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Generalized S-matrix in Mixed Representation

Kenzo Ishikawa and Takashi Shimomura

Department of Physics, Hokkaido University, Sapporo 060-0810, Japan

A generalized scattering amplitude where momenta of incoming-particles and outgoing-
particles as well as positions of incoming-particles and outgoing-particles are specified is
formulated. Idealistic beams and idealistic measuring instruments where momenta and posi-
tions satisfy minimum uncertainty are studied with a use of minimum wave packets, coherent
states. In the present work, we show general features of the generalized scattering ampli-
tudes based on φ4 theory. We give a proof of completeness of many body states, asymptotic
behaviors in the large distance region, and factorization of the amplitudes. Despite of the
non-orthogonal properties of wave packets, we found that the probability interpretation is
verified. A differential probability depends upon the wave packet size but a total probability
that is integrated in the final states is independent from the size of final state wave packet
and becomes universal. Few body amplitudes are studied as examples.

§1. Introduction

We study scattering processes in which both of momenta and positions are si-
multaneously measured. Observations of both variables are made in recent neutrino
experiments where a distance between a source region and a detector is fixed in
a macroscopic length and the momenta of the particles are measured. Scattering
amplitudes of both variables are formulated in the present paper.

In quantum mechanics, precise values of momentum and coordinate of a particle
can not be measured simultaneously from Heisenberg uncertainty relation. So in
scattering processes, one of the variables is selected and a dependence of the scatter-
ing amplitude on this variable is studied. Normally momentum variable is selected
and the momentum dependence of the transition probability is studied and is com-
pared with a theoretical calculation. Since momenta are commuting variables, it is
possible to determine them precisely. In real experiments, however, the exact value
of momentum is difficult to measure and the momentum is measured with finite un-
certainty due to a finite resolution of a detector. When the momentum is measured
with uncertainties, simultaneous measurements of positions and momenta become
possible in experiments. The positions are measured also within finite uncertainties
due to spatial resolution of detectors. When momenta and positions are measured
with finite uncertainties, total number of information could be equivalent with the
standard case where the exact values of momenta are measured.

Since a wave function with a definite momentum is a plane wave and is invariant
under any translations, any particular position is undefined. But a wave function
with a finite uncertainty of the momentum can have a finite spatial extension and
is localized around certain position, so in this case the spatial position is defined.
So it is necessary to introduce finite uncertainty of momenta in order to define the
positions. As a price of a finite uncertainty on the momentum, it became possible
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to introduce a position where the particle is measured or is produced. The position
has also finite uncertainty. In this work, we introduce such amplitude that is defined
with finite uncertainties of momenta and positions.

The wave functions with finite spatial extensions are necessary actually for
asymptotic conditions of scattering processes to be satisfied1).2) However in many
situations of high energy physics, effects of finite wave functions have been ignorable
and it has been sufficient to use propagators of momentum variables with iǫ pre-
scription. We clarify these points and we study situations where the effects of finite
wave functions are important. To investigate these problems we define the gener-
alized S-matrix of both variables using mixed representation and we show several
features of the scattering amplitudes in which the momentum and the positions are
measured. Some implications and applications are also studied.

We formulate a position-dependent and momentum-dependent S-matrix in an
idealistic limit allowed from Heisenberg uncertainty relation. In our formalism, each
momentum and position of the initial particle and final particle satisfy minimum
uncertainty relation. This corresponds to a scattering process where coordinates as
well as momenta of the beam satisfy the minimum uncertainty relation and the mea-
surement are made with minimum uncertainty allowed from Heisenberg uncertainty
relation.

In real experiments the uncertainty of the momentum and coordinate may be
larger than those of the present work. But our idealistic scattering matrix should be
realized in a suitable method and should give new insights in quantum mechanical
scattering processes. Also extensions to non-minimum wave packets is straightfor-
ward.

Uncertainties of momenta and positions are actually determined in experiments
by resolutions of beam sources and of detectors. The resolutions depend on each ac-
celerator and detector. So we leave the uncertainties unfixed and study the scattering
matrix of this situation.

Because the momentum is conjugate to the coordinate, they satisfy the commu-
tation relation,

[x, p] = i, (1.1)

in a unit h/2π = 1 and a momentum resolution and a spatial resolution of a detector
satisfy Heisenberg’s uncertainty relation,

δp × δx ≥ 1

2
. (1.2)

A product of uncertainties becomes minimum in coherent states. The coherent
state of a variable, x,

〈x|P0,X0〉 = N1e
iP0(x−X0)−

1
2σ

(x−X0)2 (1.3)

N2
1 = (πσ)−

1
2 (1.4)

has expectation values

〈|x|〉 = X0 (1.5)



Generalized S-matrix in Mixed Representation 3

〈|x2|〉 = X0
2 +

1

2
σ (1.6)

〈|p|〉 = P0 (1.7)

〈|p2|〉 = P0
2 +

1

2σ
. (1.8)

The product between the variances of the momentum and coordinate,

(δx)2 × (δp)2 =
1

4
(1.9)

(δx)2 = 〈|x2|〉 − (〈|x|〉)2 (1.10)

(δp)2 = 〈|p2|〉 − (〈|p|〉)2 (1.11)

is independent from σ and satisfies the minimum uncertainty condition. The uncer-
tainty becomes minimum with the coherent state.

The coherent state satisfies also completeness condition,
∫

dP0dX0

2π
〈x|P0,X0〉〈P0,X0|y〉

=

∫

dP0dX0

2π
N2

1 e
iP0(x−y)e−

1
2σ

(x−X0)2−
1
2σ

(y−X0)2 (1.12)

= δ(x− y).

We use these wave functions for expressing in-states and out-states. In the
former, the state corresponds to the idealistic beam and in the latter the state
corresponds to the idealistic measuring apparatus. A transition element between the
states of idealistic beams and the states of the idealistic measurement is computed
from these matrix elements. Using them, we define the idealistic scattering matrix
in mixed representation and study its properties and applications.

Our formalism will be applied to long line experiments such as, solar neutrino
experiments, atmospheric neutrino experiments, long base line neutrino experiments,
reactor neutrino experiments, and others where systems have huge scales and posi-
tions of detectors play important roles,3),4),8)9)10).13) In addition to neutrino, scat-
tering of other weakly interacting particles where position dependence in addition to
momentum dependence are measured and give important physical informations will
be studied.

The paper is organized in the following manner. In Section 2, mathematics
on wave packets are given. Wave packet wave functions are explicitly given and
the overlap integrals and time dependent behaviors are analyzed. New uncertainty
relations between the velocity of expansions in asymptotic region and the initial
sizes are obtained. Although some of the materials in this section may be known to
experts, they are necessary and useful for later arguments. In Section 3, generalized
scattering amplitude is defined and general properties are studied. We find suitable
integration measures for both variables in which the probability interpretation is
verified. A differential probability depends upon the wave packet size but a total
probability that is integrated in the final states is independent from the size of final
state wave packet and becomes universal. Explicit examples are given in Section 4
and summary is given in Section 5.
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§2. Wave packets

2.1. Mathematical preliminaries

2.1.1. Complete sets of minimum wave packets :time independent wave packets

Let momentum eigenstates and position eigenstates be |~p〉 and |~x〉. Transforma-
tion from a momentum eigenstate to a position eigenstate is made from

〈~x|~p〉 = (2π)−
3
2 ei~p·~x, (2.1)

〈~x|~p〉∗ = 〈~p|~x〉 = 〈~x|~−p〉. (2.2)

Both sets of functions are complete sets and satisfy
∫

d~x〈~p1|~x〉〈~x|~p2〉 = δ(~p1 − ~p2), (2.3)
∫

d~p〈~x1|~p〉〈~p|~x2〉 = δ(~x1 − ~x2), (2.4)

and
∫

d~x|~x〉〈~x| = 1, (2.5)
∫

d~p|~p〉〈~p| = 1. (2.6)

The normalized coherent states in three spatial dimensions11) are defined as

〈~x|~P0, ~X0〉 = N3e
i ~P0(~x− ~X0)−

1
2σ

(~x− ~X0)2 (2.7)

N2
3 = (πσ)−

3
2 ,

〈~x|~P0, ~X0〉∗ = 〈~P0, ~X0|~x〉 = 〈~x| − ~P0, ~X0〉. (2.8)

Due to the Gaussian factor the wave function is localized around the center position
~x0 with a width

√
2σ and is an approximate eigenfunction of the momentum operator.

A constant N3 is determined from the normalization condition
∫

d3x|〈~x|~P0, ~X0〉|2

= N2
3

∫

d3xe−
1
σ
(~x− ~X0)2 (2.9)

= N2
3 (πσ)

3
2

= 1.

The same states are expressed in the momentum representation as

〈~p|~P0, ~X0〉 =
∫

d~x〈~p|~x〉〈~x|~P0, ~X0〉

= N3σ
3/2e−i~p· ~X0−

σ
2
(~P0−~p)2 , (2.10)

〈~p|~P0, ~X0〉∗ = 〈~P0, ~X0|~p〉 = 〈~p| − ~P0, ~X0〉 (2.11)
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and satisfy the normalization condition in the momentum representation.
The set of functions for an arbitrary value of σ satisfy the completeness condition

in the coordinates representation,

∫

d~P0d ~X0

(2π)3
〈~x1|~P0, ~X0〉〈~P0, ~X0|~x2〉 = δ(~x1 − ~x2), (2.12)

and the completeness condition in the momentum representation,

∫

d~P0d ~X0

(2π)3
〈~p1|~P0, ~X0〉〈~P0, ~X0|~p2〉 = δ(~p1 − ~p2). (2.13)

The completeness condition is simply expressed as

∫

d~P0d ~X0

(2π)3
|~P0, ~X0〉〈~P0, ~X0| = 1. (2.14)

Overlap between two coherent states are computed from the above definition

〈~P1, ~X1|~P2, ~X2〉

=

∫

d3x〈~P1, ~X1|~x〉〈~x|~P2, ~X2〉

= N2
3

∫

d3xei
(P1−P2)

~
x+i(

P1
~
X1−P2X2)−

1
2σ2 ((~x− ~X1)2+(~x− ~X2)2) (2.15)

= e−
1
4σ

( ~X1− ~X2)2−
σ
4
(~P1−~P2)2+

i
2
(~P1+~P2)( ~X1− ~X2).

