E

)
ln

(
µ

µh

)]
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+ ln

(
µ

µh

)
γa(τ)

}
(113)

To analyze the structure of the correction, we display in Figure 4 the following ap-
proximations, all normalized to the tree coefficient: (i) tree plus the logarithmic terms
at 1-loop (dash-dotted); (ii) previous approximation plus the non-logarithmic term, i.e.
the complete next-to-leading order result (dashed); (iii) previous approximation plus
the sum of leading-logarithmic terms at order α2

s and beyond (solid). In the numerical
implementation we set µh = mb = 4.8GeV, E = mbx/2, and regard the coefficients as
functions of energy fraction x and the convolution variable τ . Since E must be of order
mb, x cannot be chosen too small. We take x = 1 and x = 0.6 as representative examples
of large (maximal) and small energy of the light meson, and evolve to µ = 1.5GeV. We
also fix the scale of the QCD tensor current operator to ν = mb = 4.8GeV. Figure 4
shows four of the five combinations, C

(B1)
X , X ∈ {f+, f0, fT , T1, V }, which appear in the

hard-scattering contribution to the vector and tensor current form factors (21), (22).

Only C
(B1)
V is not shown, because its tree coefficient vanishes, hence only C(1)(E, τ ;µ) in

(112) is non-zero.
The following observations can be made from the figure: a) the logarithmic term at

order αs (dash-dotted lines) is a very poor approximation to the full αs coefficient (dashed

lines), especially for C
(B1)
T1

, which is the only one of the four coefficients shown involving
the transverse anomalous dimension γ⊥. b) Except near the endpoints τ = 0, 1, where
the relative correction diverges, the typical next-to-leading order correction from the
hard scale mb is of order 30%. The endpoint singularities are logarithmic and disappear
when the correction is folded with the light-meson distribution amplitude (integration
over τ). c) The effect of the logarithmically enhanced terms beyond the order αs is

negligible (difference between the solid and dashed lines). It is largest for C
(B1)
T1

towards
larger τ since here U⊥(τ ;µh, µ) is significantly different from 1, see Figure 3.

4.3 Spectator-scattering correction

According to (21), (22), (25) and (86) the form factors FX(E) are given by

FX(E) = C
(A0)
X ξa(E) +HX(E) (114)

with the spectator-scattering term

HX(E) =
mB

4mb
f̂BfM

∫ 1

0
dv φM(v)

∫ ∞

0
dω φB+(ω)

×
∫ 1

0
dτ C

(B1)
X (E, τ) Ja(τ ; v, ω). (115)

Here a = ‖ (or P in case of ξa) for X = {f+, f0, fT} and a =⊥ for X = {V, T1}. We have
now assembled all the pieces required for the evaluation of HX(E) at order α

2
s (1-loop).

From now on we set mB/mb in (115) to 1, since the difference between the meson and
the quark mass is a power correction beyond the accuracy of the present calculation.
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Figure 4: The short-distance coefficients C
(B1)
X (E, τ, µ) relevant to the form factors X

at two representative energy values (x = 1 (left) and x = 0.6 (right)) at µ = 1.5GeV
normalized to the tree approximation. Dash-dotted: logarithmic terms at order αs;
dashed: full NLO approximation; solid: NLO plus logarithmic summation.
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At the leading order we insert the tree expressions for the B-type coefficient function
(hereafter we again drop the superscript “B1”) and the jet-function and obtain

H
(0)
X (E) = −παs(µ)CF

Nc

f̂BfM〈v̄−1〉M
2EλB

C
(0)
X (E). (116)

Here as before the superscript “(0)” refers to the tree approximation. This agrees with
the results of [8].

To obtain the next-to-leading order result including the renormalization-group sum-
mation, we insert (112) and the jet-function into (115), and neglect cross terms of order
α3
s in the product CX ⋆ Ja. The result is

HX(E) = H
(0)
X (E)×

{
1 +

1

〈v̄−1〉M

∫ dv

v̄
φM(v)

C(1)(E, v̄)

C(0)(E)
+
[
Ia − 1

]

− 1

〈v̄−1〉M

∫
dv

v̄
φM(v)

[
e−S Ua

]

αs

(E, v̄)

+
1

〈v̄−1〉M

∫
dv

v̄
φM(v)

[
e−S Ua − 1

]
(E, v̄)

}
. (117)

The second term in the bracket is the 1-loop hard correction; the third comes from the
jet-function and is defined in (96); the fourth and fifth are related to the renormaliza-
tion group summation as in (112). The integration of the second term can be done
analytically, but the expressions are lengthy. They are given for selected short-distance
coefficients and for the integration with the asymptotic distribution amplitude in Ap-
pendix B. It is as straightforward to perform the integration over φM(v) numerically.
The integration of the subtraction term is elementary and given by (113) together with
(111). The integration of the last term can only be done numerically using the numerical
solution of the integro-differential equation for Ua. Since S is independent of v, one needs
the integrals

∫ 1

0

dv

v̄
φM(v, µ)U‖(v̄, µh, µ) = 3.037 + 3.058 aM1 + 3.051 aM2 + ... ,

∫ 1

0

dv

v̄
φM(v, µ)U⊥(v̄, µh, µ) = 2.795 + 2.980 aM1 + 3.003 aM2 + ... . (118)

The numerical values are given for µh = 4.8GeV and µ = 1.5GeV.
To illustrate these results we consider the three coefficients relevant to the form

factors in the physical form factor scheme defined in (25). Let

C
(B1)
0+ (τ, E) = C

(B1)
f0

(τ, E)− C(B1)
f+

(τ, E)R0(E),

C
(B1)
T+ (τ, E) = C

(B1)
fT

(τ, E)− C(B1)
f+

(τ, E)RT (E),

C
(B1)
T1V (τ, E) = C

(B1)
T1

(τ, E)− C(B1)
V (τ, E)R⊥(E). (119)
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Figure 5: HX(E)/H
(0)
X (E) for X = 0+, T+, T1V . The two upper curves represent the

complete next-to-leading order result with (solid) and without (dashed) the renormal-
ization group summation. The middle (dash-dotted) line shows the jet-function (hard-
collinear) correction alone, the lower (dashed) line the hard correction alone.

