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Fermion self-energies and pole masses at two-loop order in a general renormalizable

theory with massless gauge bosons

Stephen P. Martin
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and Fermi National Accelerator Laboratory, PO Box 500, Batavia IL 60510

I present the two-loop self-energy functions and pole masses for fermions in an arbitrary renormal-
izable field theory, in the approximation that vector bosons are treated as massless. The calculations

are done simultaneously in the mass-independent MS, DR, and DR
′
renormalization schemes, with

a general covariant gauge fixing, and treating Majorana and Dirac fermions in a unified way. As
examples, I discuss the two-loop strong interaction corrections to the gluino, neutralino, chargino,
and quark pole masses in minimal supersymmetry. All other two-loop contributions to the fermion
pole masses in softly-broken supersymmetry can also be obtained as special cases of the results given
here, neglecting only the electroweak symmetry breaking scale compared to larger mass scales in
two-loop diagrams that involve W or Z bosons.
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I. INTRODUCTION

The CERN Large Hadron Collider and a future
electron-positron linear collider should discover and, to-

gether, thoroughly explore [1] the mechanism behind
electroweak symmetry breaking. The small ratio of the
scale of electroweak symmetry breaking to the Planck
mass scale suggests that supersymmetric particles will
also be found at these next-generation experiments. If
so, then a primary goal of both experimental and theo-
retical research will be to unravel the mechanism behind
supersymmetry breaking. The most important clues will
be the masses of the superpartners and the Higgs scalar
bosons. Therefore it is important to be able to compute
the physical masses accurately in terms of the underly-
ing Lagrangian parameters, including at least the leading
two-loop effects.

In this paper, I will present results for the two-loop
contributions to fermion self-energy functions and physi-
cal pole masses in a general renormalizable field theory, in
terms of the running renormalized couplings and masses.
The approach used is intended to be as flexible as pos-
sible, so that a common framework of calculation can
be used to treat both Majorana and Dirac fermions, in-
cluding chiral interactions, in both supersymmetric and
non-supersymmetric theories. As a simplifying approxi-
mation, vector bosons will be treated as massless in the
two-loop parts in this paper. In the Standard Model and
extensions of it that do not enlarge the gauge group, this
amounts to neglecting the effects of electroweak symme-
try breaking compared to the masses of heavier particles
in two-loop diagrams that haveW and/or Z boson prop-
agators. (The effects of non-zero W and Z boson masses
can be included as usual in the one-loop part.) This will
likely be a good approximation for the pole masses of
the top quark and most of the supersymmetric particles,
because of the exclusions of light squarks, sleptons, and
gluinos already achieved by the CERN LEP e+e− collider
[2] and the Fermilab Tevatron pp collider [3, 4].

The mass defined by the position of the complex pole
in the propagator is a gauge-invariant and renormaliza-
tion scale-invariant quantity [5]-[13]. The pole mass in
principle does suffer from ambiguities [14] due to infrared
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physics associated with the QCD confinement scale, but
these are probably relatively too small to cause a practi-
cal problem for strongly-interacting superpartners. The
pole mass should be closely related in a calculable way to
the kinematic observable mass reported by experiments
[15]. In recent years, many important higher-order cal-
culations of self-energy functions and pole masses in the
Standard Model have been performed, including two-loop
[16]-[19] and three-loop [20]-[21] contributions for quarks,
and two-loop results for electroweak vector bosons [22]-
[28]. In addition, there are important two-loop results
for top and bottom quarks [29–31] and the gluino [32]
in low-energy supersymmetry. The general treatment of
the present paper will confirm and extend the results of
those papers.
The notation and strategy used here are very similar to

those found in my previous papers on scalar self-energy
functions and pole masses at two-loop order in a general
theory [33, 34]. In the next section, I review the conven-
tions used, discuss the formalism for self-energy functions
and pole masses for fermions in a two-component nota-
tion, and review the methods used for numerical evalua-
tion of the required two-loop integrals.

II. NOTATIONS AND SETUP

A. Notations for fields, interactions, and indices

In this paper, the spacetime metric tensor is

ηµν = diag(−1,+1,+1,+1). (2.1)

I use a two-component notation for fermions, as in
ref. [35] and similar to that found in ref. [36]. Left-handed
spinor fields ψα always carry undotted spinor indices

α, β, . . . = 1, 2, and right-handed spinor fields ψ†
α̇ always

carry daggers and dotted spinor indices α̇, β̇, . . . = 1, 2,
with

ψ†
α̇ ≡ (ψα)

†. (2.2)

However, the spinor indices are most often suppressed,
as described below. The spinor indices are raised and
lowered with the two-index antisymmetric symbol with
components ǫ12 = −ǫ21 = ǫ21 = −ǫ12 = 1, and the
same set of sign conventions for the corresponding dotted
spinor indices. Thus

ψα = ǫαβψ
β , ψα = ǫαβψβ , (2.3)

ψ†
α̇ = ǫα̇β̇ψ

†β̇ , ψ†α̇ = ǫα̇β̇ψ†

β̇
. (2.4)

Spinor bilinears can be combined to form vector quanti-
ties using the matrices σµαβ̇ and σα̇β

µ defined by

σ0 = σ0 =

(
1 0
0 1

)
, σ1 = −σ1 =

(
0 1
1 0

)
,

σ2 = −σ2 =

(
0 −i
i 0

)
, σ3 = −σ3 =

(
1 0
0 −1

)
. (2.5)

When constructing Lorentz tensors from fermion fields,
the heights of spinor indices must be consistent in the
sense that lowered indices must only be contracted with
raised indices. As a convention, indices contracted like
α
α and α̇

α̇, can be suppressed. For example,

ξχ ≡ ξαχα, (2.6)

ξ†χ† ≡ ξ†α̇χ
†α̇, (2.7)

ξ†σµχ ≡ ξ†α̇σ
µα̇βχβ , (2.8)

ξσµχ† ≡ ξασµ

αβ̇
χ†β̇ . (2.9)

The behavior of the spinor products under hermitian con-
jugation (for quantum field operators) or complex conju-
gation (for classical fields) is as follows:

(ξχ)† = χ†ξ†, (2.10)

(ξσµχ†)† = χσµξ†, (2.11)

(ξ†σµχ)† = χ†σµξ. (2.12)

The following identities also hold:

[σµσν + σνσµ]α
β
= −2ηµνδβα, (2.13)

[σµσν + σνσµ]α̇β̇ = −2ηµνδα̇
β̇
, (2.14)

Tr[σµσν ] = Tr[σµσν ] = −2ηµν . (2.15)

In terms of two-component fermion notation, a single
Dirac fermion is given in the chiral representation by

Ψ =

(
ξα
χ†α̇

)
, (2.16)

where ξ is the two-component fermion that describes
the left-handed part of Ψ and χ is the two-component
fermion that describes the conjugate of the right-handed
part of Ψ. The Dirac matrices are

γµ =

(
0 σµ
σµ 0

)
. (2.17)

In this paper, I consider a general renormalizable
field theory, containing† a set of real scalars Ri, two-
component Weyl fermions ψI , and vector bosons V µ

a .
Scalar field indices are i, j, k, . . ., fermion flavor indices
are I, J,K, . . ., and a, b, c, . . . run over the adjoint rep-
resentation of the gauge group, while µ, ν, . . . are space-
time vector indices. Repeated indices of all types are
summed over unless otherwise noted.
The masses and couplings are evaluated by taking the

fields in the Lagrangian in a squared-mass eigenstate ba-
sis, after the Higgs fields are assumed to have been ex-
panded around their vacuum expectation values as deter-
mined by the loop-corrected effective potential (so that

† A complex scalar can be written as two real scalars, and a Dirac
fermion as two Weyl fermions, so this entails no loss of generality.



3

tadpole graphs do not contribute). The kinetic part of
the renormalized tree-level Lagrangian is then written as:

Lkin = −
1

2
∂µRi∂

µRi −
1

2
m2

iR
2
i

−iψ†Iσµ∂µψI −
1

2
(mIJψIψJ + c.c.)

−
1

2
(∂µV

a
ν − ∂νV

a
µ )∂

µV ν
a −

1

2
m2

aV
a
µ V

µ
a . (2.18)

The non-gauge interactions of the scalar and fermion
fields are given by the renormalized Lagrangian:

Lint = −
1

6
λijkRiRjRk −

1

24
λijkmRiRjRkRm

−
1

2
(yJKiψJψKRi + c.c.). (2.19)

where λijk and λijkm are real couplings and the Yukawa
couplings yJKi are symmetric complex matrices on the
indices J,K, for each i. Raising or lowering of fermion
indices implies complex conjugation of the Lagrangian
parameters, so

mIJ ≡ (mIJ)∗, yJKi ≡ (yJKi)∗. (2.20)

Actually, without loss of generality, mIJ can be taken to
have only real and non-negative entries, but the index
height convention is maintained for clarity. The heights
of real scalar and vector indices have no significance, and
in any given equation are chosen for convenience.
The scalar squared massesm2

i and the fermion squared
masses mIKm

KJ = m2
Iδ

J
I are taken to have been diag-

onalized (by an appropriate rotation of the fields if nec-
essary). However, the fermion mass matrix mIJ is not
necessarily diagonal; instead it must have non-zero en-
tries only when I and J label two-component fermions
with the same squared mass and in conjugate represen-
tations of the unbroken gauge group. In particular, when
dealing with Dirac fermions, it is most useful to work in
a basis in which the corresponding matrix mIJ contains

2× 2 blocks of the form

(
0 m
m 0

)
on the diagonal.

Next consider the gauge interactions of the theory. Let
T a be the Hermitian generator matrices of the gauge
group for a (possibly reducible) representation R. They
are labeled by an adjoint representation index a corre-
sponding to the vector bosons of the theory, V µ

a . They
satisfy [T a, T b] = ifabcT c, where fabc are the totally anti-
symmetric structure constants of the gauge group. Then
results below are written in terms of the invariants:

(T aT a)i
j

= C(i)δji , (2.21)

Tr[T aT b] = I(R)δab, (2.22)

facdf bcd = C(G)δab, (2.23)

which define the quadratic Casimir invariant for the rep-
resentation carrying the index i, the total Dynkin index

summed over the representation R, and the Casimir in-
variant of the adjoint representation of the group, re-
spectively. When the gauge group contains several sim-
ple or U(1) factors with distinct gauge couplings ga,
the corresponding invariants are written Ca(i), Ia(R),
and Ca(G). The normalization is such that for SU(N),
C(G) = N and each fundamental representation has
C(i) = (N2 − 1)/2N and contributes 1/2 to I(R) for
each Weyl fermion or complex scalar. For a U(1) gauge
group, C(G) = 0 and a representation with charge q has
C(i) = q2 and contributes q2 to I(R). The two-loop re-
sults given below will be presented in terms of these group
theory invariants for the representations carried by the
scalar and fermion degrees of freedom.
The preceding paragraph applies to the two-loop parts,

in which the gauge group is treated as unbroken and
m2

a = 0. In the one-loop parts of the self-energy func-
tions and the fermion pole masses, the effects of non-zero
vector boson masses will be retained. This means that
the gauge group cannot be treated as unbroken, and the
interactions of the vector bosons with the fermions have
a more general form. They can be written as:

Lgauge = −gaJI V a
µ ψ

†IσµψJ (2.24)

where gaJI are couplings obtained by going to the tree-
level mass eigenstate basis for the fermions and vector
bosons. In the special case of an unbroken gauge sym-
metry, one has gaJI = ga[T

a]I
J .