Obviously matrix elements do not vanish and states are not orthogonal for dif-
ferent values of the momenta and coordinates. Despite of the nonorthogonality they
satisfy

∫

d~P0d ~X0

(2π)3
|~P0, ~X0〉〈~P0, ~X0|~P , ~X〉 = |~P , ~X〉. (2.16)

Hence 〈~P1, ~X1|~P2, ~X2〉 plays a role of the Dirac delta function.

2.1.2. Wave packets defined at arbitrary time

Wave packets defined at a certain time T0 is constructed when one particle energy
is known. Let E(~p) stands one particle energy of the momentum ~p,

E(~p) = (~p2 +m2)1/2 (2.17)

in the unit with c = 1, then the wave packet defined at T0 is,

〈~p|~P0, ~X0, T0〉 = 〈~p|~P0, ~X0〉e
−E(~p)

i
T0 . (2.18)

This set of functions for a given time T0 satisfy the completeness condition,

∫

d~P0d ~X0

(2π)3
〈~p1|~P0, ~X0, T0〉〈~P0, ~X0, T0|~p2〉 = 〈~p1|~p2〉. (2.19)
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The representation of these wave packets in the coordinates space is obtained by the
Fourier transformation,

〈~x|~P0, ~X0, T0〉 =
∫

d3p〈~x|~p〉〈~p|~P0, ~X0〉e
−E(~p)

i
T0 . (2.20)

It is easy to verify the completeness condition by combining Eq.(2.14) and (2.18)
with Eq.(2.20),

∫

d~P0d ~X0

(2π)3
〈~x1|~P0, ~X0, T0〉〈~P0, ~X0, T0|~x2〉 = 〈~x1|~x2〉. (2.21)

The completeness condition is simply written as

∫

d~P0d ~X0

(2π)3
|~P0, ~X0, T0〉〈~P0, ~X0, T0| = 1. (2.22)

The matrix elements of the wave packets at different times are computed as,

〈~P1, ~X1, T1|~P2, ~X2, T2〉 =
∫

d3p〈~P1, ~X1, T1|~p〉〈~p|~P2, ~X2, T2〉 (2.23)

and satisfy

∫

d~P0d ~X0

(2π)3
|~P0, ~X0, T0〉〈~P0, ~X0, T0|~P1, ~X1, T1〉 = |~P1, ~X1, T1〉, (2.24)

〈~P1, ~X1, T1|~P2, ~X2, T1〉 = 〈~P1, ~X1|~P2, ~X2〉. (2.25)

Explicit forms of these matrix elements are given later. We use these wave functions
for expanding the field operator.

2.2. Matrix elements

2.2.1. Time dependent transformation function

We calculate the matrix elements of the mixed states appeared in the previous
section. It is convenient to define time dependent transformation functions,

〈t, ~p|~P0, ~X0, T0〉
= e

E(~p)
i

(t−T0)〈~p|~P0, ~X0〉 (2.26)

= N3σ
3/2e

E(~p)
i

(t−T0)e−i~p· ~X0−
σ
2
(~p−~P0)2

and

〈t, ~x|~P0, ~X0, T0〉

=

∫

d~p〈~x|~p〉〈t, ~p|~P0, ~X0, T0〉 (2.27)

= N3(
σ

2π
)3/2

∫

d~pe
E(~p)

i
(t−T0)+i~p·~x−i~p· ~X0−

σ
2
(~p−~P0)2

= N3(
σ

2π
)3/2

∫

d~pe−iE(~p)(t−T0)+i~p·(~x− ~X0)−
σ
2
(~p−~P0)2 .
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The absolute value of the integrand becomes maximum at ~P0 but the phase becomes
large in large t − T0 region or large ~x − ~X0 region. So we integrate on ~p in two
regions separately. In the small t − T0 region we use the approximation of the
integrand around the ~P0 and in the large t− T0 region we use the approximation of
the integrand around the stationary momentum.

(A) Small T − T0 case:translational motion.
In the small t− T0 region, the integral is written and computed around ~P0 as

〈t, ~x|~P0, ~X0, T0〉

= N3(
σ

2π
)3/2

∫

d~pe−i(E(~p0)+(~p−~p0)·~v0)(t−T0)+i(~p0+(~p−~p0))·(~x− ~X0)−
σ
2
(~p−~P0)2

= Neiφ, (2.28)

N = N3e
− 1

2σ
(~x− ~X0−~v0(t−T0))2 , (2.29)

eiφ = e−iE(~P0)(t−T0)+i ~P0·(~x− ~X0), (2.30)

~v0 =
∂

∂pi
E(~p)|~p=~p0 . (2.31)

The wave packet keeps its shape and moves with a constant velocity ~v0. The center
of wave packet is ~X0 at t = T0 and is ~X0 + ~v0(t− T0) at a time t.

(B) Large t− T0: expanding wave packet.
In the large t − T0 region the momentum integration applied in the previous

method is not a good approximation any more because the phase oscillates rapidly
in this region. The phase of the integrand becomes stationary at ~PX which satisfies

∂

∂pi

(

−iE(~p)(t− T0) + i~p · (~x− ~X0)−
σ

2
(~p− ~P0)

2
)

= 0. (2.32)

The solution is obtained by expanding the momentum in 1
t−T0

and is given by,

~PX = ~P
(0)
X + ~P

(1)
X + ~P

(2)
X , (2.33)

~P
(0)
X = m

1
√

(t− T0)2 − (~x− ~X0)2
(~x− ~X0), (2.34)

~P
(1)
X = i

1

t− T0
σE(~PX)(~PX − ~P0), (2.35)

~P
(2)
X = o((t− T0)

−2). (2.36)

So the exponent of the integrand is expanded around ~PX and we have

〈t, ~x|~P0, ~X0, T0〉 (2.37)

= Ne−iE(~p)(t−T0)+i~p·(~x− ~X0),

N = N3(
1

2iγLσ + 1
)1/2(

1

2iγTσ + 1
)e−

1
2
σ(~P

(0)
X −~P0)2+δ, (2.38)

δ =
1

2
σ(~PX − ~P0)

2(2i− ξ)ξ, (2.39)
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ξ =
σE(~PX )

(t− T0)
, (2.40)

in a large t− T0 where the wave packet parameters are given by

γL =
1

2

m2|t− T0|
E(~PX )3

, (2.41)

γT =
1

2

|t− T|

E(~PX)
. (2.42)

The longitudinal component and transverse component of a momentum ~q are defined
as

~qT = ~q − ~PX
(~PX , ~q)

(~PX , ~PX)
(2.43)

~qL = ~PX
(~PX , ~q)

(~PX , ~PX)
. (2.44)

The phase factor in the Eq.(2.37) is written in leading order of |t− T0| as

e−i(t−T0)E(~PX)+i ~PX ·(~x− ~X0))

= e−im
√

(t−T0)2−(~x− ~X0)2 (2.45)

= e
−i m2

E(~PX)
(t−T0)

.

This phase factor becomes very small if the mass is very small and vanishes in the
massless case. The fact that the phase becomes small in the high energy region or in
the small mass region is a characteristic property of relativistic invariant theory.12)

The absolute magnitude of N becomes maximum when the momentum ~PX

agrees to ~P0. This is realized at a particular position of ~x , ~x0, which satisfies

~P0 = m
1

√

(t− T0)2 − (~x0 − ~X0)2
(~x0 − ~X0). (2.46)

The solution is

~x0 = ~X0 + (t− T0)
~P0

E(~P0)
, (2.47)

where ~x0 is the center of wave packet at a time t.
We write the difference of the momenta, ~PX − ~P0, in the Gaussian exponent in

Eq.(2.37) using ~x and ~x0 and a unit vector ~n1 in the ~p1 direction as,

~PX − ~P0 =
E(~P0)

t− T0
{(~x− ~x0)T +

E(~P0)
2

m2
|(~x− ~x0)L|~n1}. (2.48)

We substitute this expression into Eq.(2.37) and we have

exp(−1

2
σ(~PX − ~P0)

2) (2.49)

= exp(−1

2
σ
(E(~P0))

2

(t− T0)2
(~x− ~x0)T

2 − 1

2
σ

(E(~P0))
6

m4(t− T0)2
(~x− ~x0)L

2).
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The normalization factor in the small |t− T0| region has also

exp(− 1

2σ
(~x− ~x0)

2). (2.50)

Hence the size of the wave packet in the longitudinal direction is given as

δxL =

√

2

σ

m2|t− T0|
E(~P0)3

+
√
2σ (2.51)

and in the transverse direction is given as

δxT =

√

2

σ

|t− T0|
E(~P0)

+
√
2σ. (2.52)

A wave packet expansion is characterized by its velocity. The velocity of expansion
in the transverse direction, vT , is determined by the momentum variance as

vT =

√

2

σ

1

E(~P0)
. (2.53)

and that in the longitudinal direction,vL, is determined as

vL =

√

2

σ

m2

(E(~P0))3
. (2.54)

The velocity of expansion satisfy uncertainty relations

vT δx(t = 0)E(~P0) = 1 (2.55)

vLδx(t = 0)E(~P0) = (
m

E(~P0)
)2, (2.56)

where δx(t = 0) is the spatial extension of wave packet at t = 0. The vL is given

by multiplying m2

E(~P0)2
to the vT . This ratio becomes one in the non-relativistic

energy region where E(~p0) is nearly equal to m. Consequently wave packets expand
symmetrically in the non-relativistic region. In the relativistic region where E(~p0)
is much larger than m, the ratio between both values becomes very small and wave
packets expand an-symmetrically. The shape becomes a circular thin disk after
certain time. The wave packet size is given as a function of the propagation time, t,
for various values of the initial wave packet size in Fig(1). The δxT becomes huge
size in 500 sec.,the period between the sun and the earth.