Choosing λB = 0.35GeV, x = 0.85 (corresponding to light meson energy E = xmB/2 =
2.24GeV or momentum transfer q2 = 4.18GeV), and asymptotic distribution ampli-
tudes, the curly bracket in (117) evaluates to

X = 0+ : 1 + 0.283 [C] + 0.371 [jet] + 0.059 [log, αs]− 0.073 [all logs],

X = T+ : 1 + 0.213 [C] + 0.371 [jet] + 0.059 [log, αs]− 0.073 [all logs],

X = T1V : 1 + 0.209 [C] + 0.268 [jet] + 0.169 [log, αs]− 0.147 [all logs], (120)

where the five terms correspond to the five terms on the right-hand side of (117). We
observe that the hard correction [C] and the jet-function correction [jet] are of similar
size, while the sum of higher-order logarithms (the sum of the last two terms) is at least a
factor of 10 smaller. The total correction to the tree result amounts to an enhancement
of (50-70)% of the spectator-scattering effect. These features are independent of the
value of E as can be seen from Figure 5, which displays the weak energy-dependence of
the spectator-scattering correction normalized to the tree result.

The dependence of these results on the hadronic input parameters λB, a
M
1 , aM2 is
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roughly as follows. λB enters the relative correction through the moments (95) and there-
fore affects the jet-function terms only. Choosing λB = 0.5GeV (0.25GeV) changes the
number 0.371 to 0.295 (0.452), and 0.268 to 0.195 (0.346), an uncertainty characteristic
for all energy fractions x. Furthermore, there is an uncertainty due to the model for the
shape of the distribution amplitude that correlates the logarithmic moments with λB,
which we do not attempt to quantify. There is a larger dependence of the tree result
H

(0)
X (E) on λB, since it is inversely proportional to λB. Positive Gegenbauer moments

increase the tree result and the relative next-to-leading order correction. This can be
seen from (96) for the jet-function correction. For aM2 = 0.2, the total relative next-to-
leading order correction increases from 64% for X = +0 (50% for X = T1V ) to 75%
(62%). Finally, there is a dependence on the renormalization scale µ, which we fixed to
1.5GeV. In order to estimate this dependence, one must fix the hadronic input parame-
ters at some µ0 and evolve them to µ using (90), (93). Since the scale-dependence of the
hadronic parameters is within their uncertainty, we do not perform this estimate here.

5 B decay phenomenology

In this section we discuss three applications of our results to B decays. We restrict
ourselves to decays to pions or ρ mesons, since the results for kaons are qualitatively
very similar.

We use the following parameters: the b-quark pole mass mb = 4.8GeV; the renormal-
ization scale of the QCD tensor current ν = mb; the initial scale for the renormalization
group evolution µh = mb; the renormalization scale and final scale of the renormaliza-
tion group evolution µ = 1.5GeV. This is also the (hard-collinear) scale at which all
other scale-dependent quantities such as meson light-cone distribution amplitudes and
the scale-dependent decays constants f̂B, fM⊥ are evaluated. The strong coupling is ob-

tained from αs(mb) = 0.215 by employing 2-loop running (Λ
(nf=4)

MS
= 323.6MeV), which

gives αs(1.5GeV) = 0.359. The pion and ρ meson parameters are fπ = 130.7MeV,
fρ‖ = 209MeV, fρ⊥ = 150MeV, and the second Gegenbauer moment is assumed to be
aM2 = 0.1 for the pion and the distribution amplitudes of both, the longitudinal and
transverse ρ meson. The B meson mass is mB = 5.28GeV and the decay constant
f̂B = fB/K(1.5GeV) = 200MeV. We assume the model (94) for the B meson distribu-
tion amplitude and λB = 0.35GeV. This is somewhat smaller than the value 0.46GeV
suggested by QCD sum rule calculations [34]. Allowing λB to vary from 0.25GeV to
0.5GeV implies that the value of λB is the single most important uncertainty in the final
numerical calculation. The SCETI form factors ξa(E) are defined in the physical form
factor scheme through full QCD form factors according to (24). The full QCD form fac-
tors needed for this definition are taken from the light-cone QCD sum rule calculations
[35] including the parameterization of their q2 dependence. On the basis of this input we
can compute the remaining seven pion and ρ meson form factors using (25). We relate
hadronic to partonic variables by first eliminating E through E = xmb/2 in the coeffi-
cient functions. The energy fraction x is then interpreted as x = 1− q2/m2

B = 2E/mB,
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when we plot hadronic form factors as functions of q2 or hadronic energy E.

5.1 Symmetry-breaking corrections to form factor ratios

In the absence of radiative and power corrections, the factorization formula (1) im-
plies parameter-free relations between form factors [7], since only ξa(E) appears on the
right-hand side, which cancels in ratios. These relations receive corrections, which are
calculable at leading power in the 1/mb expansion given the above-mentioned input pa-
rameters [8]. The seven relations between the total of ten pion and ρ meson form factors
are obtained from the two relations (23), which do not receive any perturbative correc-
tions, and the five relations that follow from (25) by dividing through the appropriate
ξFFa . For instance, the second and third equations of (25) imply

R1(E) ≡
mB

mB +mP

fT (E)

f+(E)
= RT (E) +

∫ 1

0
dτ C

(B1)
T+ (τ, E)

ΞP (τ, E)

f+(E)
,

R2(E) ≡
mB +mV

mB

T1(E)

V (E)
= R⊥(E) +

mB +mV

mB

∫ 1

0
dτ C

(B1)
T1V (τ, E)

Ξ⊥(τ, E)

V (E)
, (121)

with C
(B1)
T+ (τ, E), C

(B1)
T1V (τ, E) the combinations of coefficient functions defined in (119).