The computations in this paper are performed with
a vector boson propagator obtained by covariant gauge
fixing in the usual way:

−iδab
(
ηµν + kµkνLm2

a

) [
1/(k2 +m2

a)
]
, (2.25)

where for later convenience I use the notation

Lxf(x) ≡ [f(x)− f(ξx)]/x, (2.26)

with the appropriate limit for massless vectors:

lim
x→0

[Lxf(x)] = (1 − ξ)f ′(0). (2.27)

Here ξ = 0, 1, and 3 correspond to the Landau, Feynman,
and Fried-Yennie gauge-fixing choices, respectively. The
self-energy functions depend on ξ, but the pole masses
do not. For the two-loop computations below, the vector
bosons are treated as massless, so the propagators are

−iδab[η
µν/k2 − (1 − ξ)kµkν/(k2)2]. (2.28)

Infrared divergences are dealt with by first computing
with a finite vector boson mass, and later taking the
massless vector limit. All contributions involving gauge
boson loops implicitly include the corresponding contri-
butions of ghost loops.

B. Regularization and renormalization

For each Feynman diagram, the integrations over in-
ternal momenta are regulated by continuing to d = 4−2ǫ
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dimensions, according to

∫
d4k → (2πµ)2ǫ

∫
ddk. (2.29)

In the dimensional regularization scheme, the vector
bosons also have d components, while in the dimensional
reduction scheme they have d ordinary components and
2ǫ additional components known as epsilon scalars. This
means that the 4-dimensional metric in the vector prop-
agator of eq. (2.25) is replaced by

ηµν/(k2 +m2
a) → gµν/(k2 +m2

a)

+ĝµν/(k2 +m2
a +m2

ǫ ), (2.30)

where gµν is projected onto a formal d–dimensional sub-
space, and ĝµν onto the complementary 2ǫ–dimensional
subspace, and m2

ǫ is the epsilon scalar squared mass pa-
rameter. (In general, there should be a different m2

ǫ for
each a, but it should cause no confusion to omit the ad-
ditional subscript in this paper.) Counterterms for the
one-loop sub-divergences and the remaining two-loop di-
vergences are added, according to the rules of minimal
subtraction, to give finite results, which then depend on
the renormalization scale Q given by

Q2 = 4πe−γµ2. (2.31)

Logarithms of dimensionful quantities are always written
in terms of

lnX ≡ ln(X/Q2). (2.32)

The resulting renormalization schemes are known as MS
[37] and DR [38], respectively, for the cases in which ĝµν

is not and is included.
The epsilon-scalar squared mass parameterm2

ǫ appear-
ing in the DR scheme is unphysical. One could set m2

ǫ

equal to zero at any fixed renormalization scale, but
then it will be non-zero at other renormalization scales,
since it has a non-homogeneous beta function [39]. Fur-
thermore, under renormalization group evolution it will
feed into the ordinary scalar squared masses in the DR
scheme. Fortunately, a redefinition (given in [40] at one-
loop order, and at two-loop order in [41]) of the ordi-
nary scalar squared masses completely removes the de-
pendence on the unphysical epsilon scalar squared mass
m2

ǫ from the renormalization group equations and the
equations relating tree-level parameters to physical ob-
servables in softly-broken supersymmetric theories. The

resulting DR
′
scheme [40] is therefore an appropriate one

for realistic models based on supersymmetry, such as the
Minimal Supersymmetric Standard Model (MSSM). In
this paper, calculations will be presented simultaneously
in all three schemes, using the following two notational

devices. First,

δMS ≡

{
1 for MS

0 for DR, DR
′
.

(2.33)

Second, terms that involve the unphysical parameter m2
ǫ

should be construed below to apply only to the DR

scheme, not the DR
′
or MS schemes.

C. Self-energy functions and pole masses for

fermions using two-component notation

The full, loop-corrected Feynman propagators with
four-momentum pµ are denoted as shown in Fig. 1, which
defines CJ

I , D
IJ , and DIJ as functions of the masses and

couplings of the theory and of the external momentum
invariant

s ≡ −p2. (2.34)

They are given, starting from tree level, as

DIJ = mIJ/(p2 +m2
I) + . . . (2.35)

DIJ = mIJ/(p
2 +m2

I) + . . . (2.36)

CJ
I = δJI /(p

2 +m2
I) + . . . (2.37)

with no sum on I in each case. In general, DIJ is a
complex symmetric matrix, and DIJ is obtained from
it by taking the complex conjugate of all Lagrangian
parameters appearing in its calculation, but not taking
the complex conjugates of loop integral functions, whose
imaginary (absorptive) parts correspond to fermion de-
cay widths to multi-particle intermediate states.
The computation of the full propagators can be or-

ganized, as usual in quantum field theory, in terms of
one-particle irreducible self-energy functions. These are
defined in Fig. 2. (The same remark applies for the re-
lationship between the functions ΩIJ , ΩIJ as for DIJ ,
DIJ .) Then one has the matrix diagrammatic identity
shown in fig. 3. To write this in terms of the self-
energy functions, denote N×N matrices (where N is the
number of two-component left-handed fermion degrees of
freedom, so that I, J = 1, 2, . . .N):

CI
J = (CT )J I ≡ CJ

I , (2.38)

DIJ ≡ DIJ , DIJ ≡ DIJ , (2.39)

ΣI
J = (ΣT )J I ≡ ΣJ

I , (2.40)

ΩIJ ≡ ΩIJ , ΩIJ ≡ ΩIJ , (2.41)

mIJ ≡ mIJ , mIJ ≡ mIJ , (2.42)

Then fig. 3 implies that the propagator functions obey
the 4N × 4N matrix equation:
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βα̇

IJ

p

ip·σα̇β CJ
I

α β̇

I J

p

ip·σαβ̇ CJ
I

α̇ β̇

I J

−iδα̇β̇ DIJ

α β

I J

−iδα
β DIJ

FIG. 1: The full loop-corrected propagators for fermions in two-component notation are associated with functions CJ
I (s),

DIJ (s), and DIJ (s), as shown. Here s = −p2 is the external momentum invariant. The shaded boxes represent the sum of all
connected Feynman diagrams, and the external legs are included.

p

β̇α

J I

ip·σαβ̇ ΣJ
I /s

p

βα̇

I J

ip·σα̇βΣJ
I /s

α β

I J

−iδα
βΩIJ

α̇ β̇

I J

−iδα̇β̇ΩIJ

FIG. 2: The self-energies for fermions in two-component notation are associated with functions ΣI
J (s) (for chirality-preserving

propagation), and ΩIJ (s) and ΩIJ (s) (for chirality-violating propagation), defined as shown. Here s = −p2 is the external
momentum invariant. The shaded circles represent the sum of all one-particle irreducible, connected Feynman diagrams, and
the external legs are not included.
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FIG. 3: The diagrammatic version of the fermion self-energy identity in eq. (2.43).

(
ip·σCT −iD

−iD ip·σC

)
=

(
ip·σ [1−ΣT /s] i[m+Ω]

i[m+Ω] ip·σ [1−Σ/s]

)−1

. (2.43)

The pole mass can be found most easily by considering the rest frame of the fermion, in which the space components of
the external momentum pµ vanish. This reduces the spinor-index dependence to a triviality. It follows from eq. (2.43)
that the (complex, if the fermion is unstable) poles of the full propagator are the solutions for s of the non-linear
N ×N matrix eigenvalue equation:

Det
[
s1− (1−Σ/s)−1(m +Ω)(1−ΣT /s)−1(m +Ω)

]
= 0. (2.44)

This can be solved iteratively by first expanding each of the self-energy functions in a Taylor series in s about the
tree-level squared masses m2

I . Write the one- and two-loop contributions to the self-energy functions as:

ΣJ
I =

1

16π2
Σ

(1)J
I +

1

(16π2)2
Σ

(2)J
I + . . . (2.45)

ΩIJ =
1

16π2
Ω(1)IJ +

1

(16π2)2
Ω(2)IJ + . . . (2.46)
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ΩIJ =
1

16π2
Ω

(1)
IJ +

1

(16π2)2
Ω

(2)
IJ + . . . (2.47)

where the superscripts (1) and (2) refer to the one- and two-loop contributions respectively. Then define the quantities
(with sums on I ′, J ′, K, and K ′, but not on I or J):

Π
(1)J
I = Σ

(1)J
I m2

J/s+mII′Σ
(1)I′

J′ mJJ′

/s+mII′Ω(1)JI′

+Ω
(1)
IJ′m

JJ′

, (2.48)

Π
(2)J
I = Σ

(2)J
I m2

J/s+mII′Σ
(2)I′

J′ mJJ′

/s+mII′Ω(2)JI′

+Ω
(2)
IJ′m

JJ′

+
{
Σ

(1)K
I Σ

(1)J
K m2

J +mII′Σ
(1)I′

K Σ
(1)K
J′ mJJ′

+ Σ
(1)K
I mKK′Σ

(1)K′

J′ mJJ′

}
/s2 +Ω

(1)
IKΩ(1)JK

+
{
Σ

(1)K
I Ω

(1)
KJ′m

JJ′

+Σ
(1)K
I mKK′Ω(1)JK′

+mII′Σ
(1)I′

K Ω(1)JK +Ω
(1)
IKΣ

(1)K
J′ mJJ′

}
/s, (2.49)

which play a role analogous to the self-energy functions of scalar or vector bosons, with eq. (2.44) taking the form

Det
[
sδJI −

(
m2

Iδ
J
I +

1

16π2
Π

(1)J
I +

1

(16π2)2
Π

(2)J
I

)]
= 0. (2.50)

It follows that the pole squared masses for the fermions are given by (with no sum on the index I):

spole,I ≡M2
I − iΓIMI = m2

I +
1

16π2
Π

(1)I
I +

1

(16π2)2

[
Π

(2)I
I +Π

(1)I
I

(∂Π(1)I
I

∂s

)
+
∑

J 6=I

Π
(1)J
I Π

(1)I
J /(m2

I −m2
J)
]
, (2.51)

where one must put s = m2
I + iε (note with an infinites-

imal positive imaginary part; this is necessary to give
the correct negative imaginary part to the pole mass)
everywhere on the right-hand side. Terms that are of
three-loop order have been dropped.
In writing eq. (2.51), it is assumed that the fermions

that mix with each other are not degenerate, so that the
last term is part of a well-defined perturbative expansion.
If (nearly) degenerate fermions do mix, then the appro-
priate version of (nearly) degenerate perturbation theory
should be used instead to solve eq. (2.50). One can also
obtain a solution iteratively, by first taking s = m2

I as the
argument of the self-energy functions in eq. (2.50), solv-
ing for s to obtain the next value for the argument Re(s)
of the self-energy functions, and repeating until sufficient
numerical convergence is obtained. However, despite the
formal gauge invariance of the pole mass, this iterated
procedure does not give a gauge-invariant result at two-
loop order when massless gauge bosons are present, be-
cause of the branch cut in the one-loop self-energy that
is present except in the Fried-Yennie gauge ξ = 3. This
is because the pole mass result obtained by the iterative
procedure is not formally analytic in the gauge coupling
for ξ 6= 3, as explained in more detail in the analogous
case for scalars in ref. [34].
For taking the limit s → m2

I in eq. (2.51), it is conve-
nient to define (again with no sum on I):

Π̃
(2)
I ≡ lim

s→m2
I

[
Π

(2)I
I +Π

(1)I
I

(∂Π(1)I
I

∂s

)]
, (2.52)

since this combination is independent of the gauge-fixing
parameter ξ, and free of logarithmic divergences of the

form ln(1−s/m2
I) that do appear in the individual terms

when there are massless gauge bosons. The results for
one-loop self-energy functions and pole squared mass

contributions Σ
(1)J
I , Ω(1)IJ , Ω

(1)
IJ , and Π

(1)J
I , will be re-

viewed in section III. The two-loop contributions to

Σ
(2)J
I , Ω(2)IJ , Ω

(2)
IJ , and Π̃

(2)
I are presented in section IV.