Due to the expansion of wave packet, the normalization of the wave function is
inversely proportional to γT

√
γL in the asymptotic region.

2.2.2. Two body matrix elements

Various matrix elements of wave packets are studied in this section.
1.Matrix elements of wave packets defined at equal time
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δ 
x 

(m
)

T (sec)

xT, σ=1.0*10-11 m
xT, σ=1.0*10-10 m
xT, σ=1.0*10-9 m

xL, σ=1.0*10-11 m
xL, σ=1.0*10-10 m
xL, σ=1.0*10-9 m

Fig. 1. Time dependence of wave packet size in the physical unit is given. δT is the size in the

transverse direction given in Eq.(2.52) and δL is the size in the longitudinal direction given in

Eq.(2.51) . mc2 = 10−2eV is assumed.

The overlap between two wave packets is given as,

〈~P1, ~X1|~P2, ~X2〉 (2.57)

= e−
1
4σ

( ~X1− ~X2)2−
σ
4
(~P1−~P2)2e

i
2
(~P1+~P2)( ~X1− ~X2).

Thus the overlap decreases fast as the distance between two positions in the real space
and in the momentum become large. Matrix elements for the same coordinates is

〈~P1, ~X |~P2, ~X〉 = e−
σ
4
(~P1−~P2)2 (2.58)

and for the same momenta is

〈~P , ~X1|~P , ~X2〉 = e−
1
4σ

( ~X1− ~X2)2+i ~P1·( ~X1− ~X2). (2.59)

From these matrix elements if a particle is prepared at (~P ′, ~X ′) probabilities of
finding a particle in a region of the momentum and coordinate between (~P , ~X) and
(~P + d~P , ~X + d ~X) is given by

P =
d~Pd ~X

(2π)3
e−

1
2σ

( ~X− ~X′)2−σ
2
(~P−~P ′

2)
2

(2.60)

Heisenberg uncertainty relation between the variance in the coordinates and the
variance in the momenta is satisfied. It is important to notice that the momentum
and the coordinate is measured simultaneously.
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2. Time dependent matrix elements
The time dependent matrix element is computed by inserting the complete set of
momentum eigenstates,

〈~P1, ~X1, T1|~P2, ~X2, T2〉

=

∫

d3p〈~P1, ~X1|~p〉e
E(~p)(T1−T2)

i 〈~p|~P2, ~X2〉 (2.61)

= N3
2σ3e−

σ
4
(~P1−~P2)2

∫

d3pe
E(~p)(T1−T2)

i
+i~p·( ~X1− ~X2)−σ(~p−~P0)2 ,

~P0 =
1

2
(~P1 + ~P2).

In the small |T1 − T2| region this matrix element is given as,

〈~P1, ~X1, T1|~P2, ~X2, T2〉 (2.62)

= Ne−iE(~P0)(T1−T2)+i ~P0·( ~X1− ~X2),

N = e−
1
4σ

( ~X1− ~X2−~v(T1−T2))2−
σ
4
(~P1−~P2)2 (2.63)

where the velocity is given by

~vi =
∂E(~p)

∂pi
|~p =

~P0

E(~P )
. (2.64)

This matrix element shows that the shape of the wave packet is preserved but the
center position is moving with the velocity ~v in the small |T1 − T2| region.

The matrix element in a large |T1 − T2| region is obtained by the stationary
phase approximation in ~p integration. The stationary point ~PX is obtained from the
stationarity condition,

∂

∂pi
(i~p · ( ~X1 − ~X2)− iE(~p)(T1 − T2)− σ(~p− ~P0)

2) = 0, (2.65)

and is given as,

~PX = ( ~X1 − ~X2)
m

((T1 − T2)2 − ( ~X1 − ~X2)2)1/2
+ i

1

T1 − T2
δ ~Px, (2.66)

δ ~PX = 2σE(~PX )(~PX − ~P0). (2.67)

Using this momentum, we have

〈~P1, ~X1, T1|~P2, ~X2, T2〉
= Ñ exp(iφ), (2.68)

Ñ = (1 +
i(T1 − T2)

2σE(~PX )
)−1(1 +

i(T1 − T2)m
2

2σE(~PX )3
)−1/2 (2.69)

×e−
σ
4
{(~P1−~P2)2+4(~PX−~P0)2 ,

exp(iφ) = exp(−iE(~PX )(T1 − T2) + i ~PX( ~X1 − ~X2)) (2.70)
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= exp(im

√

(T1 − T2)2 − ( ~X1 − ~X2)2)

= exp(im2 |T1 − T2|
E(~PX)

)

In the above equations, a transverse component and a longitudinal component of the
momentum are defined as Eq.(2.43). The variances in the transverse directions and
the longitudinal direction, σT and σL, are given as

σT =
σ

1 + ( T1−T2

2σE(~PX)
)2

(2.71)

σL =
σ

1 + ( (T1−T2)m2

2σE(~PX )
3 )2

. (2.72)

Thus the variances σT and σL decrease with time. The spatial extension of the wave
packet in the transverse direction is inversely proportional to σT

1/2 and the extension
of the wave packet in the longitudinal direction is inversely proportional to σL

1/2.
Hence the wave packet expands differently in two directions and the expansion in the
longitudinal direction is determined by the absolute value of mass. For the massless
case or very small mass case, a wave packet does not expand in the longitudinal
direction, since the velocity is the constant in this case and σL is equal to σ.

The stationary momentum ~PX is proportional to the direction ~X1 − ~X2. After
the wave packet expands with time, the wave becomes almost spherical wave which
is a linear combination of many plane waves. When the measurement is made at
the position ~X2, the corresponding wave has a wave vector which is proportional to
~X1 − ~X2 and the phase which is proportional to the proper time in the asymptotic
region.

In the asymptotic region,|T1 − T2| → ∞, the matrix element behaves as,
∫

d3p〈~P1, ~X1|~p〉e
E(~p)(T1−T2)

i 〈~p|~P2, ~X2〉 = Ñ exp(iφ), (2.73)

Ñ = (
i(T1 − T2)

2σE(~PX )
)−1(

i(T1 − T2)m
2

2σE(~PX )3
)−1/2 exp(−σ

2
{(~PX − ~P1)

2 + (~PX − ~P2)
2}),

(2.74)

exp(iφ) = exp(im

√

(T1 − T2)2 − ( ~X1 − ~X2)2). (2.75)

The probability to find a particle with a momentum ~P2 at a position ~X2 is given as

P = d~P2d ~X2
1

(2π)3
|Ñ |2 exp(−σ{(~PX − ~P1)

2 + (~PX − ~P2)
2}). (2.76)

For a massless case or an extremely small mass case, in large time of |T1 − T2|,
the matrix element Eq.( 2.73) is replaced with,

∫

d3p〈~P1, ~X1|~p〉e
E(~p)(T1−T2)

i 〈~p|~P2, ~X2〉 = Ñ exp(iφ), (2.77)

Ñ = (
i(T1 − T2)

2σE(~PX )
)−1 exp(−σ

2
{(~PX − ~P1)

2 + (~PX − ~P2)
2}),
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§3. Generalized scattering matrix

We study many particle systems where one particle wave functions are described
by wave packets. A field operator is expanded by a complete set of wave packets and
coefficients become operators.

3.1. Expansion of field

A field operator φ(x) is expanded by a set of momentum eigenstates as

φ(~x, t) =

∫

d~p(〈~p|~x〉 1
√

2ω(~p)
a(~p, t) + 〈~x|~p〉 1

√

2ω(~p)
a†(~p, t)). (3.1)

Operators a(~p, t) and its conjugate a(~p, t)† are creation and annihilation operator of
the momentum ~p.

The operator A(~P0, ~X0, T0, t) and its conjugate are defined as linear combinations
of the operators a(~p, t) and its conjugate,

A(~P0, ~X0, T0, t) =

∫

d~pa(~p, t)〈~p|~P0, ~X0, T0〉 (3.2)

A†(~P0, ~X0, T0, t) =

∫

d~p〈~P0, ~X0, T0|~p〉a†(~p, t). (3.3)

Conversely a(~p, t) and its conjugate are solved from the above equations by using
Eq.(2.22 ) as

a(~p, t) =

∫

d~P0d ~X0

(2π)3
A(~P0, ~X0, T0, t)〈~P0, ~X0, T0|~p〉 (3.4)

a†(~p, t) =

∫

d~P0d ~X0

(2π)3
〈~p|~P0, ~X0, T0〉A†(~P0, ~X0, T0, t) (3.5)

The wave packet size σ in in-state is determined from the beam and the σ in out-state
is determined from the detector and they are different generally. For simplicity, we
use the same value and omit to write in most parts of the present paper. In several
places we write σ explicitly.

By substituting the above expansions to Eq.(3.2), we have

A(~P0, ~X0, T0, t) =

∫

d~P ′
0d

~X ′
0

(2π)3
A(~P ′

0, ~X
′
0, T

′
0, t)〈~P ′

0, ~X
′
0, T

′
0|~P0, ~X0, T0〉

(3.6)

A†(~P0, ~X0, T0, t) =

∫

d~P ′
0d

~X ′
0

(2π)3
〈~P0, ~X0, T0|~P ′

0, ~X
′
0, T

′
0〉A†(~P ′

0, ~X
′
0, T

′
0, t).