Similar relations follow for the other form factors. The second term on the right-hand
side equals the hard spectator-scattering term (115) divided by the appropriate ξFFa (E).
Putting together (26), (116) and (117) we obtain the form factor ratios including the
new next-to-leading order (and resummed) correction to the spectator-scattering term.

The result of this computation is shown in Figure 6 for the various form factor ra-
tios. The ratios are normalized such that in absence of any radiative corrections they
equal 1 for all q2. Our final result, which includes R to order αs and the spectator-
scattering term to order α2

s as well as the summation of leading logarithms to all orders
is shown as the solid (black) curves. To display the size of the various contributions
to the complete result, we also show the result following from neglecting the spectator-
scattering term (dash-dotted (red) curves), and from evaluating the spectator-scattering
contribution in leading-order (long-dashed (blue) curves), which corresponds to the pre-
vious results [8]. As has already been discussed in Section 4 the new NLO correction
always enhances the symmetry-breaking effect. The correction from R(E) in (121) is al-
ways smaller than the spectator-scattering contribution. In fact, it is even smaller than
the NLO spectator-scattering term, despite the fact that the latter is formally of order
α2
s. Overall, the deviations from the symmetry-limit range up to 40%, which is signif-

icant but not anomalously large given that the typical scales involved are in the range
of 1.5GeV. The theoretical uncertainties in the relative NLO spectator-scattering term
have been discussed before in Section 4. The more important unknown factor resides in
the normalization of the tree contribution (116), which involves the product

f̂BfM〈v̄−1〉M
λBξa(E)

(122)
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Figure 6: Corrections to the B → π and B → ρ form factor ratios as a function
of q2. The ratios equal 1 in the absence of radiative corrections. Solid (black) line:
full result, including NLO and resummed leading-logarithmic correction to spectator-
scattering; Long-dashed (blue): without NLO+LL correction to spectator-scattering;
Dash-dotted (red): without any spectator-scattering term. Dashed (black): QCD sum
rule calculation. The lower right panel shows the two form factor ratios that equal 1 at
leading power. For comparison, the QCD sum rule results for these two ratios are shown
(upper (blue) line refers to A1/V , lower (black) line to T2/T1.)
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of hadronic parameters. We estimate the theoretical errors of the factors to be around
15% (f̂B), 15% (fρ⊥), 10% (〈v̄−1〉M), 30% (λB) and 15% (ξa(E)), so it is clear that the
curves in the figure are affected by a significant normalization uncertainty. In particular,
adopting the QCD sum-rule result λB = 0.46GeV rather than 0.35GeV decreases the
deviations of the form factor ratios from unity by about 30%.

It is instructive to compare this result for the form factor ratios with the QCD sum
rule calculations. The corresponding sum rule ratios are shown as dashed (black; black
and blue in the lower right panel) curves in Figure 6. One notices that the sum rule
calculation satisfies the symmetry relations remarkably well – the ratios are in general
closer to 1 than predicted on the basis of the heavy-quark limit corrected by radiative
and spectator-scattering effects. There are also significant differences concerning the
sign of the correction similar to those observed already in [8]. It is unclear whether
the differences between the sum rule calculations and those based on the heavy-quark
limit are due to 1/mb power corrections or ununderstood systematics of the sum rule
calculation (see the discussion in [36]). For instance, the sum-rule result for the ratio
involving mB/(2E) T2 − T3 has changed from about 0.7 to almost 1.2 with the update
[35] of the form factor calculations. This may not be surprising, since the ratio involves
cancellations between form factors and may be particularly sensitive to the uncertainties
of sum rule calculations. In such cases the SCET calculation of form factor relations is
probably more reliable than the QCD sum rule method. In general, the comparison of
the two methods leads to the conclusion that the theoretical calculations of form factors
with QCD sum rules are affected by considerable uncertainties until the systematics of
and discrepancies with the heavy-quark limit are better understood.

5.2 Radiative vs. semi-leptonic decay

Factorization calculations of radiative and hadronic two-body B decays involving only
light mesons (and leptons) make use of the form factors at maximal recoil. It is therefore
of interest to investigate the short-distance corrections at x = 1, i.e. E = mB/2 or
q2 = 0. In addition to the exact relations (23), the first and fourth relations of (25) also
degenerate to

mB

2E
f0(E) = ξFFP ,

mV

E
A0(E) = ξFF‖ (123)

as a consequence of the equations of motion. This leaves only two interesting ratios,
namely R1 and R2 defined in (121). The last ratio in (25) involving T2 and T3 can be
obtained from R1 replacing ξFFP = f+ by ξFF‖ .

At x = 1 we obtain the analytic expressions (assuming the asymptotic form φM(v) =
6vv̄ for the light-meson distribution amplitude)

R1 = 1 +
αs

4π

[
−8
3
ln

ν

mb

+
8

3

]
− 8παs(µ)

3

f̂BfM
MBλBξ

FF
P

{
1 +

αs(µ)

4π

×
[
− 8

3
ln

ν

mb
− 8

3
ln2 mb

µ
+

4

3

〈
ln2 mbω

µ2

〉
+

(
8

3
− 2π2

9

)
ln
mb

µ

40



+

(
−9 + π2

9
+

2nf

3

)〈
ln
mbω

µ2

〉
+

103

6
+

5π2

9
− 19nf

9
+ δ

‖
log

]}

= 1 + 0.046 (RT )− 0.165
{
1 + 0.540 (NLO spec.)− 0.01 (δ

‖
log)