D. The Feynman diagrams

The one-loop and two-loop Feynman diagrams needed
for the results just mentioned are shown in fig. 4. They
are labeled according to a system described in ref. [33].

E. Two-loop basis integrals

The results below will be written in terms of two-
loop integral basis functions, following the notation given
in [42, 43]. The one-loop and two-loop integral func-
tions are reduced using Tarasov’s algorithm [44, 45] to a
set of basis integrals A(x), B(x, y), I(x, y, z), S(x, y, z),
T (x, y, z), U(x, y, z, u), and M(x, y, z, u, v), correspond-
ing to the Feynman diagram topologies shown in fig. 5.
Here x, y, z, u, v are squared mass arguments. The addi-
tional arguments s and Q2 are not shown explicitly, be-
cause they are the same for all functions in a given equa-
tion. The functions A(x) and I(x, y, z) do not depend on
the external momentum at all, with A(x) = x(lnx − 1)
and I(x, y, z) = S(x, y, z)|s=0. Each of the basis integral
functions contains counterterms that render them ultra-
violet finite. The precise definitions, and the calculation
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BFS BFV MSSFFS MSFFSF VFSSSS

VSFFFS VFSSFF YFSSS MV SFFS MV FFSF

MSSFFV VFSSSV VSFFFV VV FFFS YFSSV (∗)

VV FFFV MV FFV F MV V FFV VFV V V V YFV V V (∗)

VFV V FF VFV V SS YFV V S

FIG. 4: The one-loop and two-loop Feynman diagrams for fermion self-energies in the approximation of this paper. Dashed
lines stand for scalars, solid lines for fermions, and wavy lines for massless vector bosons. Diagrams involving vector boson loops
also include the corresponding ghost loop diagrams. The label for each diagram refers to a corresponding function obtained as
the result of the two-loop integration. All counterterm diagrams for each diagram are included in these functions, rendering
them ultraviolet finite. For each diagram, fermion mass insertions (indicated by adding a bar to the corresponding subscript F
in the name) are to be made in all possible ways. Diagrams indicated by (∗) vanish identically in the MS scheme with massless
vector bosons, but not in the DR scheme with non-zero epsilon-scalar masses.

x

A(x)

x

y

B(x, y)

x

y

z

I(x, y, z)

x

y

z

S(x, y, z)

x

y

z

T (x, y, z)

x
y z

u

U(x, y, z, u)

x y

z u

v

M(x, y, z, u, v)

FIG. 5: Feynman diagram topologies for the one- and two-loop self-energy basis integrals used in this paper. The letters
x, y, z, u, v refer to the squared masses of the corresponding propagators. The dot on the T diagram means that T (x, y, z) =
−∂S(x, y, z)/∂x. The precise definitions of these Euclideanized scalar integral functions, and methods for their evaluation, are
described in [42, 43].
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of these functions and a publicly available computer code
(TSIL) for that purpose, are described in [42, 43].
Several shorthand notations will be used. As explained

in refs. [42, 43], it is convenient to define:

T (0, y, z) ≡ lim
x→0

[T (x, y, z) +B(y, z)lnx], (2.53)

V (x, y, z, u) ≡ −∂U(x, y, z, u)/∂y. (2.54)

A prime on a squared-mass argument of a function is used
to denote a derivative with respect to that argument, so:

B(x, y′) ≡ ∂B(x, y)/∂y, (2.55)

I(x′, y, z) ≡ ∂I(x, y, z)/∂x. (2.56)

A prime on a function itself indicates a derivative with
respect to the external momentum invariant s, so:

B′(x, y) ≡ ∂B(x, y)/∂s (2.57)

U ′(x, y, z, u) ≡ ∂U(x, y, z, u)/∂s. (2.58)

But, note that below primes also appear on fermion in-
dices, where they are used for a completely different pur-
pose; fermions are labeled by indices I and I ′ if they
combine to have a common squared mass m2

I .
Each of the functions in eqs. (2.53)-(2.58) can be

reduced to combinations of other basis functions; see
eqs. (3.1), (3.22), (4.14), (4.26), (5.3), and (6.18) of
ref. [42] for formulas in the notation of the present pa-
per. However, this explicit reduction is not done below
in cases where it would needlessly complicate the expres-
sions.

III. FERMION SELF-ENERGY FUNCTIONS

AND POLE MASSES AT ONE-LOOP ORDER

In this section, I review the results at one-loop order.
The chirality-preserving and chirality-violating parts of
the fermion self-energy function are respectively:

Σ
(1)J
I = yIKiy

JKiBFS(m
2
K ,m

2
i ) + gaKI gaJK BFV (m

2
K ,m

2
a), (3.1)

Ω(1)IJ = yIKiyJK
′imKK′BFS(m

2
K ,m

2
i )− gaIK gaJK′mKK′

BFV (m
2
K ,m

2
a), (3.2)

where

BFS(x, y) = [(y − x− s)B(x, y) −A(x) + A(y)]/2, (3.3)

BFS(x, y) = −B(x, y), (3.4)

BFV (x, v) = (v − x− s)B(x, v) +A(v)−A(x) + sδMS + Lv

[
{v(s+ x)− (x− s)2}B(x, v) + (x− s)A(v)

]
/2, (3.5)

BFV (x, v) = 3B(x, v) + ξB(x, ξv) − 2δMS. (3.6)

These follow from direct evaluation of the first two Feynman diagrams, with and without mass insertions, in fig. 4. [The

result for Ω
(1)
IJ follows from eq. (3.2) by replacing the coupling parameters by their complex conjugates.] Here I have

allowed for the possibility of general fermion-fermion-vector interactions and vector masses arising from spontaneous
breaking of gauge symmetries. In the following, I will also make use of:

B′
FS(x, y) = [(y − x− s)B′(x, y)−B(x, y)]/2, (3.7)

B′
FS

(x, y) = −B′(x, y), (3.8)

where the prime means a derivative with respect to s.
In the special case of massless vectors corresponding to unbroken gauge symmetries, one makes the simplifications:†

gaKI gaJK BFV (m
2
K ,m

2
a) → g2aCa(I)δ

J
I BFV (m

2
I , 0), (3.9)

−gaIK gaJK′mKK′

BFV (m
2
K ,m

2
a) → g2aCa(I)m

IJBFV (m
2
I , 0), (3.10)

where

BFV (x, 0) = ξ[s− (x+ s)B(0, x)−A(x)] − s+ sδMS, (3.11)

BFV (x, 0) = (3 + ξ)B(0, x)− 2δMS. (3.12)

† The minus sign in eq. (3.10) occurs because the left-handed
fermions with labels K and K

′ necessarily occur in conjugate
representations of the unbroken gauge group.
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It follows that the quantity defined in eq. (2.48) is

Π
(1)J
I = Π

(1,0)J
I +Π

(1,1)J
I , (3.13)

where the contribution from scalar exchange is:

Π
(1,0)J
I = (yIKiy

JKim2
J +mII′yI

′KiyJ′Kim
JJ′

)BFS(m
2
K ,m

2
i )/s

+(mII′yI
′KiyJK

′imKK′ + yIKiyJ′K′im
KK′

mJJ′

)BFS(m
2
K ,m

2
i ), (3.14)

and the contribution from vector exchange is:

Π
(1,1)J
I = (gaKI gaJK m2

J +mII′gaI
′

K gaKJ′ )BFV (m
2
K ,m

2
a)/s

−(mII′gaI
′

K gaJK′mKK′

+ gaKI gaK
′

J′ mKK′mJJ′

)BFV (m
2
K ,m

2
a). (3.15)

In the special case of massless vector bosons, the latter expression reduces to:

Π
(1,1)J
I = 2g2aCa(I)δ

J
Im

2
I [BFV (m

2
I , 0)/s+BFV (m

2
I , 0)], (3.16)

with the well-known limit:

lim
s→m2

I

Π
(1,1)J
I = 2g2aCa(I)δ

J
Im

2
I [5− δMS − 3lnm2

I ]. (3.17)

The above expressions can be inserted in the formula eq. (2.51) to obtain the one-loop contribution (and part of the
two-loop contribution) to the pole squared mass.

IV. FERMION SELF-ENERGY FUNCTIONS AND POLE MASSES AT TWO-LOOP ORDER

In this section I present the results for the two-loop contributions to the self-energy functions and pole squared
masses of fermions as defined in fig. 2. The results are divided into parts due to diagrams with no vector propagators,
one vector propagator, and two vector propagators, with superscripts (2, 0), (2, 1) and (2, 2) respectively:

Σ
(2)J
I = Σ

(2,0)J
I +Σ

(2,1)J
I +Σ

(2,2)J
I , (4.1)

Ω(2)IJ = Ω(2,0)IJ +Ω(2,1)IJ +Ω(2,2)IJ , (4.2)

Π̃
(2)
I = Π̃

(2,0)
I + Π̃

(2,1)
I + Π̃

(2,2)
I . (4.3)

In the next three subsections, these results are expressed in terms of the basis integrals. The two-loop fermion pole
squared masses then follow by plugging eq. (4.3) and the results of section III into eq. (2.51).