(3.7)

These equations show that in the space of operator A(~P0, ~X0, T0, t) the transforma-
tion function 〈~P ′

0,
~X ′
0, T

′
0|~P0, ~X0, T0〉 plays a role of Dirac’s delta function.
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By substituting the above expansion to Eq.(3.1), the same field operator is ex-
panded by a set of minimum wave packets of the center momentum, ~P0, the center
coordinates, ~X0, and the time, T0 as,

φ(~x, t) =

∫

d~P0d ~X0

(2π)3
(C(~P0, ~X0, T0; ~x)A(~P0, ~X0, T0, t) (3.8)

+C(~P0, ~X0, T0; ~x)
∗A†(~P0, ~X0, T0, t)),

C(~P0, ~X0, T0; ~x) =

∫

d~p
√

2ω(~p)
〈~P0, ~X0, T0|~p〉〈~p|~x〉 (3.9)

is obtained. It is convenient to define transformation matrices,

C̃(~P0, ~X0, T0; ~x) =

∫

d~p
√

2ω(~p)〈~P0, ~X0, T0|~p〉〈~p|~x〉. (3.10)

These matrices satisfy

C(~P0, ~X0, T0; ~x) =

∫

d~P1d ~X1

(2π)3
〈~P0, ~X0, T0|~P1, ~X1, T1〉C(~P1, ~X1, T1; ~x)

(3.11)

C̃(~P0, ~X0, T0; ~x) =

∫

d~P1d ~X1

(2π)3
〈~P0, ~X0, T0|~P1, ~X1, T1〉C̃(~P1, ~X1, T1; ~x)

(3.12)
∫

d~xC(~P0, ~X0, T0; ~x)(C̃(~P0, ~X0, T0; ~x))
∗ = 〈~P0, ~X0, T0|~P1, ~X1, T1〉.

(3.13)

3.2. Complete set of many body states

Many body state is constructed by the second quantized operators and the vac-
uum. In the momentum representation the operators a(~p) and a†(~p) satisfy

[a(~p, t), a†(~p′, t′)]δ(t − t′) = δ(~p − ~p′)δ(t − t′) (3.14)

a(~p, t)|0〉 = 0. (3.15)

A complete set of many body states are constructed from

|0〉, |~p1〉, |~p1, ~p2〉, |~p1, ~p2, ~p3〉,−, |~p1, ~p2,−,−~pN 〉, (3.16)

where

|~p1〉 = a†(~p1, t|0〉, (3.17)

|~p1, ~p2〉 = a†(~p1, t)a
†(~p2, t)|0〉, (3.18)

|~p1, ~P2,−,−~pN 〉 = Πla
†(~pl, t)|0〉. (3.19)

These particle states satisfy orthonormality conditions with Dirac delta function,

〈~p1|~p′1〉 = δ(~p1 − ~p′1), (3.20)

〈~p1, ~p2|~p′1, ~p′2〉 = δ(~p1 − ~p′1)δ(~p2 − ~p′2) + permutation. (3.21)
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Let define a projection operator I as

I =

|0〉〈0| +
∫

d~pa†(~p)|0〉〈0|a(~p) +
∫

d~p1d~p2
2!

a†(~p1)a
†(~p2)|0〉〈0|a(~p1)a(~p2)

+

∫

1

l!
Πld~pla

†(~pl)|0〉〈0|Πla(~pl) + · · · , (3.22)

and multiply I to a state

|Ψ〉 =
∫

f(~qi)Πla
†(~pl)|0〉. (3.23)

Then from Eq.(3.14) and (3.15), we have

I|Ψ〉 =
∫

Πld
3qlf(~qi)

∫

1

l!
Πld~pla

†(~pl)|0〉δ(~ql − ~pj)

=

∫

f(~qi)Πla
†(~pl)|0〉

= |Ψ〉 (3.24)

Hence the completeness condition,

I = 1 (3.25)

is satisfied. The time t is arbitrary and is omitted in the above equations.
Similarly the operators in the mixed representation satisfy

[A(~P0, ~X0, T0, t), A
†(~P ′

0, ~X
′
0, T

′
0, t

′)]δ(t− t′) = 〈~P0, ~X0, T0|~P ′
0, ~X

′
0, T

′
0〉δ(t− t′)

(3.26)

A(~P0, ~X0, T0, t)|0〉 = 0. (3.27)

The particle states defined by these operators are normalized and are not orthogonal
even though momenta and positions are different. However the same complete set is
constructed by the vacuum and creation operators in the mixed representation. Let
define an projection operator I ′,

I ′ =

|0〉〈0| +
∫

d~Pd ~X

(2π)3
A†(~P , ~X, T )|0〉〈0|A(~P , ~X, T )

+

∫

1

2

d~P1d ~X1

(2π)3
d~P2d ~X2

(2π)3
A†(~P1, ~X1, T1)A

†(~P2, ~X2, T2)|0〉〈0|A(~P2 , ~X2, T2)A(~P1, ~X1, T1)

+

∫

1

l!
Πl

d~Pld ~Xl

(2π)3
ΠlA

†(~Pl, ~Xl, Tl)|0〉〈0|ΠlA(~Pl, ~Xl, Tl) + · · · (3.28)

The time t in the operators is arbitrary and is omitted in the above equations. Let
multiply the operator I ′ to an state,

|Ψ ′〉 =
∫

Πl
d~Qld~Yl

(2π)3
F ( ~Qi, ~Yi, Si)ΠlA

†( ~Ql, ~Yl, Si)|0〉. (3.29)
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Then from Eq.(3.26) and (3.27), we have

I ′|Ψ ′〉

=

∫

Πl
d~Qld~Yl

(2π)3
F ( ~Qi, ~Yi, Si)

∫

1

L!
Πm

d~Pmd ~Xm

(2π)3
A†(~Pm, ~Xm, Tm)|0〉

〈0|A(~Pm, ~Xm, Tm)ΠlA
†( ~Ql, ~Yl, Si)|0〉

=

∫

Πl
d~Qld~Yl

(2π)3
F ( ~Qi, ~Yi, Si)Πm

d~Pmd ~Xm

(2π)3
A†(~Pm, ~Xm, Tm)〈~Pm, ~Xm, Tm| ~Ql, ~Yl, Sl〉|0〉

=

∫

Πl
d~Qld~Yl

(2π)3
F ( ~Qi, ~Yi, Si)A

†( ~Ql, ~Yl, Ti)|0〉 (3.30)

= |Ψ ′〉.

Hence the completeness condition,

I ′ = 1 (3.31)

is satisfied. The time t is arbitrary and is omitted in the above equations.

3.3. Time evolution

A unitary operator which translates a time of field operators by a finite value,
t, is given by a Hamiltonian H as,

U(t) = e
Ht
i . (3.32)

In a free scalar theory the Hamiltonian is given as,

H =

∫

d3x(
1

2
(π(x)2 +

1

2
(~∇φ(x))2 +

1

2
m2φ(x)2). (3.33)

A commutation relation between the field operator and its conjugate,

[φ(x), π(y)]δ(x0 − y0) = iδ(4)(x− y) (3.34)

leads the operators a(~p) and a†(~p) in Eq.(3.1) satisfy the equal time commutation
relation Eq.(3.14). The Hamiltonian is expressed as

H =

∫

d3pE(~p)(a†(~p)a(~p) +
1

2
) (3.35)

E(~p) =
√

~p2 +m2

and satisfy

[H, a†(~p)] = E(~p)a†(~p) (3.36)

[H, a(~p)] = −E(~p)a†(~p) (3.37)

From the above commutation relations, we have the time dependence of the creation
and annihilation operators in the momentum space,

a†(~p, t)
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= U(t)a†(~p, 0)U †(t) = e
E(~p)t

i a†(~p, 0) (3.38)

a(~p, t)

= U(t)a(~p, 0)U †(t) = e−
E(~p)t

i a(~p, 0). (3.39)

The creation and annihilation operators in the momentum space change only the
c-number phase with time. The states created by the creation operators in the
momentum space stay in the same state,

U(t)|Ψ〉 = e

∑

j E(~pj)

i
t|Ψ〉 (3.40)

|Ψ〉 = a†(~p1, 0)a
†(~p2, 0)−−−−a†(~pl, 0)|0〉.

The creation operators and annihilation operators in the mixed space satisfy
a commutation relation Eq.(3.26). The overlap function in the right hand side is
computed in the next subsection. This function does not vanish even though the
momentum or the coordinates are different. Hence the operator of one set of center
coordinate and center momentum do not commute with the operator of a different
coordinate and a different momentum, but a set of operators satisfy completeness
condition from Eq.(3.31). The operators in the mixed space evolve with time as,

A†(~P0, ~X0, T0, t) (3.41)

= U(t)A†(~P0, ~X0, T0, o)U
†(t) =

∫

d3pe
E(~p)t

i 〈~P0, ~X0, T0|~p〉a†(~p, 0)

=

∫

d~P ′
0d

~X ′
0

(2π)3

∫

d3pe
E(~p)t

i 〈~P0, ~X0, T0|~p〉〈~p|~P ′
0, ~X

′
0, T0〉A†(~P ′

0, ~X
′
0, T0, 0)

A(~P0, ~X0, T0, t) (3.42)

= U(t)A(~P0, ~X0, T0, 0)U
†(t) =

∫

d3pe−
E(~p)t

i 〈~p|~P0, ~X0, T0〉a(~p, t)

=

∫

d~P ′
0d

~X ′
0

(2π)3

∫

d3pe−
E(~p)t

i 〈~P ′
0, ~X

′
0, T0|~p〉〈~p|~P0, ~X0, T0〉A(~P ′

0, ~X
′
0, T0, 0).