}

= 0.794,

R2 = 1 +
αs

4π

[
−8
3
ln

ν

mb

− 4

3

]
+

4παs(µ)

3

f̂BfM⊥

MBλBξ
FF
⊥

{
1 +

αs(µ)

4π

×
[
− 8

3
ln

ν

mb
− 8

3
ln2 mb

µ
+

4

3

〈
ln2 mbω

µ2

〉
+

(
−2
3
− 2π2

9

)
ln
mb

µ

+

(
−26

3
+
π2

9
+

2nf

3

)〈
ln
mbω

µ2

〉
+

27

2
+ π2 − 2ζ(3)

3
− 19nf

9
+ δ⊥log

]}

= 1− 0.023 (RT ) + 0.086
{
1 + 0.418 (NLO spec.) + 0.03 (δ

‖
log)

}

= 1.102, (124)

where δalog denotes the small effect form the renormalization-group summation. The nu-
merical results refer to the pion (R1) and ρ meson (R2) with the parameters as specified
above. The ratio R1 with ξFFP = f+ replaced by ξFF‖ and pion parameters replaced
by ρ meson parameters gives 0.707 instead of 0.794. For comparison the QCD sum
rule calculation [35] gives R1 = 0.96 (1.02 for ρ and the relation involving T2, T3) and
R2 = 0.95.

The factorization approach allows us to make predictions for the exclusive radiative
B decays B → Mγ [2, 37] and B → Ml+l− [38]. The decays B → ργ together with
B → K∗γ are particularly interesting, because they may lead to a determination of the
CKM matrix element |Vtd| or constrain flavour non-universality in penguin transitions.
The main limitation turns out to be the poor knowledge of SU(3) flavour symmetry
breaking in the ratio of tensor form factors T ρ

1 (0)/T
K∗

1 (0) [39, 40]. In [39] it was therefore
suggested to take the ratio of the B → ργ to the differential semi-leptonic B → ρlν
branching fraction, which avoids the problem of SU(3)-breaking, but introduces the
ratio T1/V of ρ-meson form factors at q2 = 0. The method relies on normalizing the
B → ργ rate to the differential decay rate

d2Γ(B → ρlν)

dq2d cos θ
∝ (1 + cos θ)2H2

− + (1− cos θ)2 (H2
+ + 2H2

0) (125)

near cos θ = 1 (with θ the angle between the neutrino momentum and the B meson
momentum in the lν center-of-mass frame) and q2 = 0. The angle cut has the effect
of isolating the negative helicity form factor H−, which has a simple expression in the
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heavy-quark limit. Neglecting quadratic effects in the light meson mass,

H−(q
2) =

√
q2

m2
B

(
mB +mρ

mB
A1(q

2) +
m2

B − q2
mB(mB +mρ)

V (q2)

)

= 2

√
q2

m2
B

(
1− q2

m2
B

)
mB

mB +mρ
V (q2), (126)

hence the ratio of branching fractions involves

H2
−

T 2
1

=
4q2

m2
B

(
1− q2

m2
B

)2
H2

−

ξFF⊥
2

q2→0→ 4q2

m2
B

1

R2
2

. (127)

Assigning a 60% uncertainty to the spectator-scattering contribution to R2 we obtain
1/R2

2 = 0.82 ± 0.12 to be compared with the QCD sum rule value 1/R2
2 = 1.11 ±

0.22, where we assigned a 10% uncertainty to the calculation of [35]. The disagreement
between the two numbers is unfortunate and should be resolved. Assuming the result of
the calculation in the factorization approach, we obtain a 10% uncertainty on |Vtd/Vub|
from the form factor ratio in the method proposed in [39]. This does not include an
uncertainty from power-suppressed effects.

The tensor-to-vector ratio R2(q
2) also appears in the forward-backward asymmetry

in the electroweak penguin decays B → Ml+l−. The complete calculation of the decay
matrix element divides into “factorizable” and “non-factorizable” contributions [8, 38].
In this terminology, “factorizable” contributions are related to the heavy-to-light form
factors, and hence are the relevant ones here. Inserting

(mB +mV )
T1
V

= (mB −mV )
T2
A1

= mBR2 (128)

into Eq. (75) of [38], we obtain the differential forward-backward asymmetry [8]

dAFB

dq2
∝ Re

[
C9 + Y (q2) +

2mbMB

q2
Ceff

7 R2(q
2) + non-fact. terms

]
. (129)

Since the dependence on q2 is mainly through R2(q
2)/q2 it follows that the increase of

R2(q
2) by several percent due to the next-to-leading order spectator-scattering correction

implies an increase in the position of the asymmetry zero in approximately the same
proportion.

5.3 Hadronic decays

The jet-function computed in this paper also appears in the next-to-leading order correc-
tion to spectator-scattering in hadronic two-body B decays to light mesons. We outline
this effect by the example of B → ππ decays, keeping the discussion short, since the
NLO correction is not yet completely available.
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The factorization formula reads [1]

〈ππ|Qi|B̄〉 = f+(0) T
I
i ∗ fπφπ + T II

i ∗ fBφB+ ∗ fπφπ ∗ fπφπ, (130)

where Qi denotes an operator from the effective weak Hamiltonian, and the formula
holds up to power corrections. The second term describes spectator-scattering. Its
short-distance coefficient is a convolution T II

i = CII
i ⋆ J‖, where C

II
i is the coefficient

function of a generalization of a B-type operator that takes into account the second
pion. Since the pion that does not pick up the spectator anti-quark from the B̄ meson
decouples at the hard-scale, the physics at the hard-collinear scale is exactly the same as
in the B → π transition. Hence the jet-function in hadronic decays equals J‖ [21], which
has been computed above. Note that this implies that the strong rescattering phases
are all generated at the hard scale mb (at leading order in the heavy-quark expansion),
since the jet-function is real.