A. Contributions from diagrams with no vector propagators

The fermion self-energy functions following from the two-loop diagrams of fig. 4 without vector or ghost propagators
are:

Σ
(2,0)J
I = yILiy

JKj
[
yKNiy

LNjMSFFSF (m
2
i ,m

2
K ,m

2
L,m

2
j ,m

2
N)

+yK
′NiyL′NjmKK′mLL′

MSFFSF (m
2
i ,m

2
K ,m

2
L,m

2
j ,m

2
N )

+yKNiyL′N ′jm
LL′

mNN ′

MSFFSF (m
2
i ,m

2
K ,m

2
L,m

2
j ,m

2
N )

+yK
′NiyLN ′jmKK′mNN ′MSFFSF (m

2
j ,m

2
L,m

2
K ,m

2
i ,m

2
N)

+λijkyKL′km
LL′

MSSFFS(m
2
j ,m

2
i ,m

2
K ,m

2
L,m

2
k) + λijkyK

′LkmKK′MSSFFS(m
2
i ,m

2
j ,m

2
L,m

2
K ,m

2
k)
]

+yIKiy
JKj

{1
2
λijkkYFSSS(m

2
K ,m

2
i ,m

2
j ,m

2
k) +

1

2
λiknλjknVFSSSS(m

2
K ,m

2
i ,m

2
j ,m

2
k,m

2
n)

+Re[yLNiyLNj]VFSSFF (m
2
K ,m

2
i ,m

2
j ,m

2
L,m

2
N )
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+Re[yLNiyL
′N ′jmLL′mNN ′ ]VFSSFF (m

2
K ,m

2
i ,m

2
j ,m

2
L,m

2
N )
}

+yIKiy
JLi
[
yKNjyLNjVSFFFS(m

2
i ,m

2
K ,m

2
L,m

2
N ,m

2
j)

+yK′Njy
L′NjmKK′

mLL′VSFFFS(m
2
i ,m

2
K ,m

2
L,m

2
N ,m

2
j)

+yKNjyL
′N ′jmLL′mNN ′VSFFFS(m

2
i ,m

2
K ,m

2
L,m

2
N ,m

2
j)

+yK′NjyLN ′jm
KK′

mNN ′

VSFFFS(m
2
i ,m

2
L,m

2
K ,m

2
N ,m

2
j)
]
, (4.4)

Ω(2,0)IJ = yILiyJKj
[
yKNiyLN ′jm

NN ′

MSFFSF (m
2
i ,m

2
K ,m

2
L,m

2
j ,m

2
N )

+yKNiy
L′NjmLL′MSFFSF (m

2
i ,m

2
K ,m

2
L,m

2
j ,m

2
N ) + yK

′NiyLNjmKK′MSFFSF (m
2
j ,m

2
L,m

2
K ,m

2
i ,m

2
N)

+yK
′NiyL

′N ′jmKK′mLL′mNN ′MSFFSF (m
2
i ,m

2
K ,m

2
L,m

2
j ,m

2
N)

+λijkyKLkMSSFFS(m
2
i ,m

2
j ,m

2
L,m

2
K ,m

2
k) + λijkyK

′L′kmKK′mLL′MSSFFS(m
2
i ,m

2
j ,m

2
L,m

2
K ,m

2
k)
]

+yIKiyJK
′jmKK′

{1
2
λijkkYFSSS(m

2
K ,m

2
i ,m

2
j ,m

2
k) +

1

2
λiknλjknVFSSSS(m

2
K ,m

2
i ,m

2
j ,m

2
k,m

2
n)

+Re[yLNiyLNj]VFSSFF (m
2
K ,m

2
i ,m

2
j ,m

2
L,m

2
N )

+Re[yLNiyL
′N ′jmLL′mNN ′ ]VFSSFF (m

2
K ,m

2
i ,m

2
j ,m

2
L,m

2
N )
}

+yIKiyJLi
[
yKNjyLN ′jm

NN ′

VSFFFS(m
2
i ,m

2
K ,m

2
L,m

2
N ,m

2
j)

+yKNjy
L′NjmLL′VSFFFS(m

2
i ,m

2
K ,m

2
L,m

2
N ,m

2
j)

+yK
′NjyLNjmKK′VSFFFS(m

2
i ,m

2
L,m

2
K ,m

2
N ,m

2
j)

+yK
′NjyL

′N ′jmKK′mLL′mNN ′VSFFFS(m
2
i ,m

2
K ,m

2
L,m

2
N ,m

2
j)
]
, (4.5)

where the functions corresponding to each diagram are:

MSFFSF (x, y, z, u, v) =
[
(ux− yz − sv)M(x, y, z, u, v) + yU(u, y, x, v) + zU(x, z, u, v)− uU(y, u, z, v)

−xU(z, x, y, v)− S(x, u, v) + S(y, z, v) + sB(x, z)B(y, u)
]
/2, (4.6)

MSFFSF (x, y, z, u, v) =
[
(x+ u− v − s)M(x, y, z, u, v)− U(y, u, z, v)− U(z, x, y, v) +B(x, z)B(y, u)

]
/2, (4.7)

MSFFSF (x, y, z, u, v) =
[
(x− y − v)M(x, y, z, u, v) + U(x, z, u, v)− U(y, u, z, v) +B(x, z)B(y, u)

]
/2, (4.8)

MSFFSF (x, y, z, u, v) =
[
(u− y − s)M(x, y, z, u, v) + U(x, z, u, v)− U(z, x, y, v)

]
/2, (4.9)

MSFFSF (x, y, z, u, v) =
[
(x− y − z + u)M(x, y, z, u, v) + U(x, z, u, v) + U(u, y, x, v)− U(y, u, z, v)

−U(z, x, y, v)
]
/2, (4.10)

MSFFSF (x, y, z, u, v) = −M(x, y, z, u, v), (4.11)

and

MSSFFS(x, y, z, u, v) =
[
(v − z − u)M(x, y, z, u, v) + U(z, x, y, v) + U(u, y, x, v)−B(x, z)B(y, u)

]
/2, (4.12)

MSSFFS(x, y, z, u, v) =
[
(x− z − s)M(x, y, z, u, v)− U(y, u, z, v) + U(u, y, x, v)

]
/2, (4.13)

MSSFFS(x, y, z, u, v) = −M(x, y, z, u, v), (4.14)

and

YFSSS(x, y, z, u) = A(u) [A(y)−A(z) + (y − x− s)B(x, y)− (z − x− s)B(x, z)] /2(y − z), (4.15)

YFSSS(x, y, y, u) = A(u) [1 +A(y)/y +B(x, y) + (y − x− s)B(x, y′)] /2, (4.16)

YFSSS(x, y, z, u) = A(u) [B(x, z)−B(x, y)] /(y − z), (4.17)

YFSSS(x, y, y, u) = −A(u)B(x, y′), (4.18)

and

VFSSSS(x, y, z, u, v) =
[
(s+ x− y)U(x, y, u, v)− (s+ x− z)U(x, z, u, v)− I(y, u, v) + I(z, u, v)

]
/2(y − z), (4.19)
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VFSSSS(x, y, y, u, v) =
[
(y − x− s)V (x, y, u, v)− U(x, y, u, v)− I(y′, u, v)

]
/2, (4.20)

VFSSSS(x, y, z, u, v) =
[
U(x, y, u, v)− U(x, z, u, v)

]
/(y − z), (4.21)

VFSSSS(x, y, y, u, v) = −V (x, y, u, v), (4.22)

and

VSFFFS(x, y, z, u, v) =
[
(s− x+ y)(y + u− v)U(x, y, u, v)− yS(x, u, v) + (y + u− v)I(y, u, v)

+[A(u)−A(v)][(s − x+ y)B(x, y) +A(y)]
]
/4(y − z) + (y ↔ z), (4.23)

VSFFFS(x, y, y, u, v) =
[
(s− x+ y)(v − y − u)V (x, y, u, v) + (s− x+ 2y + u− v)U(x, y, u, v)

−S(x, u, v) + (y + u− v)I(y′, u, v) + I(y, u, v)

+[A(u)−A(v)][(s − x+ y)B(x, y′) +B(x, y) + 1 +A(y)/y]
]
/4, (4.24)

VSFFFS(x, y, z, u, v) =
[
yU(x, y, u, v)− zU(x, z, u, v)

]
/(y − z), (4.25)

VSFFFS(x, y, y, u, v) = U(x, y, u, v)− yV (x, y, u, v), (4.26)

VSFFFS(x, y, z, u, v) =
[
(y + u− v)U(x, y, u, v) + [A(u)−A(v)]B(x, y)

]
/2(y − z) + (y ↔ z), (4.27)

VSFFFS(x, y, y, u, v) = [U(x, y, u, v) + (v − y − u)V (x, y, u, v) + [A(u)−A(v)]B(x, y′)]/2, (4.28)

VSFFFS(x, y, z, u, v) =
[
(s− x+ y)U(x, y, u, v)− (s− x+ z)U(x, z, u, v) + I(y, u, v)− I(z, u, v)

]
/2(y − z), (4.29)

VSFFFS(x, y, y, u, v) = [U(x, y, u, v) + (x− y − s)V (x, y, u, v) + I(y′, u, v)]/2, (4.30)

VSFFFS(x, y, z, u, v) =
{
(s− x+ y)(y + u− v)U(x, y, u, v) + (u− v + y)I(y, u, v)

+[A(u)−A(v)][(s − x+ y)B(x, y) +A(y)]
}
/4y(y − z) + (y ↔ z)

+{2(u− v)[S(x, u, v) + xT (x, u, v)] + u(x+ u− v − s)T (u, x, v)

+v(s+ u− v − x)T (v, x, u) + (v − u)[A(x) +A(u) +A(v) − x− u− v + s/4]}/4yz, (4.31)

VSFFFS(x, y, y, u, v) =
[
y(y + u− v)(x − y − s)V (x, y, u, v) + (sv − su+ xu− xv + y2)U(x, y, u, v)

+2(u− v)[S(x, u, v) + xT (x, u, v)] + u(x+ u− v − s)T (u, x, v)

+v(s+ u− v − x)T (v, x, u) + y(y + u− v)I(y′, u, v)

+(v − u)[I(y, u, v) +A(x) + 2A(v)− x− u− v + s/4]

+[A(u)−A(v)][y(s − x+ y)B(x, y′) + (x− s)B(x, y) + y − u+ v]
]
/4y2, (4.32)

VSFFFS(x, y, z, u, v) =
[
U(x, y, u, v)− U(x, z, u, v)

]
/(y − z), (4.33)

VSFFFS(x, y, y, u, v) = −V (x, y, u, v), (4.34)

and

VFSSFF (x, y, z, u, v) =
[
(x− y + s)(y − u− v)U(x, y, u, v) + yS(x, u, v) + (u+ v − y)I(y, u, v)

+[A(u) +A(v)][(s + x− y)B(x, y)−A(y)]
]
/2(y − z) + (y ↔ z), (4.35)

VFSSFF (x, y, y, u, v) =
[
(x− y + s)(u+ v − y)V (x, y, u, v) + (x− 2y + u+ v + s)U(x, y, u, v)

+S(x, u, v) + (u+ v − y)I(y′, u, v)− I(y, u, v)

+[A(u) +A(v)][(s + x− y)B(x, y′)−B(x, y)−A(y)/y − 1]
]
/2, (4.36)

VFSSFF (x, y, z, u, v) =
[
(y − x− s)U(x, y, u, v) + I(y, u, v)

]
/(y − z) + (y ↔ z), (4.37)

VFSSFF (x, y, y, u, v) = (x− y + s)V (x, y, u, v) + U(x, y, u, v) + I(y′, u, v), (4.38)