The time dependent phase factor is not factored out and the states created by the
operators in the mixes space,A†(~P0, ~X0) change with time,

U(t)|Ψ ′〉 6= e

∑

j E(~pj)

i
t|Ψ ′〉 (3.43)

|Ψ ′〉 = A†(~P1, ~X1)A
†(~P2, ~X2)−−−−A†(~Pl, ~Xl)|0〉.

The matrix elements in the above equations are obtained in the next subsection and
we will see that these states are approximate eigenstates.

3.4. Generalized scattering amplitude and transition probability

A scattering amplitude where particles in the initial state of momentum ~P i
l are

prepared at positions ~Xi
l and times T i

l and particles in the final state of momentum
~P o
m are measured at positions ~Xo

m and times T o
m are described as,

Sout,in (3.44)
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= 〈~P o
1
~Xo
1T

o
1;−; ~P o

L
~Xo
LT

o
L; out|in; ~P i

1
~Xi
1T

i
1;−; ~P i

M
~Xi
MT i

M 〉,
|in; ~P i

1
~Xi
1T

i
1;−; ~P i

M
~Xi
MT i

M 〉 (3.45)

= A†(~P i
1, ~X

i
1, T

i
1)A

†(~P i
2, ~X

i
2, T

i
2)−−A†(~P i

l ,
~Xi
l , T

i
l )|0〉

|out; ~P o
1
~Xo
1T

o
1;−; ~P o

M
~Xo
MT o

M 〉 (3.46)

= A†(~P o
1 , ~X

o
1 , T

o
1 )A

†(~P o
2 , ~X

o
2 , T

o
2 )−−A†(~P o

l ,
~Xo
l , T

o
l )|0〉,

T i
l ≪ T o

l (3.47)

The differential transition probability from an initial state to a final state is given
as,

dP = Π l=L
l=1

d~Pld ~Xl

(2π)3
|Sout,in|2, (3.48)

and the total transition probability is obtained by integrating positions and momenta
as,

P =

∫

1

L!
Π l=L

l=1

d~Pld ~Xl

(2π)3
|Sout,in|2 (3.49)

In the interaction picture, the S-matrix element is computed by

〈0|ΠL
l=1A(

~Pl, ~Xl, Tl)T exp

∫

dt′
Hint(t

′)

i
ΠM

m=1A
†(~Pm, ~Xm, Tm)|0〉. (3.50)

As will be seen in examples of the next section, the differential probability de-
pends upon the sizes of wave packets in the initial states and final states. But total
probabilities become universal values that are independent from the sizes of wave
packets owing to the completeness of the many body states.

Firstly, the total probability from one initial state to a final state of fixed number
of particles become independent from the wave packet sizes of final states. To see
this, let define a generalized S-matrix of wave packet size σo of the final state and σi
of the initial state,

Sout,in(σo, σi) (3.51)

= 〈~P o
1
~Xo
1T

o
1, σo;−; ~P o

L
~Xo
LT

o
Lσo; out|in; ~P i

1
~Xi
1T

i
1σi;−; ~P i

M
~Xi
MT i

Mσi〉.

Using complexness relation of wave packets for an arbitrary wave packet size ,
the total probability from one initial state to a L-particle state of one value of σo
satisfy

PM (σ0, σi) (3.52)

=
1

L!
Π l=L

l=0

∫

d~Pld ~Xl

(2π)3
〈in;σi|S|L, ~Pl, ~Xl, out;σo〉〈L, ~Pl, ~Xlout;σo|S†|in;σi〉

=
1

L!
Π l=L

l=0

∫

d~Pld ~Xl

(2π)3
〈in;σi|S|L, ~Pl, ~Xl, out;σ

′
o〉〈L, ~Pl, ~Xl, out;σ

′
o|S†|in;σi〉

= PM (σ′
0, σi).
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Thus the total probability is independent from the size σo. The above total proba-
bility also agrees with the total probability from the initial state of wave packets to
the final states of momentum eigenstates,

PM (σ0, σi) (3.53)

=
1

L!
Π l=L

l=0

∫

d~pl
(2π)(3/2)

〈in;σi|S|L, pl, out; 〉〈L, pl, out; |S†|in;σi〉

= PM (momentumstate, σi).

In the above derivations, we have used the fact that the set of N-particle states
is complete regardless of the wave packet sizes. Thus the scattering amplitude for
any complete set of functions gives the same total probability. Conversely we can
compute the total probability by using the momentum eigenstates for the unobserved
particles as far as the boundary conditions are satisfied.

Secondly, the total probability from one state to any possible final states,

∑

L

P (in → L) (3.54)

=
∑

L

1

L!
Π l=L

l=0

∫

d~Pld ~Xl

(2π)3
〈in|S|L, ~Pl, ~Xl, σo; out〉〈L, ~Pl, ~Xl, σo; out|S†|in〉

= 〈in|SS†|in〉
= 1

becomes unity. The facts that the particle states are normalized and S is unitary
are used in the above derivation. Thus the standard probability interpretation for
the square of the absolute value of the amplitudes is applicable with the phase space
defined in Eq.(3.55) despite of the non-orthogonality of the states.

Finally an inclusive probability where a partial set of kinematical variables are
measured and other variables are unmeasured satisfies also a similar universal rela-
tion as the total probability. Namely this probability depends on the size of wave
packet of measured particles but does not depend upon the sizes of wave packets of
unmeasured particles, if the different values of wave packet sizes are used.

It is summarized as follows: The probability depends upon the sizes of wave
packets of measured particles and the probability does not depend on the variables
of unmeasured particles, such as the momenta, positions and wave packet sizes.

§4. Few body scattering

Few body scattering are studied as examples. We study a scattering process
where a particle of a momentum ~P1 which is prepared at a space and time coordinate
~X1, T1 and another particle of a momentum ~P2 which is prepared at ~X2, T2 collide
and a particle of a momentum ~P3 at ~X3, T3 and another particle of a momentum ~P4

at ~X4, T4 are measured first.
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A system with an interaction Hamiltonian,

Hint =

∫

d~x
λ

4
φ(x)4 (4.1)

is studied. This interaction is of short range, and the generalized amplitude shows
characteristic dependences on the momentum as well as coordinate.

4.1. effective sizes of the interaction region

Let substitute the expansion of the field Eq.(3.8) and the interaction Hamiltonian
Eq.(4.1) into Eq.(3.50). Then we have the scattering matrix in the first order of Hint,

〈0|Π2
l=1A(

~Pl, ~Xl, Tl)

∫

dt′
Hint(t

′)

i
Π2

m=1A
†(~Pm, ~Xm, Tm)|0〉

= λ

∫

dtd~xΠlC(~Pl, ~Xl, Tl, ~x, t)Πm(C(~Pm, ~Xm, Tm, ~x, t))∗. (4.2)

We have used the two point function of the field of mixed representation and the
field of coordinate representation,

〈0|φ(~x, t)A†(~P , ~X, T )|0〉

=

∫

d~P0d ~X0

(2π)3
C(~P0, ~X0, ~x, t)〈0|A(~P0, ~X0, t)A

†(~P , ~X, T )|0〉. (4.3)

This is written further by combining Eq.(3.8) and Eq.(3.11) as,

〈0|φ(~x, t)A†(~P , ~X, T )|0〉 = C(~P , ~X, T, ~x, t). (4.4)

In the parameter regions we are interested in this paper, this function and its partner
is approximated well with a very good accuracy as,

C(~P , ~X, T, ~x, t) =
1

√

2E(~P )
〈~P , ~X, T |~x, t〉 (4.5)

C̃(~P , ~X, T, ~x, t) =

√

2E(~P )〈~P , ~X, T |~x, t〉 (4.6)

In the following calculations we use these formula.
The coefficients C(~Pl, ~Xl, Tl, ~x, t) and their complex conjugate give the values of

wave functions at (~x, t). In the region where times Tl are close to the t, the product
of the functions is a Gaussian function around the peak in the variables ~x and t and
is expressed as

ΠlC(~Pl, ~Xl, Tl, ~x, t)Πm(C(~Pm, ~Xm, Tm, ~x, t))∗ (4.7)

= (N3)
LΠ exp (− 1

2σ
(~x− ~Xj − ~vj(t− Tj))

2)×

exp (−iE(~Pl)(t− Tl) + i ~Pl · (~x− ~Xl) + iE(~Pm)(t− Tm)− i ~Pm · (~x− ~Xm))

= N exp(− 1

2σS
(~x− ~x0)

2 − 1

2σT
(t− t0)

2)eiφ.
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The peak position ~x0 and t0 are determined as,

~x0 = σS
∑ 1

σl
~xl(t), (4.8)

t0 =
B

σT
, (4.9)

B =
∑

l

1

σl
( ~Xl − ~vlTl) · ~vl − σS(

∑

l

1

σl
~vl) · (

∑

l

1

σl
( ~Xl − ~vlT )), (4.10)

~xl(t) = ~Xl + ~vl(t− Tl) (4.11)

and the variances σS and σT are determined as

σS =
σ

4
(4.12)

σT = σ

(

∑

l

~v2l −
1

4
(
∑

l

~vl)
2

)−1

. (4.13)

The region around the peak within the spatial distance
√
σS and the time distance√

σT gives a dominant contribution to the integral. Both distances are proportional
to the σ. So if the σS is small, the σT is also small. The normalization N and the
phase φ are complicated functions of the energies, momenta, spatial positions, and
temporal positions. Explicit formulas are given in Appendix.