Spectator-scattering is particularly important for decay amplitudes of the “colour-
suppressed” final state π0π0, because the colour-suppression is absent for the spectator-
scattering term. The situation is opposite for the colour-allowed final state π−π+. Both
amplitudes are relevant to π−π0. In the following we shall therefore focus on the coef-
ficient α2(ππ) that describes the colour-suppressed tree amplitude. We emphasize that
a complete NLO calculation of spectator-scattering requires the calculation of the hard
coefficient CII

i as well. The remarks below must therefore be understood as preliminary.
Following the notation of [41] (Eqs. (35) and (47)) we write

α2(ππ) = C2 +
C1

Nc
+
C1

Nc

αs(µ)CF

4π
V2(π)

+
C1

Nc

παs(µh)CF

Nc

[
Htw2

2 (ππ) I‖ +Htw3
2 (ππ)

]
, (131)

where now µ should be chosen of order mb and µh is a hard-collinear scale assumed to
be µh =

√
Λhµ with Λh = 0.5GeV. The Ci are Wilson coefficients from the effective

weak-interaction Hamiltonian, V2(π) is a vertex correction, and Htw2
2 (ππ)+Htw3

2 (ππ) the
spectator-scattering term at tree level, which we separated into a leading-power (“tw2”)
and a power-suppressed “chirally enhanced” (“tw3”) term. The new ingredient in this
formula is the factor I‖, which equals 1 in the absence of the NLO correction to the jet-
function, and is given by (96) including the correction. Exactly the same modification
applies to the spectator-scattering contribution to α1(ππ) and the leading-power pieces
of the penguin amplitudes. Numerically, with parameters defined in [41], we obtain

α2(ππ) = 0.17− [0.17 + 0.08i ]V2
+




[0.11 · 1.37]Htw2

2
·I‖

+ [0.07]Htw3
2

(default)

[0.29 · 1.57]Htw2
2

·I‖
+ [0.17]Htw3

2

(S4)

=





0.22 (0.18)− 0.08i (default)

0.64 (0.47)− 0.08i (S4)
(132)
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Scenario default, LO jet default, NLO jet S4, LO jet S4, NLO jet

α1(ππ) 0.99 + 0.02i 0.98 + 0.02i 0.88 + 0.02i 0.81 + 0.02i

α2(ππ) 0.18− 0.08i 0.22− 0.08i 0.47− 0.08i 0.64− 0.08i

Br(B̄0 → π+π−) 8.86 8.62 5.17 4.58

Br(B̄0 → π0π0) 0.35 0.40 0.70 1.13

Br(B− → π−π0) 6.03 6.28 5.07 5.87

Table 1: Tree amplitude coefficients α1 and α2, and the CP-averaged ππ branching ratios
in units of 10−6 in the default and S4 scenario of [41] showing the effect of the NLO jet
function correction.

The various terms and factors correspond to those in (131) and we show the numbers
for the default parameter set and the set S4 that provides a better overall description
of hadronic two-body modes. Due to the near cancellation11 of the tree term with the
vertex correction the colour-suppressed tree amplitude comes essentially from spectator-
scattering. The factors 1.37 and 1.57 show the effect from the NLO correction to the
jet-function. In the final line the number in brackets gives the result from [41], the
unbracketed number corresponds to including the new jet-function term. To illustrate
the implications of these results, we show in Table 1 the CP-averaged B → ππ branching
fractions corresponding to the four cases (default vs. S4, with and without NLO jet-
function correction). For simplicity, we only consider the NLO jet function correction
to the tree amplitudes α1(ππ) and α2(ππ) (colour-allowed and colour-suppressed), but
not to the penguin amplitudes, since this gives the dominant effect (and the results are
preliminary anyway, see above). It is clearly seen that the NLO correction to spectator-
scattering can have a significant effect. The enhancement of the colour-suppressed tree
amplitude brings the theoretical computation in better agreement with data, since the
large π0π0 rate and the small π+π− to π−π0 ratio favour a large colour-suppressed tree
amplitude [41]. We do not discuss the direct CP asymmetries, since we expect the still
missing NLO hard correction to spectator-scattering (which includes a new source of
rescattering phases) to be the more important factor.

6 Conclusion

Spectator-scattering plays an important role in the theory of exclusive B decays. It
is also rather complicated, because several scales, mb (hard),

√
mbΛ (hard-collinear),

and Λ (hadronic) are involved. The development of QCD factorization and soft-collinear
effective theory has made it possible to formulate the calculation in terms of two separate

11The size of the loop correction is due to the absence of colour-suppression, which makes the tree
amplitude small, and is therefore not an indication of failure of the perturbative expansion.
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matching steps, in which the effects from the short-distance scales mb and
√
mbΛ are

calculated in perturbation theory. In previous work [18] we began the calculation of 1-
loop corrections to spectator-scattering effects in heavy-to-light meson form factors in the
large-recoil region with the computation of the hard coefficient functions. In this paper
we have completed the second step with the computation of the hard-collinear coefficient
function, also called jet-function. Since the calculation involves the definition of various
renormalized operators in QCD, SCETI, and SCETII, and the treatment of evanescent
operators in dimensional regularization, we have described the technical aspects of this
work in some length. Our results provide a check of similar results obtained by Becher
et al. [19, 20]. The jet-function computed here is relevant to many different B decays,
including radiative and hadronic B decays in the QCD factorization approach.