VFSSFF (x, y, z, u, v) =
[
(y − u− v)U(x, y, u, v) + [A(u) +A(v)]B(x, y)

]
/(y − z) + (y ↔ z), (4.39)

VFSSFF (x, y, y, u, v) = (u+ v − y)V (x, y, u, v) + U(x, y, u, v) + [A(u) +A(v)]B(x, y′), (4.40)

VFSSFF (x, y, z, u, v) = 2
[
U(x, z, u, v)− U(x, y, u, v)

]
/(y − z), (4.41)

VFSSFF (x, y, y, u, v) = 2V (x, y, u, v). (4.42)

Note that for diagrams with the V or Y topology, the limits of identical (or degenerate) squared masses in the second
and third arguments required separate expressions to avoid the threats of vanishing denominators. Also, the limit
y → 0 appropriate for massless fermions is only needed when the corresponding propagator has no mass insertion. For
the case VSFFFS , this limit is trivial, since yV (x, y, u, v) vanishes as y → 0. The remaining non-trivial case involving
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a massless internal fermion is

VSFFFS(x, 0, 0, u, v) =
[
(s− x)(v − u)V (x, 0, u, v) + (s− x+ u− v)U(x, 0, u, v)− S(x, u, v)

+I(0, u, v) + 2[A(u)−A(v)][s−A(x) − xB(0, x)]/(s− x)
]
/4, (4.43)

where the function V (x, 0, u, v) is defined in eq. (2.20) of ref. [33] and given in terms of the basis integral functions in
eqs. (A.11)-(A.13) of that paper. Two useful special cases are:

VSFFFS(x, 0, 0, u, u) =
[
(s− x)U(x, 0, u, u)− S(x, u, u) + I(0, u, u)

]
/4, (4.44)

and for s = x with u 6= v,

VSFFFS(x, 0, 0, u, v)|s=x = {[A(u)− u][A(v) − v] + uv + (u+ v)I(0, u, v)/2}/2(u− v)

+{2(u− v + x)T (x, u, v)− 3vT (v, u, x) + 5uT (u, x, v) + I(0, u, v)

−3A(u) +A(v)−A(x) + 3u− v + 2[A(v) −A(u)]A(x)/x + 3x/4}/8. (4.45)

The corresponding contribution to the two-loop pole masses [see eqs. (2.51), (2.52), and (4.3)] is given in terms of
the above results by:

Π̃
(2,0)
I = Σ

(2,0)I
I +Σ

(2,0)I′

I′′ mII′mII′′

/m2
I +mII′Ω(2,0)II′

+Ω
(2,0)
II′ mII′

+
(
yIKiy

JKiyJLjy
ILjm2

I

+yI
′KiyJKiy

JLjyI′′LjmII′mII′′

+ yIKiy
JKiyJ

′LjyI′LjmJJ′mII′

)
BFS(m

2
K ,m

2
i )BFS(m

2
L,m

2
j)/m

4
I

+yIKiyJK′iy
JLjyIL

′jmKK′

mLL′BFS(m
2
K ,m

2
i )BFS(m

2
L,m

2
j) +

(
2Re[yI

′KiyJKiy
JLjyIL

′jmII′mLL′ ]

+yIKiy
JKi
[
yJLjyI′L′jm

II′

mLL′

+ yJ
′LjyIL

′jmJJ′mLL′

])
BFS(m

2
K ,m

2
i )BFS(m

2
L,m

2
j)/m

2
I

+
([

|yIKi|2 + |mII′

yI′Ki|
2/m2

I

]
BFS(m

2
K ,m

2
i ) + 2Re

[
mII′yI

′KiyIK
′imKK′

]
BFS(m

2
K ,m

2
i )
)

([
|yILj|2 + |mII′′

yI′′Lj |
2/m2

I

][
B′

FS(m
2
L,m

2
j)− BFS(m

2
L,m

2
j)/m

2
I

]

+2Re
[
mII′′yI

′′LjyIL
′jmLL′

]
B′

FS
(m2

L,m
2
j)
)
, (4.46)

where s = m2
I + iε is taken everywhere on the right side. There is no sum on the index I, but all other indices

(including I ′ and I ′′) are summed over as usual.

B. Contributions from diagrams with one vector propagator

Next we consider the contributions coming from the two-loop diagrams in fig. 4 that involve exactly one vector
line. It is convenient to organize these in terms of certain linear combinations of the quadratic Casimir group theory
invariants for the fermions and scalars appearing in the diagrams, as follows:

Σ
(2,1)J
I = yIKiy

JKig2a

{1
2
[Ca(K) + Ca(i)− Ca(I)]GFS(m

2
K ,m

2
i )

+[Ca(K)− Ca(i)]GFFS(m
2
I ,m

2
K ,m

2
i ) + Ca(I)HFFS(m

2
I ,m

2
K ,m

2
i )
}

+
(
yIKiyJ′K′im

JJ′

mKK′

+ yI
′KiyJK

′imII′mKK′

)
g2a

{
[Ca(K)− Ca(i)]GFFS(m

2
I ,m

2
K ,m

2
i )

+Ca(I)HFFS(m
2
I ,m

2
K ,m

2
i )
}
, (4.47)

Ω(2,1)IJ = yIKiyJK
′imKK′g2a

{1
2
[Ca(K) + Ca(i)− Ca(I)]GFS(m

2
K ,m

2
i )

+[Ca(K)− Ca(i)]GFFS(m
2
I ,m

2
K ,m

2
i ) + Ca(I)HFFS(m

2
I ,m

2
K ,m

2
i )
}

(yIKiyJ′Kim
JJ′

+ yI′Kiy
JKimII′

)g2a

{
[Ca(K)− Ca(i)]GFFS(m

2
I ,m

2
K ,m

2
i )

+Ca(I)HFFS(m
2
I ,m

2
K ,m

2
i )
}
. (4.48)
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The loop integral functions appearing here are:

GFS(y, z) = [y2 − (z − s)2]M(y, y, z, z, 0) + S(0, y, z)/2 + (3y − z + s)T (y, 0, z)/2+ (y + s)T (z, 0, y)

+2(y − z + s)T (0, y, z) + sB(y, z)2 + [3(s− y + z)A(y) + 3(s+ y − z)A(z)/2 + 2(y − z)2

−2s(y + z)]B(y, z′) + [(s+ 3y − z)A(y)/2y + (y + s− z/2)A(z)/z + 6(z − y − s)]B(y, z)

−33s/8− 3y/2 + 5z/2 + A(y)/2−A(y)2/2y + 2A(z)− 2yA(z)/z + 3A(y)A(z)/z − 3A(z)2/2z

+δMS[y(z − y + s)B(y, z′) + (z + y − s)B(y, z)/2 + (1/2 + y/z)A(z)−A(y)/2 + y − s/8]

+m2
ǫ [(y − z + s)B(y, z′)−B(y, z)−A(z)/z − 1], (4.49)

GFS(y, z) = 2(y + z − s)M(y, y, z, z, 0) + 2T (y, 0, z) + 2T (z, 0, y) + 4T (0, y, z) +B(y, z)2 + [2y − 2z − 2s

+3(s− y − z)A(y)/y + 3A(z)]B(y, z′) + [5A(y)/y + 2A(z)/z − 14]B(y, z) + 3A(y)A(z)/yz

−3A(y)/y − 2A(z)/z − 6 + δMS[(s− y − z)B(y, z′) +B(y, z) +A(z)/z − 1] + 2m2
ǫB(y, z′), (4.50)

and

GFFS(x, y, z) = [(y − z)2 − xz + sx− sz]M(0, y, x, z, y) + [(y − z)2 − (s+ x)(y + z)/2]M(0, z, x, y, z)

−xU(0, x, y, z)/2 + (y − z + s/2 + x/2)U(x, 0, y, y) + (z − y)U(x, 0, z, z)− yU(y, z, x, y)

−yU(z, y, x, z) + 5S(0, y, z)/4+ S(x, z, z)/2− S(x, y, y)/2 + (z − y/2)T (z, 0, y)

+(s− z + 3y)T (y, 0, z)/4+ [(y + z − s)(y − z)− 3(s− z + y)A(z)/4

+3(s+ z − y)A(y)/2]B(y, z′) + [(z/4− y/2)A(z)/z + (s+ 3y − z)A(y)/4y − s/2B(0, x)

−s/2]B(y, z) + (x+ s)B(0, x) + 3A(z)2/4z + 3A(y)A(z)/2z −A(y)2/4y +A(x)

+A(y)/4− (3/2 + y/z)A(z) + 5(y + z)/4− 9s/16

+δMS[(z − y + s)yB(y, z′) + (5y − 3z + 3s)B(y, z)/2 + 3A(y)/2 + (y/z − 3/2)A(z) + y − s/8]/2

+m2
ǫ [1 +B(y, z) + (z − y − s)B(y, z′) +A(z)/z]/2, (4.51)

GFFS(x, y, z) = {4yM(0, y, x, z, y) + (2y + 2z − x− s)M(0, z, x, y, z) + U(0, x, y, z)− 2U(x, 0, z, z)

−2U(y, z, x, y)− T (z, 0, y) + [B(0, x) + 1−A(z)/z]B(y, z)− 4B(0, x) + 1}/4, (4.52)

GFFS(x, y, z) = (2x+ y − z − s)M(0, y, x, z, y) + (2y − 2z − x− s)M(0, z, x, y, z)/2 + U(x, 0, y, y)

−U(x, 0, z, z)− U(y, z, x, y)− U(z, y, x, z)/2 + 2T (y, 0, z)− T (z, 0, y)/2

+[3(s− y − z)A(y)/2y − 3A(z)/2 + y + 3z − s]B(y, z′) + [7A(y)/2y −A(z)/2z

−5/2]B(y, z) + 3A(y)A(z)/2yz − 3A(y)/2y −A(z)/z − 1/2

+δMS[(s− y − z)B(y, z′) + 5B(y, z) +A(z)/z + 1]/2−m2
ǫB(y, z′), (4.53)

GFFS(x, y, z) = {2(2s− x+ y − z)M(0, y, x, z, y) + (2y − 2z − x− s)M(0, z, x, y, z) + 2U(x, 0, y, y)

−2U(x, 0, z, z)− 2U(y, z, x, y)− U(z, y, x, z)− 2T (y, 0, z)− T (z, 0, y)

+[3− 2A(y)/y −A(z)/z]B(y, z) + 3}/4, (4.54)

and

HFFS(x, y, z) = [(y − z)2 − xz + sx− sz]M(0, y, x, z, y) + [(x+ s)(y + z)/2− (y − z)2]M(0, z, x, y, z)

+(x+ s)(z − x− y)V (0, x, y, z) + [(3 + s/x)(z − y) + s]U(0, x, y, z)/2 + (x/2 + y − z + s/2)U(x, 0, y, y)

+(y − z)U(x, 0, z, z)− yU(y, z, x, y) + yU(z, y, x, z) + [sx− 2sy + 3xy + 2y2 − xz − 2yz]T (y, 0, z)/4x