4.1.1. Complete measurements

So far, all particles have the same wave packet size and all particles are measured.
When this is not hold and different particles have different wave packet sizes and
some particles are not measured, the effective sizes σS and σT become different from
the above values. We study the behavior of these variances in general cases where
each wave packet has its own size and all momenta and positions are measured here.
Let specify the wave packet size of the l-th particle as σl, and its velocity as ~vl , then
the variances σS and σT are given by

σS =

(

∑

l

1

σl

)−1

(4.14)

σT =

(

∑

l

1

σl
~v2l − σS(

∑

l

1

σl
~vl)

2

)−1

(4.15)

The σS is determined mainly by the small σl of the measured particles but the σT
is determined by the σl and ~vl of the measured particles. The small σl does not
contribute if the corresponding ~vl vanishes. So the time variance σT could become
large even though the space variance σS is small. The large σt is compatible with
the small σS in this case.

The ~vl depends on the momentum ~Pl. So σT is not a constant generally but
varies in the kinematical region of the final state. The exception is the case when σl
is infinity, i.e., plane wave.
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4.1.2. Partial measurements

When some portion of particles are measured and others are unmeasured, the
probability depends on the wave packet sizes of the measured particles. When one
particle, l = 1, is measured and other particles are unmeasured,it depends on the
wave packet σ1. Hence the effective sizes of the vetcex area for computing the total
probability are obtained by letting σl = ∞ for l 6= 1

σS = σ1 (4.16)

σT = (
1

σ1
~v21 −

1

σ1
~v21)

−1 = ∞ (4.17)

The spatial size σS is determined from the σ1 of the observed particle but the tem-
poral size σT diverges.

Next, the probability when two particles are measured and other particles are
unmeasured depends on the wave packet σ1 and σ2 and velocities ~v1 and ~v2 of the
measured particles. The effective sizes are obtained by letting σl = ∞ for l 6= 1, 2

σS =

(

l=2
∑

l=1

1

σl

)−1

=
σ1σ2

σ1 + σ2
(4.18)

σT =

(

l=2
∑

l=1

1

σl
~v2l − σS(

l=2
∑

l=1

1

σl
~vl)

2

)−1

=
σ1 + σ2

(~v1 − ~v2)2
(4.19)

σT diverges if ~v1 is equal to ~v2.

4.2. Short distance scattering

When two particles are in the initial states and two particles are in the final
states and the distances | ~Xi − ~Xj| and |Ti − Tj | are small, the formula Eq.(2.28)
for the small time differences is used. We expect that the amplitude in this region
shows features of the translational motion of wave packets and other features of the
generalized scattering amplitude. For simplicity, we present the results when all the
particles have the same wave packet size. The general case is given in the Appendix.

The transition amplitude in the lowest order of Hint is given by

λ

∫

dtd~xΠlC(~Pl, ~Xl, Tl, ~x, t)Πm(C(~x, t, ~Pm, ~Xm, Tm, ~x, t))∗ (4.20)

= λN4
3Πl(2E(~Pl))

−1/2

∫

dtd~x exp
∑

{−isi{(t− Tl)E(~Pl)− ~Pl · (~x− ~Xl)}

exp
∑

{− 1

2σ
{~x− ~Xl − ~vl(t− Tl)}2},

= Ñ exp(iφ−R),

Ñ = (
4

∑

i,j(~vi − ~vj)2
)3/2Πl(2E(~Pl))

−1/2, (4.21)

φ =
∑

i

sgni(TiE(~Pi)− ~Pi · ~Xi) + φ̃, (4.22)
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R =
σ

8
(
∑

i

~Pi)
2 +

1

8σ

∑

i,j

( ~Xi − ~viTi − ~Xj + ~vjTj)
2

+
2σ

∑

i,j(~vi − ~vj)2
(
∑

E(~Pi)si)
2 + R̃, (4.23)

where sgni is a signature

sgni = +1(in− state),−1(out− state) (4.24)

and φ̃ and R̃ are small quantities and are given in the appendix for most general
case. In the above equations, the dominant part in the phase, φ, is the standard
phase of the plane wave of the momentum ~p0 and energy E0. From the first factor
and third factor of normalization R, the momentum conservation is approximately
satisfied with the variance, (σ8 )

−1/2 and the energy conservation is also approximately

satisfied with the variance ( 2σ
∑

i,j(~vi−~vj)2
)−1/2. The second factor of the R shows that

the particle trajectories coincide and coordinates ~Xi − ~viTi are the same within the
distance (8σ)1/2. So particles follow classical trajectories.

From the amplitudes, we define new transition probabilities that depend upon
the coordinates in addition to the momenta and argue on an asymptotic condition
of the standard scattering amplitude which depends upon the momenta.

The transition probability is a square of the absolute value of the amplitude and
is expressed as

P (~P3, ~X3, T3; ~P4, ~X4, T4) (4.25)

=
1

2!

1

(2π)3
(Ñ)2 exp(−σ

4
(
∑

i

~Pi)
2)

exp(− 1

4σ

∑

i,j

( ~Xi − ~viTi − ~Xj + ~vjTj)
2 − 4σ

∑

i,j(~vi − ~vj)2
(
∑

E(~Pi)si)
2).

This has a peak at the positions where the conditions

~Xi − ~viTi − ~Xj + ~vjTj = 0 (4.26)

are satisfied. Thus the peak is along a line

~Xi = ~viTi + ~C, (4.27)

where ~C is a constant vector. These positions depend upon the times and the time
Ti are arbitrary in the present formalism, hence it is possible to choose the times in
such manner that these positions are inside of detectors if the detector is located in
the direction of the momentum. Then total probability integrated on this direction
is measured. To see this probability, let us decompose the position vector of the
i-th particle into the longitudinal component and the transverse components with
respects to the velocity ~vi,

~Xi = ~viSi + ~ni
TX

i
T , (4.28)

~vi · ~ni
T = 0, (4.29)

~ni
T · ~ni

T = δij . (4.30)
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The volume element is written as

d ~Xj = dSjdXi
T |vi|. (4.31)

Using these variables, the Gaussian factor of the differential probability is written
as

∑

ij

( ~Xi − ~viT i − ~Xj + ~vjT j)2 (4.32)

=
∑

ij

(~vi(Si − T i) + ~ni
TX

i
T − ~vj(Sj − T j)− ~nj

TX
j
T )

2

=
∑

ij

(~viS̃i + ~ni
TX

i
T − ~vj S̃j − ~nj

TX
j
T )

2,

S̃i = Si − T i. (4.33)

Thus the longitudinal variable Si is combined with time T i and it is possible to
replace the longitudinal coordinate with the time variable in Eq.(4.34).

The transition probability is given by an integration of a differential probability
over the momenta and coordinates as,

P =

∫

Πm=4
m=3

d~Pmd ~Xm

(2π)3
P (~P3, ~X3, T3; ~P4, ~X4, T4). (4.34)

In the ordinary detectors neither the the precise value of the time T i nor the lon-
gitudinal coordinatesXi

L are measurable but the total probability P (~P 3, ~X3
T , ;

~P 4, ~X4
T )

integrated on these variables is measured.
To obtain this probability,the variable Si is integrated. Then the probability

P (~P 3, ~X3
T , T

3; ~P 4, ~X4
T , T

4) is found and is written as

P (~P 3, ~X3
T , T

3; ~P 4, ~X4
T , T

4) (4.35)

=

∫

Πm=4
m=3d ~X

m
L

1

(2π)1/2
P (~P 3, ~X3, T 3; ~P 4, ~X4, T 4)

= P (~P 3, ~X3
T , ;

~P 4, ~X4
T ).

The time dependence disappears in P (~P 3, ~X3
T , T

3; ~P 4, ~X4
T , T

4).
Next, we make a connection of the present result with a standard scattering ma-

trix where an asymptotic condition is satisfied and only the momenta are observed.
In the ordinary scattering processes the initial time Ti is −∞ and the final time is
+∞. The distance | ~Xi− ~Xj| in the initial state is proportional to |~vi−~vj|Ti and the

distance | ~Xi− ~Xj| in the final state is proportional to |~vi−~vj|Ti. They become large
except |~vi − ~vj | = 0. When we define this case from a limit |~vi − ~vj| → 0 where a
large T limit is taken first, a distance between two wave packets becomes infinity and
the wave packets at T → ±∞ do not overlap each others. The theory thus defined
satisfies asymptotic condition.
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By integrating the coordinates, we have the momentum dependent differential
probability,

P (~P3, ; ~P4) = N exp(−σ

4
(
∑

i
~Pi)

2 − 4σ
∑

i,j(~vi − ~vj)2
(
∑

Eisi)
2) (4.36)

N =
1

2
(4σπ)32−3/2 exp(− 3

8σ
( ~X1 − ~v1T1 − ~X2 + ~v2T2)

2). (4.37)

In Eq.(4.36), the normalization factor N is a constant which does not depend on
the final state and the momentum dependent probability is almost the same as the
probability of the plane waves. By integrating momenta of the final states,we have
the total probability.