The results may be summarized as follows: we find significant enhancements of
spectator-scattering at next-to-leading order, which increase the deviation of form factor
ratios from the asymptotic heavy quark limit, in which perturbative and power correc-
tions are neglected. We have also included the summation of formally large logarithms
lnmb/Λ, but found this effect to be negligible compared to the full 1-loop correction.
Despite the small scale of order 1.5GeV involved, there is no sign that a perturbative
treatment is not applicable. The 1-loop effects from the hard scale and the hard-collinear
scale are about equally important, being on the order of (20-40)% (depending on pa-
rameters), at least in the MS factorization scheme adopted throughout this work. It
follows that the dominant theoretical uncertainties are related to hadronic input param-
eters such as moments of light-cone distribution amplitudes and decay constants. In
addition to the symmetry-breaking corrections to form factor ratios, we also discussed
radiative and hadronic two-body decays. Although the jet-function constitutes only one
aspect of the NLO correction to spectator-scattering in hadronic decays, we have seen
that the NLO enhancement has interesting implications for final states with significant
colour-suppressed tree amplitudes.

We would also like to emphasize the theoretical conclusions from this calculation,
since the form factors are up to now the only observables, for which a complete two-step
matching in soft-collinear effective theory has been explicitly carried out to the 1-loop
level in a case with spectator-scattering. The factorization arguments that lead to the
formula (1) rely on the demonstration that the B-type SCETI currents can be matched
to SCETII without encountering endpoint-divergent convolution integrals, which would
violate naive SCETII factorization [12, 13]. The calculations performed here and in [18]
provide an explicit verification of these arguments at the 1-loop level.

Note added: We have been informed of related work by G. Kirillin, in which he computes
the 1-loop correction to the jet-function J‖, and to the coefficient function C

(B1)
f+

.
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A Short-distance coefficients

A.1 Change of basis

The coefficient functions of the operators defined in (8) to (10) are given in terms of
those defined and calculated in [18] (denoted with subscript “old”) as follows:

scalar :

C
(A0)
S = C

(A0)
Sold ,

C
(B1)
S = C

(B1)
Sold −

C
(A0)
Sold

x
, (133)

vector :

C
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V = C

(A0)1
V old , C

(A0)2
V = C

(A0)3
V old ,

C
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V old ,

C
(B1)1
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1
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C
(A0)2
V old

x
,

C
(B1)4
V =
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V old

)
, (134)

tensor :

C
(A0)1
T = −1

2
C

(A0)1
Told , C

(A0)2
T = C

(A0)3
Told ,

C
(A0)3
T = C

(A0)2
Told − C

(A0)1
Told , C

(A0)4
T = C

(A0)1
Told + C

(A0)3
Told − C

(A0)4
Told ,

C
(B1)1
T = C

(B1)2
Told −

1

2
C

(B1)6
Told +

1

x

(
C

(A0)1
Told + C

(A0)4
Told

)
,

C
(B1)2
T = C

(B1)1
Told − C

(B1)5
Told −

C
(A0)1
Told

x
,
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C
(B1)3
T = −1

2
C

(B1)6
Told −

1

x

(
C

(A0)1
Told + C

(A0)3
Told − C

(A0)4
Told

)
,

C
(B1)4
T = −C(B1)5

Told +
1

x

(
C

(A0)1
Told − C

(A0)2
Told

)
,

C
(B1)5
T = C

(B1)3
Told −

1

x

(
2C

(A0)2
Told + 2C

(A0)3
Told − C

(A0)4
Told

)
,

C
(B1)6
T =

1

2
C

(B1)4
Told −

1

2x

(
C

(A0)1
Told − 2C

(A0)2
Told

)
,

C
(B1)7
T =

1

4

(
C

(B1)7
Told − C

(B1)4
Told

)
+

1

2x

(
C

(A0)1
Told − C

(A0)2
Told

)
. (135)

In the new basis the pseudoscalar coefficients equal the scalar coefficients, and the axial-
vector coefficients equal the vector coefficients. Furthermore x = n−v n+p

′/mb = 2E/mb

with E the energy of the light meson.

A.2 Coefficients appearing in the form factors

The five independent A0-coefficients appearing in the SCETI representation of the form
factors (21), (22) are given by

C
(A0)
f+

= C
(A0)1
V +

x

2
C

(A0)2
V + C

(A0)3
V

= 1 +
αsCF

4π

[
− 2 ln2

(
x

µ̂

)
+ 5 ln

(
x

µ̂

)
− 2Li2(1− x)−

π2

12
− 3 lnx− 6

]
,

C
(A0)
f0

= C
(A0)1
V +

(
1− x

2

)
C

(A0)2
V + C

(A0)3
V

= 1 +
αsCF

4π

[
− 2 ln2

(
x

µ̂

)
+ 5 ln

(
x

µ̂

)
− 2Li2(1− x)−

π2

12
− 3− 5x

1− x ln x− 4
]
,

C
(A0)
fT

= −2C(A0)1
T + C

(A0)2
T − C(A0)4

T ,

= 1 +
αsCF

4π

[
− 2 ln ν̂ − 2 ln2

(
x

µ̂

)
+ 5 ln

(
x

µ̂

)
− 2Li2(1− x)−

π2

12

−3− x
1− x ln x− 6

]
(136)

C
(A0)
V = C

(A0)1
V

= 1 +
αsCF

4π

[
− 2 ln2

(
x

µ̂

)
+ 5 ln

(
x

µ̂

)
− 2Li2(1− x)−

π2

12
− 3− 2x

1− x ln x− 6
]
,

C
(A0)
T1

= −2C(A0)1
T +

(
1− x

2

)
C

(A0)2
T + C

(A0)3
T
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= 1 +
αsCF

4π

[
− 2 ln ν̂ − 2 ln2

(
x

µ̂

)
+ 5 ln

(
x

µ̂

)
− 2Li2(1− x)−

π2

12
− 3 ln x− 6

]
.