+(y − z + s)T (0, y, z) + (xy + yz − z2 + zs)T (z, 0, y)/2x+ (3/4 + y/x− z/x)S(0, y, z)− S(x, y, y)/2

−S(x, z, z)/2 + (x+ y − z)I(x′, y, z) + (x− y + z)I(x, y, z)/2x+ [(y − z)2 − s(y + z)

+3(z − y + s)A(y)/2 + 3(y − z + s)A(z)/4]B(y, z′) + [(2z − 2y − 3s/2)B(0, x) + (s+ 3y − z)A(y)/4y

+(y/2z − 1/4)A(z)− 5s/2− 3y + 3z]B(y, z) + [A(y)−A(z)][2sB(0, x′)− (1 + s/x)B(0, x)/2]

−A(y)2/4y − 3A(z)2/4z + 3[A(y)−A(z)]A(x)/2x + 3A(y)A(z)/2z + (z/2x− y/2x+ 1/4)A(y)

+(1− y/z)(1 + z/2x)A(z)− 25s/16− 3y/4− sy/8x+ y2/2x+ 5z/4 + sz/8x− z2/2x

+δMS[2y(z − y + s)B(y, z′) + (5y − 3z + 3s)B(y, z) + (2y/z − 3)A(z) + 3A(y) + 2y − 3s/4]/4

+m2
ǫ [(y − z + s)B(y, z′)−B(y, z)−A(z)/z − 1]/2 + (1− ξ){(sy − sx− 3x2 − xy − sz + xz)U(0, x, y, z)

+2(s+ x)(x + y − z)xV (0, x, y, z)− 2sx(x+ y − z)U ′(0, x, y, z) + (s+ 2x− y + z)yT (y, 0, z)

+(z − y − s)zT (z, 0, y) + (s+ y − z)xT (0, y, z) + 2(x− y + z)S(0, y, z) + (y − x− z)I(x, y, z)
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+2(z − x− y)xI(x′, y, z) + 2xs[(y − z + s)B(y, z) + 2A(y)− 2A(z)]B′(0, x)

+2x(s+ y − z)B(0, x)B(y, z) + [A(x) + (s+ 3x)B(0, x)][A(y) −A(z)] + (y − z)A(y)

+(y − 2x− z)A(z) + (x− y + z)(y + z − s/4)}/2x, (4.55)

HFFS(x, y, z) = (2x+ y − z − s)M(0, y, x, z, y) + (x/2 + s/2− y + z)M(0, z, x, y, z) + U(x, 0, y, y) + U(x, 0, z, z)

−4U(0, x, y, z)− U(y, z, x, y) + U(z, y, x, z)/2 + 8xV (0, x, y, z) + 2T (y, 0, z) + T (z, 0, y)/2 + 2T (0, y, z)

+[3(s− y − z)A(y)/2y + 3A(z)/2− s+ y − z]B(y, z′) + [7A(y)/2y +A(z)/2z − 2B(0, x)− 15/2]B(y, z)

+3[A(z)/z − 1]A(y)/2y −A(z)/z − 7/2 + δMS[3 +A(z)/z + 5B(y, z) + (s− y − z)B(y, z′)]/2 +m2
ǫB(y, z′)

+(1− ξ){T (0, y, z)− 2sU ′(0, x, y, z)− 2xV (0, x, y, z)− U(0, x, y, z) + 2[B(0, x) + sB′(0, x)]B(y, z)}, (4.56)

HFFS(x, y, z) = {4yM(0, y, x, z, y) + (x− 2y − 2z + s)M(0, z, x, y, z)− 5U(0, x, y, z) + 2U(x, 0, z, z)− 2U(y, z, x, y)

+8(x+ y − z)V (0, x, y, z) + T (z, 0, y) + [3B(0, x) +A(z)/z − 1]B(y, z) + 8[A(z)−A(y)]B(0, x′)− 1}/4

+δMS/2 + (1− ξ){(z − x− y)[xV (0, x, y, z) + sU ′(0, x, y, z)] + (z − y)U(0, x, y, z)− yT (y, 0, z) + zT (z, 0, y)

+[(s+ y − z)B(y, z)−A(y) +A(z)]xB′(0, x) + [A(z)−A(y)][(1 + 2x/s)B(0, x) + 2A(x)/s]}/2x, (4.57)

HFFS(x, y, z) = {2(2s− x+ y − z)M(0, y, x, z, y) + (s+ x− 2y + 2z)M(0, z, x, y, z) + 2U(x, 0, y, y)

+2U(x, 0, z, z) + U(z, y, x, z)− 2U(y, z, x, y)− 4(s+ x)V (0, x, y, z)− 2T (y, 0, z) + T (z, 0, y) + 4I(x′, y, z)

+[1− 2A(y)/y +A(z)/z]B(y, z) + 1}/4 + (1 − ξ)[(s+ x)V (0, x, y, z)− U(0, x, y, z)− sU ′(0, x, y, z)

−I(x′, y, z) + sB(y, z)B′(0, x)]. (4.58)

Note that the terms involving functions GFS and GFS are the only parts that contribute when the external fermion
is neutral; they and the functions GFFS , GFFS , GFFS and GFFS are each gauge-invariant and finite in the limit
s → m2

I . In contrast, the functions HFFS , HFFS , HFFS and HFFS are not by themselves gauge-invariant and have
logarithmic divergences as s→ m2

I , but they combine with one-loop parts to give a finite, gauge-invariant pole mass.
This cancellation provides a nice check on the calculations. The resulting contribution to the pole squared mass [see
eqs. (2.51), (2.52), and (4.3)] is:

Π̃
(2,1)
I =

[
|yIKi|2 + |mII′

yI′Ki|
2/m2

I

]
g2a

{1
2
[Ca(K) + Ca(i)− Ca(I)]f1(m

2
I ,m

2
K ,m

2
i )

+[Ca(K)− Ca(i)]f2(m
2
I ,m

2
K ,m

2
i ) + Ca(I)f3(m

2
I ,m

2
K ,m

2
i )
}

+2Re
[
yIKiyI

′K′imII′mKK′

]
g2a

{1
2
[Ca(K) + Ca(i)− Ca(I)]f4(m

2
I ,m

2
K ,m

2
i )

+[Ca(K)− Ca(i)]f5(m
2
I ,m

2
K ,m

2
i ) + Ca(I)f6(m

2
I ,m

2
K ,m

2
i )
}
, (4.59)

where:

f1(x, y, z) = lim
s→x

GFS(y, z) (4.60)

= [y2 − (x − z)2]M(y, y, z, z, 0) + S(0, y, z)/2 + 2(x+ y − z)T (0, y, z) + (x+ 3y − z)T (y, 0, z)/2

+(x+ y)T (z, 0, y) +B(y, z′){3(x− y + z)A(y) + 3(x+ y − z)A(z)/2 + 2[(y − z)2 − x(y + z)]}

+xB(y, z)2 +B(y, z)[(x+ 3y − z)A(y)/2y + (2x+ 2y − z)A(z)/2z + 6(z − x− y)]

+[1−A(y)/y]A(y)/2 + [2z − 2y + 3A(y)− 3A(z)/2]A(z)/z − 33x/8− 3y/2 + 5z/2

+δMS[y(x− y + z)B(y, z′) + (y + z − x)B(y, z)/2 + (1/2 + y/z)A(z)−A(y)/2 + y − x/8]

+m2
ǫ [(x+ y − z)B(y, z′)−B(y, z)−A(z)/z − 1], (4.61)

f2(x, y, z) = lim
s→x

[GFFS(x, y, z) + 2xGFFS(x, y, z)] (4.62)

= (x+ y − z)2M(0, y, x, z, y) + [(y − z)2 − x2]M(0, z, x, y, z) + (x+ y − z)U(x, 0, y, y)

+(z − x− y)U(x, 0, z, z)− (x+ y)U(y, z, x, y)− yU(z, y, x, z) + 5S(0, y, z)/4− S(x, y, y)/2

+S(x, z, z)/2 + (x+ 3y − z)T (y, 0, z)/4+ (2z − x− y)T (z, 0, y)/2

+[3(x− y + z)A(y)/2 + 3(z − x− y)A(z)/4 + (z − y)(x− y − z)]B(y, z′)

+[(x+ 3y − z)A(y)/4y + (z − 2x− 2y)A(z)/4z]B(y, z)−A(y)2/4y + 3A(y)A(z)/2z

+3A(z)2/4z +A(x) +A(y)/4− (3/2 + y/z)A(z) + 5(y + z)/4− x/16

+δMS[2y(x− y + z)B(y, z′) + (3x+ 5y − 3z)B(y, z) + (2y/z − 3)A(z) + 3A(y) + 2y − x/4]/4

+m2
ǫ [(z − x− y)B(y, z′) +B(y, z) +A(z)/z + 1]/2, (4.63)
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f3(x, y, z) = lim
s→x

{
HFFS(x, y, z) + 2xHFFS(x, y, z) + 2[BFV (x, 0) + xBFV (x, 0)]B

′
FS(y, z)

+2[B′
FV (x, 0) + xB′

FV
(x, 0)]BFS(y, z)− BFV (x, 0)BFS(y, z)/x

}
(4.64)

= (x+ y − z)2M(0, y, x, z, y) + [x2 − (y − z)2]M(0, z, x, y, z) + (x+ y − z)U(x, 0, y, y)

+(x+ y − z)U(x, 0, z, z)− (x+ y)U(y, z, x, y) + yU(z, y, x, z) + [(z − y)/x− 5/4]S(0, y, z)

−S(x, y, y)/2− S(x, z, z)/2 + 2(x+ y − z)T (0, y, z) + (x2 + xy − xz − yz + z2)T (z, 0, y)/2x

+(x2 − 2y2 + 2yz − 3xy − xz)T (y, 0, z)/4x+ (3x+ y − z)I(x, y, z)/2x+ 3(x+ y − z)I(x′, y, z)

+[(5z − 3x− 5y)A(x)/2x+ (x+ 3y − z)A(y)/4y + (2x+ 2y − z)A(z)/4z + 6(z − x− y)]B(y, z)

+[x(y + z)− (y − z)2 + 3(y + z − x)A(x) + 3(x− y + z)A(y)/2 + 3(x+ y − z)A(z)/4]B(y, z′)

−A(x)A(y)/x −A(y)2/4y + (1/x− 3/z)A(x)A(z) + 3A(y)A(z)/2z + (x+ 2y − 2z)A(y)/4x

−3A(z)2/4z + (2xy + 2xz + yz − z2)A(z)/2xz + 3x/16 + 3y/8− y2/2x− 15z/8 + z2/2x

+δMS[2(y
2 − 3yz + 2z2 − xy − 2xz)B(y, z′) + (5x+ 3y − z)B(y, z)− (1 + 2y/z)A(z) + 5A(y)

+4z − 2y − 3x/4]/4 +m2
ǫ [(x+ y − z)B(y, z′)−B(y, z)−A(z)/z − 1]/2, (4.65)

f4(x, y, z) = lim
s→x

GFS(y, z) (4.66)