If the initial state and the final state have different values of the σ, we use the
formula given in the appendix. Let σo be the size for all final particles and the σi be
the size for all initial particles, the probability is given as,

P (~P3, ; ~P4) = N exp(−σs(
∑

i
~Pi)

2 − σt(
∑

Eisi)
2) (4.38)

N =
1

2
(4π)3(

σiσo
2

)3/2 exp(− 3

8σi
( ~X1 − ~v1T1 − ~X2 + ~v2T2)

2), (4.39)

σs =
1

2
(
1

σo
+

1

σi
)−1, (4.40)

σt = (Σj

~v2j
σj

− ~v20
σs

)−1. (4.41)

4.3. Long distance scatterings:first order

When one of the times, T1, is in a position far away from other times Tl(l 6= 1),
and the classical trajectories meet at around a time near Tl(l 6= 1) and coordinate
~Xl(l 6= 1), the dominant contribution in the integration comes from the region near
~Xl(l 6= 1) and the position ~Xl − ~vlTl. One of the time difference t − Tl becomes
large and asymptotic expansion for the corresponding C(~P1, ~X1, T1|t, ~x) is used. The
transition matrix element becomes,then,

〈0|Π2
l=1A(

~Pl, ~Xl, Tl)

∫

dt′
Hint(t

′)

i
Π2

m=1A
†(~Pm, ~Xm, Tm)|0〉

= λ

∫

dtd~xΠlC(~Pl, ~Xl, Tl|~x, t)ΠmC(~Pm, ~Xm, Tm|~x, t)∗

= λ(
1

2E(~P1)2E(~P2)2E(~P3)2E(~P4)
)1/2

∫

dtd~xN∗
asyme

iE(~P
( ~X1−~x)

)(t−T1)−i ~P1(~x− ~X1)

N3
∗e−

1
2σ

(~x− ~X2−~v2(t−T2))2+iE(~P2)(t−T2)−i ~P2(~x− ~X2) (4.42)

×Πj=3,4N3e
− 1

2σ
(~x− ~Xj−~vj(t−Tj))

2−iE(~Pj)(t−Tj )+~Pj(~x− ~Xj)

where Nasym and the stationary momentum ~P ~X1−~x are

Nasym = N3(
1

2iγL
σ + 1

)1/2(
1

2iγT
σ + 1

)e−
1
2
σ(~PX−~P1)2 (4.43)
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~P ~X1−~x = ( ~X1 − ~x)
m

((T1 − t)2 − ( ~X1 − ~x)2)1/2

Substituting these expressions, we have

λ

∫

dtd~xΠlC(~Pl, ~Xl, Tl|~x, t)ΠmC(~Pm, ~Xm, Tm|~x, t)∗

= λ(
1

2E(~P1)2E(~P2)2E(~P3)2E(~P4)
)1/2(|N3|2)2(

1
2iγL
σ + 1

)1/2(
1

2iγT
σ + 1

)

∫

dtd~xeim
√

(t−T1)2−(~x− ~X1)2 exp(−1

2
σ
(E(~P0))

2

(t− T1)2
(~x− ~x0)T

2 − 1

2
σ

(E(~P1))
6

m4(t− T1)2
(~x− ~x0)L

2)

Ñeiφ̃ exp (− 1

2σs
(~x− ~x′0)

2 − 1

2σt
(t− t′0)

2), (4.44)

where the center position ~x0 is given by

~x0 = ~X1 + (t− T1)
~P1

E(~P1)
, (4.45)

and the normalization , the phase, the variances, and center positions are defined by
diagonalizing the products of wave packets,

Ñeφ̃ exp (− 1

2σs
(~x− ~x′0)

2 − 1

2σt
(t− t′0)

2) = N3
∗e−

1
2σ

(~x− ~X2−~v2(t−T2))2+iE(~P2)(t−T2)−i ~P2(~x− ~X2)

×Πj=3,4N3e
− 1

2σ
(~x− ~Xj−~vj(t−Tj))

2−iE(~Pj)(t−Tj )+~Pj(~x− ~Xj). (4.46)

If the variances σs and σt are small values, the amplitude is further written as,

λ(
1

2E(~P1)2E(~P2)2E(~P3)2E(~P4)
)1/2(|N3|2)2(

1
2iγL
σ + 1

)1/2(
1

2iγT
σ + 1

)

eim
√

(t′0−T1)2−(~x′

0−
~X1)2 exp(−1

2
σ
(E(~P0))

2

(t′0 − T1)2
(~x′0 − ~x0)T

2 − 1

2
σ

(E(~P1))
6

m4(t′0 − T1)2
(~x′0 − ~x0)L

2
)

Ñeiφ̃(2σsπ)
3
2 (2σt)

1
2 . (4.47)

This expression of the amplitude shows that the wave packet expands and has the
phase factor which is proportional to the square root of the proper time.

When we integrate on the variables ~x, t first in Eq.(4.42), we have,

λ

∫

dtd~xΠlC(~Pl, ~Xl, Tl|~x, t)ΠmC(~Pm, ~Xm, Tm|~x, t)∗ (4.48)

= (|N3|2)2(
2σπ

3
)4/2(

1

< (~v)2 > − < ~v >2
)1/2Ñ

∫

d~pe−iE(~p)(T1−δT1)+i~p( ~X1+δ ~X1)−
σ′

2
(~p−~P1−δ ~P1)2 ,

< ~v >=
1

3

∑

j=1,3

~vj , (4.49)

< ~v2 >=
1

3

∑

j=1,3

(~vj)
2, (4.50)
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where δT1, δX1, and δ ~P1 are of the order O(1). Ñ is a normalization factor which
depends upon kinematical variables. The integration on the variable ~p is carried
with a use of the stationary phase approximation as in the previous cases.

Finally we have the amplitude,

λ

∫

dtd~xΠlC(~Pl, ~Xl, Tl|~x, t)ΠmC(~Pm, ~Xm, Tm|~x, t)∗

= (|N3|2)2(
2σπ

3
)4/2(

1

< (~v)2 > − < ~v >2
)1/2Ñ (4.51)

e
−im

√
(T1−δT1)2−( ~X1+δ ~X1)2−

1
2
σ

(E(~P1))
2

(T1−δT1)
2 (

~X1−δ ~X1)T
2
− 1

2
σ

(E(~P1))
6

m4(T1−δT1)
2 (

~X1−δ ~X1)L
2

.

Thus the amplitude depends on the large variables ~X1 and T1 in a simple form.
The normalization factor is inversely proportional to T1 and the phase factor is

proportional to the mass and the proper time m

√

c2(T1)2 − ( ~X1)2.

4.4. Long distance scattering :second order

Next we study the few body scattering amplitude in the second order of interac-
tion where there is one propagator D(t, ~x). The propagator connects two interaction
points,(~x1, t1) and (~x2, t2),

〈0|Π3
l=1A(

~Pl, ~Xl, Tl)

∫

dt1dt2
T (Hint(t1)Hint(t2))

i2
Π3

m=1A
†(~Pm, ~Xm, Tm)|0〉

= λ2

∫

dt1d~x1

∫

dt2d~x2Vg(t1, ~x1, ~Pl, · · · )D(t1 − t2, ~x1 − ~x2)Vg(t2, ~x2, ~P2, · · · )∗,

Vg(t1, ~x1, ~Pl, · · · ) = ΠlC(~Pl, ~Xl, Tl|~x1, t1), (4.52)

Vg(t2, ~x2, ~P2, · · · )∗ = ΠmC(~Pm, ~Xm, Tm|~x2, t2)∗.

The propagator D(t1 − t2, ~x1 − ~x2) is given by,

D(t1 − t2, ~x1 − ~x2) = i

∫

d3p

(2π)32E(~p)
eip(x1−x2)|

E(~p)=
√

~p2+m2 . (4.53)

We study the configuration when times Tl(l = 1, 3) are close each others and times
Tm(m = 4, 6) are close each others but the first group of times is separated from
the second group of times with a large distance. Regions when the time variable
t1 is near Tl(l = 1, 3) and the other time variable t2 is near Tm(m = 4, 6) or the
opposite give the dominant contribution to the amplitude in the time integration.
Since the distance |t1 − t2| is large, on mass shell kinematical region where p2 = m2

is satisfied is dominant in the momentum integration. Using the stationary phase
approximation in the momentum integration, we replace the propagator with the
asymptotic form that is obtained at the stationary momentum ~px

Dasym(t1 − t2, ~x1 − ~x2) = iNx
1

(2π)32E(~px)
eipx(x1−x2)|E(~px) (4.54)

Nx = (
1

iγL
)1/2(

1

iγT
), (4.55)
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γT =
1

2

(t1 − t2)

E(~px)
, γL = γT

m2

E(~px)2
, (4.56)

where the momentum ~px is given as,

~p~x = (~x1 − ~x2)
m

((t1 − t2)2 − (~x1 − ~x2)2)1/2
. (4.57)

We substitute these expressions into the amplitude and we have,

λ2

∫

dt1d~x1dt2d~x2Vg(t1, ~x1, ~Pl, )D(t1 − t2, ~x1 − ~x2)Vg(t2, ~x2, ~Pm, ~Xm, Tm)∗

= λ

∫

dt1d~x1Vg(t1, ~x1, ~Pl, ~Xl, Tl)e
ipxx1 |E(~px)iNx(

1

(2π)32E(~px)
)1/2 (4.58)

λ

∫

dt2d~x2Vg(t2, ~x2, ~Pm, ~Xm, Tm)∗e−ipxx2 |E(~px)(
1

(2π)32E(~px)
)1/2.

In integrating (ti, ~xi), i = 1, 2 the momentum ~px of Eq.(4.57) becomes a constant
vector, if these variables are in the narrow regions. Then the total amplitude is
proportional to the product of the two amplitudes and is inversely proportional
to the spreading of the wave packet γT . The total probability is proportional to
the product of probabilities of two processes and is inversely proportional to γT

2.
Interference effect of propagating wave is negligible in this case. Thus in the present
regime the intermediate state is treated as an observed particle. Hence the single
particle treatment of the intermediate state is applicable. Using the argument of
Ref.7) and,6) the effect of the wave packets are described by the ensemble of the
energy eigenstates in this regime.

In an opposite situation where these integration variables cover wide regions
and ~px is not a constant vector but varies with these variables (t1, ~x1) or (t2, ~x2),
the naive single particle treatment is not justified. The total amplitude becomes
linear combinations of the amplitudes of the various values of the momentum, ~px,
and become different from the product of two amplitudes. We split the integration
regions into small regions Vl and obtain the momentum ~pll

′

x defined from a pair of
these regions. Using them we have the amplitude,

λ2

∫

dt1d~x1dt2d~x2Vg(t1, ~x1, ~Pl, )D(t1 − t2, ~x1 − ~x2)Vg(t2, ~x2, ~Pm, ~Xm, Tm)∗

=
∑

ll′

λ

∫

Vl

dt1d~x1Vg(t1, ~x1, ~Pl, ~Xl, Tl)e
ipll

′

x x1 |E(~pll′x )iNx(
1

(2π)32E(~pll′x )
)1/2 (4.59)

λ

∫

Vl′

dt2d~x2Vg(t2, ~x2, ~Pm, ~Xm, Tm)∗e−ipll
′

x x2 |E(~pll′x )(
1

(2π)32E(~pll
′

x )
)1/2.