The variable E used in (21), (22) is related to x through x = n−v n+p
′/mb = 2E/mb. We

also define αs = αs(µ), µ̂ = µ/mb and ν̂ = ν/mb, where ν is the renormalization scale of
the QCD tensor current, and µ is the SCETI renormalization scale. The µ dependence
cancels the corresponding dependence of the SCETI form factors ξa(E). The heavy quark
mass is renormalized in the pole scheme. The five independent B-coefficients are given
by

C
(B1)
f+

=
x

2
C

(B1)1
V + C

(B1)2
V

=
(
−2 + 1

x

){
1 +

αsCF

4π

[
− 2 ln2

(
x

µ̂

)
+ ln

(
x

µ̂

)
− 3

1− 2x
ln x− 2Li2(1− x)−

π2

12

−2(1− x)
1− 2x

+
x

(1− 2x)(1− xξ) −
4(1− x)
(1− 2x)ξ̄

ln ξ +
x(2− xξ)

(1− 2x)(1− xξ)2 ln(xξ)
]

+
αs

4π

(
CF −

CA

2

) [
4

ξ
ln ξ̄ ln µ̂+

2

ξ
F (x, xξ̄) +

2

x(1− 2x)ξξ̄
G

+
2

1− 2x

(
2(1− x)

ξ
ln ξ̄ +

3− 2x

ξ̄
ln ξ − x

1− xξ ln(xξ)
)]}

,

C
(B1)
f0

=
(
1− x

2

)
C

(B1)1
V + C

(B1)2
V

= −1

x

{
1 +

αsCF

4π

[
− 2 ln2

(
x

µ̂

)
+ ln

(
x

µ̂

)
− 3 lnx− 2Li2(1− x)−

π2

12

+
2

ξ̄

(
(2− x) ln x

1− x − (2− xξ) ln(xξ)
1− xξ

)
+
x(2 − xξ)
(1− xξ)2 ln(xξ) +

x

1− xξ

]

+
αs

4π

(
CF −

CA

2

) [
4

ξ
ln ξ̄ ln µ̂+

2

ξ̄
ln ξ − 2x

1− xξ ln(xξ) +
2

ξ
F (x, xξ̄)− 2

xξξ̄
G
]}

,

C
(B1)
fT

= −C(B1)5
T

=
1

x

{
1 +

αsCF

4π

[
− 2 ln ν̂ − 2 ln2

(
x

µ̂

)
+ ln

(
x

µ̂

)
− 3 lnx− 2Li2(1− x)−

π2

12
− 2

+
2

ξ̄

(
(2− x) ln x

1− x − (2− xξ) ln(xξ)
1− xξ

)
− x(2− xξ) ln(xξ)

(1− xξ)2 − x

1− xξ

]

+
αs

4π

(
CF −

CA

2

) [
4

ξ
ln ξ̄ ln µ̂+

2

ξ̄
ln ξ +

2x

1− xξ ln(xξ) +
2

ξ
F (x, xξ̄)− 2

xξξ̄
G
]}

,

C
(B1)
V = C

(B1)4
V
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=
αsCF

4π

1

1− xξ

[
x ln x

1− x −
ln(xξ)

1− xξ −
ln ξ

ξ̄
− 1

]

+
αs

4π

(
CF −

CA

2

) [
− 2

xξ
ln ξ̄ − 2

xξ̄
ln ξ +

2 ln(xξ̄)

1− xξ̄ +
2 ln(xξ)

1− xξ −
2

x2ξξ̄
G
]
,

C
(B1)
T1

=
(
1− x

2

)
C

(B1)3
T + C

(B1)4
T

= (−1)
{
1 +

αsCF

4π

[
− 2 ln ν̂ − 2 ln2

(
x

µ̂

)
+ ln

(
x

µ̂

)
+ ln x− 2Li2(1− x)−

π2

12
− 1

−4ξ
ξ̄
ln ξ ln µ̂− 2

ξ̄
ln ξ − 2ξ

ξ̄
F (x, xξ)

]

+
αs

4π

(
CF −

CA

2

) [(
4(1 + ξ)

ξ
ln ξ̄ +

4ξ

ξ̄
ln ξ

)
ln µ̂− 2 ln ξ̄ + 2 ln ξ

−2F (xξ̄, xξ) + 2

ξ
F (x, xξ̄) +

2

ξ̄
F (x, xξ)− 2

xξ̄
G

− 2

xξ

(
Li2(1− x)− Li2(1− xξ̄)

)
− 2

]}
. (137)

The variables E and τ used in (21), (22) are related to x and ξ through x = 2E/mb

and ξ = τ . Diagrammatically ξ corresponds to n+p
′
2/n+p

′, the fractional longitudinal
momentum carried by the transverse collinear gluon in the B-type current operator. We
also use ξ̄ ≡ 1− ξ, and introduced the two abbreviations

F (y, z) ≡ ln2 y − ln y + Li2(1− y)− ln2 z + ln z − Li2(1− z),

G ≡ Li2(1− x)− Li2(1− xξ̄)− Li2(1− xξ) +
π2

6
. (138)

These results are obtained by taking the appropriate linear combinations of the coeffi-
cients given in [18]. The variables (x1, x2) used there are related to (x, ξ) by x1 = xξ̄
and x2 = xξ (ξ ∈ [0, 1]).