= 2(y + z − x)M(y, y, z, z, 0) + 2T (y, 0, z) + 2T (z, 0, y) + 4T (0, y, z) +B(y, z)[B(y, z) + 5A(y)/y

+2A(z)/z − 14] + [2(y − x− z) + 3(x− y − z)A(y)/y + 3A(z)]B(y, z′) + 3A(y)A(z)/yz

−3A(y)/y − 2A(z)/z − 6 + δMS[(x − y − z)B(y, z′) +B(y, z) +A(z)/z − 1] +m2
ǫ2B(y, z′), (4.67)

f5(x, y, z) = lim
s→x

[GFFS(x, y, z) + 2GFFS(x, y, z)] (4.68)

= 2(x+ y − z)M(0, y, x, z, y) + 2(y − x− z)M(0, z, x, y, z) + 2U(x, 0, y, y)− 2U(x, 0, z, z)

−2U(y, z, x, y)− U(z, y, x, z) + T (y, 0, z)− T (z, 0, y) + [1−A(z)/z][1− 3A(y)/2y]

+[3(x− y − z)A(y)/2y − 3A(z)/2− x+ y + 3z]B(y, z′) + [5A(y)/2y −A(z)/z − 1]B(y, z)

+δMS[(x− y − z)B(y, z′) + 5B(y, z) +A(z)/z + 1]/2−m2
ǫB(y, z′), (4.69)

f6(x, y, z) = lim
s→x

{
HFFS(x, y, z) + 2HFFS(x, y, z) + 2[BFV (x, 0) + xBFV (x, 0)]B

′
FS

(y, z)

+2[B′
FV (x, 0) + xB′

FV
(x, 0)]BFS(y, z) + BFV (x, 0)BFS(y, z)

}
(4.70)

= 2(x+ y − z)M(0, y, x, z, y) + 2(x− y + z)M(0, z, x, y, z) + 2U(x, 0, y, y) + 2U(x, 0, z, z)

−2U(y, z, x, y) + U(z, y, x, z)− 4S(0, y, z)/x+ (1− 2y/x)T (y, 0, z) + (1− 2z/x)T (z, 0, y)

+4T (0, y, z) + 2I(x, y, z)/x+ 6I(x′, y, z) + [3(y − x− z)A(x)/x+ 3(x− y − z)A(y)/2y

+3A(z)/2 + x− y + z]B(y, z′) + [5A(y)/2y +A(z)/z −A(x)/x − 11]B(y, z)

−[1 +A(z)/z]3A(x)/x+ 3A(y)A(z)/2yz + (2/x− 3/2y)A(y) + (2/x+ 1/z)A(z)

−2(y + z)/x− 1/2 + δMS[(y − x− 3z)B(y, z′) + 3B(y, z)−A(z)/z + 1]/2 +m2
ǫB(y, z′). (4.71)

The limits y → 0 (for massless internal fermions) can be important when there is no corresponding mass insertion:

f1(x, 0, z) = −(x− z)2M(0, 0, z, z, 0)− 5(x− z)U(z, 0, 0, 0)/2+ S(0, 0, z)/2 + xT (z, 0, 0) + xB(0, z)2

+[(x/z − 2)A(z) + 7z/2− 3x/2]B(0, z)− 3A(z)2/z + 11A(z)/2− 13x/8− 2z

+δMS[(z − x)B(0, z)/2 +A(z)/2− x/8]−m2
ǫ [2A(z)/z + 2B(0, z)], (4.72)

f2(x, 0, z) = (x− z)2M(0, 0, x, z, 0) + (z2 − x2)M(0, z, x, 0, z)− xU(0, z, 0, x) + (x− z)[U(x, 0, 0, 0)

−U(x, 0, z, z)− U(z, 0, 0, 0)/4] + (z − x/2)T (z, 0, 0)− S(0, 0, x)/2 + 5S(0, 0, z)/4

+S(x, z, z)/2 + [(1− x/2z)A(z) + x/4− 5z/4]B(0, z) + 3A(z)2/2z +A(x) − 13A(z)/4

+3x/16 + 2z + δMS[3(x− z)B(0, z)/4− 3A(z)/4− x/16] +m2
ǫ [A(z)/z +B(0, z)], (4.73)

f3(x, 0, z) = (x− z)2M(0, 0, x, z, 0) + (x2 − z2)M(0, z, x, 0, z)− xU(0, z, 0, x) + (x− z)[U(x, 0, 0, 0)

+U(x, 0, z, z)− 9U(z, 0, 0, 0)/4] + (x− z + z2/x)T (z, 0, 0)/2− S(0, 0, x)/2− S(x, z, z)/2

+(z/x− 5/4)S(0, 0, z) + (9/2− z/2x)I(0, x, z) + [(x/2z − 1)A(z) + (3/2 + 5z/2x)A(x)

−7x/4 + 3z/4]B(0, z) +A(z)[4A(x)/x − 3A(z)/2z − 9/4− z/2x]− 6A(x) + z2/2x− z/8

+87x/16 + δMS[(5x+ 3z)B(0, z)/4 + 3A(z)/4− 3x/16]−m2
ǫ [A(z)/z +B(0, z)]. (4.74)
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C. Contributions from diagrams with two or more vector propagators

We finally turn to the contributions from two-loop diagrams that contain more than one vector (or ghost) propagator.
Again it is useful to organize the results in terms of common group theory factors. The results for the self-energy
functions are:

Σ
(2,2)J
I = δJI g

2
aCa(I)

[
g2bCb(I)H1(m

2
I) + g2aCa(G)H2(m

2
I) + g2aIa(K)H3(m

2
I ,m

2
K) + g2aIa(i)H4(m

2
I ,m

2
i )
]
, (4.75)

Ω(2,2)IJ = mIJg2aCa(I)
[
g2bCb(I)H1(m

2
I) + g2aCa(G)H2(m

2
I) + g2aIa(K)H3(m

2
I ,m

2
K) + g2aIa(i)H4(m

2
I ,m

2
i )
]
, (4.76)

where the required loop integral functions are:

H1(x) = −4x2M(0, x, x, 0, x) + 2S(x, x, x)− (s+ 4x)T (x, 0, 0) + 2(s− x)U(x, 0, x, x) + (10x2/s− 2s

−4x− 4x3/s2) ln2(1− s/x) + [11s/2 + x− 29x2/2s+ (4− 3s/x+ 11x/s)A(x)] ln(1− s/x)

−73s/8− 5x/2 + (3 + 9s/2x)A(x) + (6/x− s/x2)A(x)2 + δMS[(5x
2/s− s) ln(1− s/x)

+5x− s/2− sA(x)/x] + (1− ξ)
{
4sT (x, 0, 0) + (3s− 11x2/s+ 8x3/s2) ln2(1− s/x)

+[(2s/x− 14x/s)A(x)− 5s− 6x+ 19x2/s] ln(1− s/x) + 3s+ 11x− (s/x+ 14)A(x)− sA(x)2/x2

+δMS[(s− 5x2/s) ln(1 − s/x) + sA(x)/x − 5x]
}
+ (1− ξ)2

{
sT (x, 0, 0) + (s− x)x2/s2 ln2(1 − s/x)

+[3x− s− 2x2/s+ (x/s− s/x)A(x)] ln(1 − s/x) + 3s/2− x+A(x) − sA(x)2/x2
}
, (4.77)

H1(x) = −2(s+ x)M(0, x, x, 0, x) + 4T (x, 0, 0)− 8U(x, 0, x, x) + 42− 32A(x)/x+ 10A(x)2/x2

+(14− 6x/s)(1− x/s) ln2(1 − s/x) + [24(1/x− 2/s)A(x)− 36 + 52x/s] ln(1− s/x)

+δMS8[A(x)/x− 1 + (1− 2x/s) ln(1− s/x)] + (1− ξ){−4T (x, 0, 0) + 8A(x)/x

−2A(x)2/x2 − 6− 2x/s+ (8x/s− 6− 2x3/s3) ln2(1 − s/x) + [(14/s− 8/x)A(x) + 12

−12x/s− 4x2/s2] ln(1− s/x) + δMS2[1−A(x)/x + (2x/s− 1) ln(1− s/x)]}

+(1− ξ)2{−T (x, 0, 0) +A(x)2/x2 −A(x)/x+ x/s− 3/2 + [(1/x− 1/s)A(x)− 2x/s

+2x2/s2] ln(1− s/x) + (x3/s3 − x/s) ln2(1− s/x)}, (4.78)

H2(x) = (x− s)(s+ 2x)M(0, 0, x, x, 0) + 2x2M(0, x, x, 0, x) + (x − s)U(x, 0, x, x)− (s+ 2x)T (x, 0, 0)

−S(x, x, x)−A(x)2/x+ (7 + 6s/x)A(x) − 16x− 17s/2 + (1 + 2x/s)(x− s) ln2(1− s/x)

+(x− s)[(3/s+ 1/x)A(x) − 12x/s− 7] ln(1− s/x) + δMS13s/4 + (1− ξ){s(s− x)M(0, 0, x, x, 0)

+sT (x, 0, 0) + 2sA(x)2/x2 − 5(1 + s/x)A(x) + 5x+ 11s+ (1− x/s)[(4x+ 3s) ln(1− s/x)

+5(1 + s/x)A(x) − 5x− 6s] ln(1− s/x)}/2 + (1 − ξ)2{−sT (x, 0, 0) + (1 + s/2x)A(x)− 9s/4− x/2

+(1− x/s)[(3s+ x)/2− (x+ s) ln(1− s/x)− (1 + s/x)A(x)] ln(1− s/x)}/2, (4.79)

H2(x) = 3(s− x)M(0, 0, x, x, 0) + (s+ x)M(0, x, x, 0, x) + 7T (x, 0, 0) + 4U(x, 0, x, x) +A(x)2/x2

−64A(x)/3x+ 112/3 + (1 − x/s)[8 ln(1− s/x) + 9A(x)/x − 85/3] ln(1− s/x)

+δMS[(x/s− 1) ln(1− s/x)−A(x)/x − 7/2] + (1− ξ){(x− s)M(0, 0, x, x, 0)− T (x, 0, 0)

−2A(x)2/x2 + 10A(x)/x− 16 + (1− x/s)[(x/s− 3) ln(1− s/x) + 11− 5A(x)/x] ln(1 − s/x)}/2

+(1− ξ)2{T (x, 0, 0)− 3A(x)/2x+ 11/4 + (1 − x/s)[ln(1− s/x) +A(x)/x − 5/2] ln(1− s/x)}/2, (4.80)

H3(x, y) =
{
[−4s(s− x)2 + 40s2y + 4sxy + 4x2y + 48(x− 2s)y2]yT (y, y, x) + 2x(s− x)[9y(s+ x)

−(s− x)2 − 36y2]T (x, y, y) + [−2(s− x)3 + 22s2y − 8sxy − 14x2y + 48(x− 2s)y2]S(x, y, y)

+(s− x)4B(0, x) + [2s2 + 2sx− 4x2 + 24(x− 2s)y]A(y)2 + [4(s− x)2 − 24(s+ x)y]A(x)A(y)