The total amplitude is a linear combination of the amplitudes of different momentum
~pll

′

x . Probability may show the interference of the different intermediate momentum.
In this situation we are able to write the amplitude in a different manner. Let

write the propagator as,

D(t1 − t2, ~x1 − ~x2) = −2i

∫

d3xD(t1 − t, ~x1 − ~x)Ḋ(t− t2, ~x− ~x2). (4.60)
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We substitute this expression and we have the amplitude,

λ2

∫

dt1d~x1dt2d~x2Vg(t1, ~x1, ~Pl, )D(t1 − t2, ~x1 − ~x2)Vg(t2, ~x2, ~Pm, ~Xm, Tm)∗

= −2iλ2

∫

d~x

∫

dt1d~x1Vg(t1, ~x1, ~Pl, ~Xl, Tl)D(t1 − t, ~x1 − ~x) (4.61)

×
∫

dt2d~x2Ḋ(t− t2, ~x− ~x2)Vg(t2, ~x2, ~Pm, ~Xm, Tm)∗.

Using the stationary phase approximation in the momentum integration, we
have the propagators,

Dasym(t1 − t, ~x1 − ~x) = iN (1)
x

1

(2π)32E(~p
(1)
x )

eip
(1)
x (x1−x)|

E(~p
(1)
x )

(4.62)

N (1)
x = (

1

iγ
(1)
L

)1/2(
1

iγ
(1)
T

), (4.63)

γ
(1)
T =

1

2

(t1 − t)

E(~px)
, γ

(1)
L = γ

(1)
T

m2

E(~P
(1)
x )2

(4.64)

~P
(1)
~x = (~x1 − ~x)

m

((t1 − t)2 − (~x1 − ~x)2)1/2
(4.65)

and

Ḋasym(t− t2, ~x− ~x2) = i2N (2)
x

1

(2π)32
eip

(2)
x (x−x2)|

E(~p
(2)
x )

(4.66)

N (2)
x = (

1

iγ
(2)
L

)1/2(
1

iγ
(2)
T

), (4.67)

γ
(2)
T =

1

2

(t− t2)

E(~p
(2)
X )

, γ
(2)
L = γ

(2)
T

m2

E(~PX)2
(4.68)

~P
(2)
~x = (~x− ~x2)

m

((t− t2)2 − (~x− ~x2)2)1/2
. (4.69)

The amplitude becomes,

−2iλ2

∫

d~xT1( ~Xl, ~Pl, · · · , ; ~x, t)N (1)
x N (2)

x T2( ~Xm, ~Pm, · · · , ; ~x, t),

(4.70)

T1( ~Xl, ~Pl, · · · , ; ~x, t) =
1

2(2π)3
(4.71)

×
∫

dt1d~x1Vg(t1, ~x1, ~Pl, ~Xl, Tl)
1

E(~p
(1)
x )

eip
(1)
x (x1−x)|

E(~p
(1)
x )

,

T2( ~Xm, ~Pm, · · · , ; ~x, t)∗ = 1

2(2π)3
(4.72)

×
∫

dt2d~x2e
ip

(2)
x (x−x2)|

E(~p
(2)
x )

Vg(t2, ~x2, ~Pm, ~Xm, Tm)∗.
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This amplitude agrees with the previous form if the momentum ~p
(1)
x and ~p

(2)
x are

regarded as constant vectors. If these momenta are not constant vectors, the ~x

dependence and ~xj , j = 1, 2 dependence of ~p
(j)
x , j = 1, 2 are taken explicitly in the

time and coordinate integrations.

4.5. Factorization

Factorization is a general feature of the amplitudes obtained in the previous
sections. Namely the amplitudes are factorized into amplitudes of sub-processes
that depend on close space and time coordinates ~Xi1 , Ti1 where |Ti1 − Tj1 | ≈ 0

and ~Xi2 , Ti2 where |Ti2 − Tj2 | ≈ 0 and |Ti1 − Ti2 | ≈ ∞. In these short distance
amplitudes, Gaussian momentum integration around minimal are applied and am-
plitudes become almost equivalent to ordinary scattering amplitudes. On the other
hand, the long distance parts have particular forms that are proportional to the
inverses of time difference |Ti1 − Ti2 | in the small mass case and to the phases

exp(im

√

(Ti1 − Ti2)
2 − ( ~Xi1 − ~Xi2)

2) , where Ti1 and
~Xi1 are average values of times

and positions in a group 1 and Ti2 and ~Xi2 are average values of times and positions
in a group 2. The former behavior is due to the expansion of the wave packets. It is
possible to decompose amplitudes in general many body amplitudes in which space
time coordinates are separated into many groups. Each amplitude for the process
of close coordinates is almost equivalent to ordinary scattering amplitude and the
amplitudes for the long distance parts have the particular normalization and the
phase factor of the above forms.

§5. Summary

We have defined the generalized scattering amplitudes which have dependence
upon particle’s positions in addition to the particle’s momenta. Idealistic cases where
the positions and the momenta satisfy minimum uncertainty relations are studied
by the use of minimum wave packets, coherent states.

Since wave packets are linear combinations of eigenfunctions of free Hamiltonian,
wave packets change with time. Wave packets move with a constant group velocity
and expand. These behaviors occur since each wave of definite momentum has
a different velocity. They reveal a particle’s nature and a wave nature of wave
packets. Expansion is slow and has been irrelevant to any observations in high energy
experiments till recently. They are relevant in some long distance experiments and
its effects are analyzed in the present work. We found also that the expansion speeds
satisfy new uncertainty relations expressed in Eq.(2.55) and Eq.(2.56).

Several relations which must be satisfied for the transition amplitudes and prob-
abilities are proven. Completeness of the mixed representation is proven and is used
for defining the weight of phase space integral for both variables of momenta and
coordinates. The particle states which are specified by momenta and positions are
normalized to unity and Dirac delta function is unnecessary for the normalization of
states in mixed representation since the states are normalized but are not extended
in space. The whole transition probability from one state to states of a fixed particle
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number becomes an intrinsic value which is independent from the wave packet sizes
and the total transition probability from one state to all possible states becomes
unity under the use of the present measure of phase space even though states of
different momenta and positions are nonorthogonal. So probability interpretation
holds.

Several examples in few body scatterings are analyzed and amplitudes are ex-
plicitly computed in the lowest order and the second order of the interaction Hamil-
tonian. Translational motions and expansions of wave packets are taken into account
explicitly and their effects are seen in the manifest manner. It is shown that scatter-
ing amplitudes which have long distance part in addition to short distance part are
factorized. The asymptotic condition for the ordinary scattering, which is satisfied by
the addition of iǫ in propagators in the standard s-matrix, is realized automatically
in the present formalism by taking a suitable limit of the present amplitude.

Applications to neutrino long distance experiments,10)13) and others will be given
in separate works.
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Appendix A

Generalized vertices of arbitrary wave packets

The product of the wave functions at (t, ~x) are the Gaussian function of the
space time coordinates (t, ~x),

ΠjN
∗
j e

− 1
2σj

(~x− ~Xj−~vj(t−Tj))2+iE(~pj)(t−Tj )−i~pj(~x− ~Xj)

×ΠlNle
− 1

2σl
(~x− ~Xl−~vl(t−Tl))

2−iE(~pl)(t−Tl)+i~pl(~x− ~Xl) (A.1)

= ΠjN
∗
j ΠlNle

− 1
2σs

(~x−~x0(t))2−
1

2σt
(t−t0)2eR+iφ.

Wave packet parameters in the spatial directions and the temporal direction are

1

σs
= Σj

1

σj
(A.2)
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1

σt
= Σj

1

σj
~v2j −

1

σs
~v20 (A.3)

and the central values of the space-time coordinates are

~x0(t) = ~v0t+ ~x0(0), (A.4)

~v0 = σsΣj
1

σ j
~vj, (A.5)

~x0(0) = σs(Σj
1

σj
~̃Xj − i(Σj(±)~pj)) (A.6)

t0 = σt(
1

σs
~v0 · ~x0 −Σj

1

σj
~vj · ~̃Xj + iΣj(±)E(~pj)) (A.7)

~̃Xj = ~Xj − ~vjTj. (A.8)

The real part determines the magnitude of the amplitude and is composed of the
trajectory terms and the energy-momentum terms. The former give constraints on
the particle trajectories and the latter give constraints the total energy and total
momentum and are determined as,

R = Rtrajectory +Rmomentum, (A.9)

Rtrajectory = −Σj
1

2σj
~̃Xj

2
+ 2σs(Σj

1

2σj
~̃Xj)

2 + 2σt(Σj(~v0 − ~vj) ~̃Xj)
2,

(A.10)

Rmomentum = −σt
2
(Σj(±)(E(~pj)− ~v0~pj))

2 − σs
2
(Σj(±)~pj)

2. (A.11)

The phase factor is composed of the primary term which expresses the energy mo-
mentum dependent phase and the secondary terms which are due to finite sizes of
wave packets and are determined as,

φ = φ0 + φ1, (A.12)

φ0 = Σj(±)(~pj ~Xj − E(~Pj)Tj), (A.13)

φ1 = −2σt(Σj
1

2σj
(~v0 − ~vj) ~̃Xj)(Σ(±)~v0(~Pj −E(~pj)))

−2σs(Σj(±)~pj)(Σj
1

2σj
~̃Xj). (A.14)
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