B Integrals of coefficient functions

B.1 Integration of the jet-function

The integrals
∫ 1
0 dτ ja(τ ; v, ω) of the jet-functions (78), (79) are given by

∫ 1

0
dτ j‖(τ ; v, ω) = CFL

2

+

(
CF

[
−7
3
+ 2 ln v̄

]
+
(
CF −

CA

2

)[
22

3
+

2 ln v

v̄

]
+

4

3
nfTf

)
L
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+CF

[
53

9
− π2

6
+
(
−4
3
+

1

v

)
ln v̄ + ln2 v̄

]

+
(
CF −

CA

2

) [
− 170

9
+
(
22

3
− 2

v

)
ln v̄ +

1

v̄

(
π2

3
− 2 ln v + ln2 v

+2(1− 2v)
(
Li2(v)− Li2(v̄)

))]
+
(
−5
3
+ ln v̄

)
4

3
nfTf ,

∫ 1

0
dτ j⊥(τ ; v, ω) = CFL

2

+

(
CF

[
−7
3
+ 2 ln v̄

]
+
(
CF −

CA

2

)[
22

3
+

2v̄

v
ln v̄ +

2(2− v) ln v
v̄

]
+

4

3
nfTf

)
L

+CF

[
44

9
− π2

6
+
(
−7
3
+

2

v

)
ln v̄ + ln2 v̄

]

+
(
CF −

CA

2

) [
− 152

9
+
(
22

3
− 2

v

)
ln v̄ +

v̄

v
ln2 v̄ +

1

vv̄

(
π2

3
− 2v ln v

+ v(2− v) ln2 v + 2(1− 2v)
(
Li2(v)− Li2(v̄)

))]
+
(
−5
3
+ ln v̄

)
4

3
nfTf . (139)

The analytic expressions of the integrals entering Ia (see (87)) read (setting nf = 4,
Tf = 1/2 and CF = 4/3 and CA = 3)

λB
3

∫ 1

0

dv

v̄
φM(v)

∫ ∞

0

dω

ω
φB+(ω)

∫ 1

0
dτj‖(τ ; v, ω)

=
4

3
〈L2〉+

(
−19

3
+
π2

9

)
〈L〉+ 169

18
− 2π2

9
− 8

3
ζ(3)

+aM1

[
4

3
〈L2〉+

(
−110

9
+
π2

3

)
〈L〉+ 464

27
+
π2

9
− 8ζ(3)

]

+aM2

[
4

3
〈L2〉+

(
−157

9
+

2π2

3

)
〈L〉+ 646

27
+

8π2

9
− 16ζ(3)

]
,

λB
3

∫ 1

0

dv

v̄
φM(v)

∫ ∞

0

dω

ω
φB+(ω)

∫ 1

0
dτj⊥(τ ; v, ω)

=
4

3
〈L2〉+

(
−6 + π2

9

)
〈L〉+ 65

9
− π2

3
− 8

3
ζ(3)

+aM1

[
4

3
〈L2〉+

(
−110

9
+
π2

3

)
〈L〉+ 413

27
+
π2

9
− 8ζ(3)

]

+aM2

[
4

3
〈L2〉+

(
−313

18
+

2π2

3

)
〈L〉+ 4975

216
+

7π2

9
− 16ζ(3)

]
. (140)
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B.2 Convolution of C
(B1)
X with the light-cone distribution am-

plitude

Because the expressions are lengthy, we only list the results for the convolution of the
three combinations of coefficients functions in the physical form factor scheme as de-
fined in (25), and assume that the light-cone distribution amplitude are given by their
asymptotic forms φM(v) = 6vv̄. The convolution integrals read

∫ 1

0

dv

v̄
φM(v)

(
C

(B1)
f0
− C(B1)

f+
R0

)
(x, v̄)

= −6(1− x)
x

{
1 +

αsCF

4π

[
− 2 ln2

(
x

µ̂

)
+ ln

(
x

µ̂

)
−
(
2− 1

(1− x)2
)
ln x

−
(
2 +

2

x

)
Li2(1− x)−

π2

12

x− 4

x
+ 6 +

x

1− x

]

+
αs

4π

(
CF −

CA

2

) [(
4π2

3
− 8

)
ln

(
x

µ̂

)
− 4x lnx

1− x + 4 lnxLi2(x)− 4Li3(1− x)

−8Li3(x) + 8− 4π2

3
− 4ζ(3)

]}
,

∫ 1

0

dv

v̄
φM(v)

(
C

(B1)
fT
− C(B1)

f+
RT

)
(x, v̄)

= 6

{
1 +

αsCF

4π

[
− 2 ln ν̂ − 2 ln2

(
x

µ̂

)
+ ln

(
x

µ̂

)
+
(
2 +

2

x
+

1

1− x

)
ln x

−
(
2 +

2

x
+

2

x2

)
Li2(1− x)−

π2

12

x2 − 4x− 4

x2
+ 3− 2

x

]

+
αs

4π

(
CF −

CA

2

) [(
4π2

3
− 8

)
ln

(
x

µ̂

)
+

4 + 4x

x
ln x+ 4 lnxLi2(x)−

4

x2
Li2(1− x)

−
(
4− 4

x2

)
Li3(1− x)− 8Li3(x) + 8− 4

x
− 2π2

3

(
2− 1

x
− 1

x2

)
−
(
4 +

4

x2

)
ζ(3)

]}
,

∫ 1

0

dv

v̄
φM(v)

(
C

(B1)
T1
− C(B1)

V R⊥

)
(x, v̄)

= −3
{
1 +

αsCF

4π

[
− 2 ln ν̂ − 2 ln2

(
x

µ̂

)
− ln

(
x

µ̂

)
+
(
2 +

4

x
+

2

1− x

)
ln x

−
(
2 +

2

x
+

4

x2

)
Li2(1− x)−

π2

12

x2 − 4x− 8

x2
+

9

2
− 4

x

]
(141)

+
αs

4π

(
CF −

CA

2

) [(
4π2

3
− 4

)
ln

(
x

µ̂

)
+ 2 lnx− 4(1− x)

x
ln xLi2(x) +

4

x
Li2(1− x)
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−
(
4− 4

x
− 4

x2

)
Li3(1− x) +

8(1− x)
x

Li3(x) + 1− 2π2

3
− 4

(
1 +

1

x
+

1

x2

)
ζ(3)

]}

with x = 2E/mb, µ̂ = µ/mb, ν̂ = ν/mb, and αs = αs(µ).
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