+[112sxy− 4x(s− x)2 − 92s2y + 28x2y + 96(2s− x)y2]A(y) + [(s− x)3 − 4s2y − 10sxy

+14x2y + 24(s− 2x)y2]A(x) + (5s/4− 2x)(s− x)3 − 35s3y/2 + 77s2xy/2− 11sx2y − 10x3y

+8s2y2 + 50sxy2 + 20x2y2 + 96(x− 2s)y3
}
/15y(s− x)2 + δMS3s/4, (4.81)

H3(x, y) =
{
[6(s− x)2 + 12xy + 16y2 − 28sy]T (y, y, x) + 20x(x− s)T (x, y, y) + (20x− 20s+ 16y)S(x, y, y)

+(8 + 6x/y − 6s/y)A(y)2 + 16A(x)A(y) + (10s− 10x+ 8y)A(x) + (48s− 64x− 32y)A(y)

+19s2/2− 53sx/2 + 17x2 − 34sy + 8xy + 32y2
}
/3(s− x)2 + 2(1 +A(y)/y)B(0, x)− δMS, (4.82)

H4(x, y) =
{
[48(2s− x)y2 − s(s− x)2 − 20s2y + 16sxy − 44x2y]yT (y, y, x) + x(x − s)[(s− x)2/2

−12y(s+ x+ 6y)]T (x, y, y) + [y(13s2 − 2sx− 11x2 + 96sy − 48xy)− (s− x)3/2]S(x, y, y)
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+[23s2 − 22sx− x2 + 48sy − 24xy]A(y)2 + [(s− x)2 + 24(s+ x)y]A(x)A(y) + [(s− x)3/4

+(x− s)y(s+ 11x) + 24(2x− s)y2]A(x) + [−x(s− x)2 + 96(x− 2s)y2 + 22s2y − 92sxy

+22x2y]A(y) + (5s/16− x/2)(s− x)3 + 96(2s− x)y3 − 70xy2(s+ x)− 25s3y/4 + 23s2xy/2

+19sx2y/4− 10x3y + 62s2y2
}
/15y(s− x)2 + (s− x)2B(0, x)/60y, (4.83)

H4(x, y) =
{
[3(s− x)2 − 8sy + 24xy − 16y2]T (y, y, x) + 16x(x− s)T (x, y, y) + 16(x− y − s)S(x, y, y)

+(12x/y − 12s/y− 8)A(y)2 − 16A(x)A(y) + 8(s− x− y)A(x) + 8(3s− x+ 4y)A(y) + 7s2

−20sx+ 13x2 − 38sy + 64xy − 32y2
}
/3(s− x)2 + [1 +A(y)/y]B(0, x). (4.84)

The corresponding contributions to the pole squared mass are therefore:

Π̃
(2,2)
I = g2aCa(I)

[
g2bCb(I)F1(m

2
I) + g2aCa(G)F2(m

2
I) + g2aIa(K)F3(m

2
I ,m

2
K) + g2aIa(i)F4(m

2
I ,m

2
i )
]
, (4.85)

where the required functions can be written compactly in terms of logarithms and dilogarithms:

F1(x) = lim
s→x

{
2H1(x) + 2xH1(x) + 4[BFV (x, 0) + xBFV (x, 0)][B

′
FV (x, 0) + xB′

FV
(x, 0)]

−[BFV (x, 0)]
2/x+ x[BFV (x, 0)]

2
}

(4.86)

= x
[
41/4 + 10π2 − 27lnx+ 18ln

2
x+ 24ζ(3)− 16π2 ln 2 + δMS12(lnx− 1)

]
, (4.87)

F2(x) = lim
s→x

[
2H2(x) + 2xH2(x)

]
(4.88)

= x
[
1093/12− 8π2/3− (179/3)lnx+ 11ln

2
x− 12ζ(3) + 8π2 ln 2 + δMS(3/2− 2lnx)

]
, (4.89)

F3(x, y) = lim
s→x

[
2H3(x) + 2xH3(x)

]
(4.90)

= −37x/3− 12y + (26x/3)lnx− 2xln
2
x+ 4y ln(x/y)− 2(y2/x) ln2(x/y)

+8(x+ y)f(
√
y/x)− 4(x+ y2/x)[Li2(1− y/x) + π2/6] + δMSx/2, (4.91)

F4(x, y) = lim
s→x

[
2H4(x) + 2xH4(x)

]
(4.92)

= −125x/12 + 14y + (19x/3)lnx− xln
2
x− 6y ln(x/y) + (y2/x) ln2(x/y)

+8(x− y)f(
√
y/x) + 2(y2/x− x)[Li2(1− y/x) + π2/6], (4.93)

with

f(r) = r{Li2([1− r]/[1 + r])

−Li2([r − 1]/[1 + r]) + π2/4}. (4.94)

Here are some useful special cases:

F3(x, 0) = x
(26
3
lnx− 2ln

2
x−

37

3
−

4π2

3

+
δMS

2

)
, (4.95)

F3(x, x) = x
(26
3
lnx− 2ln

2
x−

73

3
+

8π2

3

+
δMS

2

)
, (4.96)

F4(x, x) = x
(43
12

+
19

3
lnx− ln

2
x
)
, (4.97)

F4(x, 0) = x
(19
3
lnx− ln

2
x−

125

12
−

2π2

3

)
, (4.98)

F3(0, y) = F4(0, y) = 0. (4.99)

In the MS scheme with δMS = 1, the expressions of
eqs. (4.87) above agree with those found originally in [16]
(see also [18]). In the DR scheme with δMS = 0, the same
equations are in agreement with the results of ref. [17].
In particular, the function F3(x, y)/2x found here was
given in three different mass expansions in eqs. (18)-(20)
of [17].

V. EXAMPLES AND APPLICATIONS

In this section, I present some applications of the pre-
ceding general results. These are all taken from the min-
imal supersymmetric standard model (MSSM), and in-
clude all effects at one-loop order, but only terms that in-
volve the strong gauge coupling constant in the two-loop
part. All of the couplings and masses appearing below

are tree-level running DR
′
parameters in the MSSM with

no particles decoupled. (This means that contributions
listed above containing δMS andm2

ǫ are not present.) The
conventions used here for these couplings and masses are
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identical to those found in section II of ref. [56] and sec-
tion II of ref. [57], and will not be repeated here for the
sake of brevity. Note that the formalism allows for ar-
bitrary CP violation within the MSSM, and takes into
account sfermion mixing within each generation, but for
simplicity the effects of possible sfermion mixing between

generations is neglected. Throughout the following, each
index that appears on the right-hand side of an equa-
tion but not on the left-hand side is implicitly summed
over. The name of a particle is used in place of its renor-
malized, tree-level squared mass when appearing as the
argument of a loop integral function.

A. SUSYQCD corrections to the gluino mass

In this section, I will study the specialization of the above results to the case of the gluino mass. (The results below
partly overlap with recent independent results of Y. Yamada in [32].) Applying the formulas of sections III and IV, I
find that the two-loop gluino pole mass, including all SUSYQCD effects, can be written as:

M2
g̃ − iΓg̃Mg̃ = m2

g̃ +
g23

16π2
Π̃

(1)
g̃ +

g43
(16π2)2

Π̃
(2)
g̃ , (5.1)

where mg̃ is the tree-level running gluino mass (often seen as M3 in the literature), and

Π̃
(1)
g̃ = CGm

2
g̃

[
10− 6ln(m2

g̃)
]
+ 4Iq

{
BFS(q, q̃j)− 2Re[Lq̃jR

∗
q̃j
]mqmg̃BFS(q, q̃j)

}
, (5.2)

Π̃
(2)
g̃ = 8Iq(2Cq − CG)

{
Lq̃jR

∗
q̃j
L∗
q̃k
Rq̃kMSFFSF (q̃j , q, q, q̃k, g̃)− Re[Lq̃kR

∗
q̃k
]mqmg̃MSFFSF (q̃j , q, q, q̃k, g̃)

+
1

2
(|Lq̃jLq̃k |

2 + |Rq̃jRq̃k |
2)m2

g̃MSFFSF (q̃j , q, q, q̃k, g̃) + |Lq̃jRq̃k |
2m2

qMSFFSF (q̃j , q, q, q̃k, g̃)

−Re[Lq̃jR
∗
q̃j
]mqmg̃MSFFSF (q̃j , q, q, q̃k, g̃) + Re[Lq̃jR

∗
q̃j
Lq̃kR

∗
q̃k
]m2

qm
2
g̃MSFFSF (q̃j , q, q, q̃k, g̃)

}

+8IqCq

{
(|Lq̃jLq̃k |

2 + |Rq̃jRq̃k |
2)VSFFFS(q̃j , q, q, g̃, q̃k)− 2Re[Lq̃jR

∗
q̃j
]mqmg̃VSFFFS(q̃j , q, q, g̃, q̃k)

+2Re[Lq̃jR
∗
q̃j
L∗
q̃k
Rq̃k ]m

2
g̃VSFFFS(q̃j , q, q, g̃, q̃k) + (|Lq̃jRq̃k |

2 + |Rq̃jLq̃k |
2)m2

qVSFFFS(q̃j , q, q, g̃, q̃k)

−2Re[Lq̃kR
∗
q̃k
]mqmg̃VSFFFS(q̃j , q, q, g̃, q̃k) + 2Re[Lq̃jR

∗
q̃j
Lq̃kR

∗
q̃k
]m2

qm
2
g̃VSFFFS(q̃j , q, q, g̃, q̃k)

+VFSSFF (q, q̃j , q̃j , q, g̃) + 2Re[Lq̃jR
∗
q̃k
(R∗

q̃j
Lq̃k + L∗

q̃j
Rq̃k)]m

2
qm

2
g̃VFSSFF (q, q̃j , q̃k, q, g̃)

−2Re[Lq̃jR
∗
q̃j
]mqmg̃VFSSFF (q, q̃j , q̃j , q, g̃)− 2Re[Lq̃jR

∗
q̃j
]mqmg̃VFSSFF (q, q̃j , q̃k, q, g̃)

+
1

2
|Lq̃jL

∗
q̃k

−Rq̃jR
∗
q̃k
|2YFSSS(q, q̃j , q̃j , q̃k)

−Re[L∗
q̃j
Rq̃k(Lq̃jL

∗
q̃n

−Rq̃jR
∗
q̃n
)(L∗

q̃k
Lq̃n −R∗

q̃k
Rq̃n)]mqmg̃YFSSS(q, q̃j , q̃k, q̃n)

}

+4I2q

[
4{BFS(q, q̃j)− 2Re[Lq̃jR

∗
q̃j
]mqmg̃BFS(q, q̃j)}{B

′
FS(Q, Q̃k)− 2Re[LQ̃k

R∗
Q̃k

]mQmg̃B
′
FS

(Q, Q̃k)}

−BFS(q, q̃j)BFS(Q, Q̃k)/m
2
g̃ + 4mqmQRe[Lq̃jR

∗
q̃j
]Re[LQ̃k

R∗
Q̃k

]BFS(q, q̃j)BFS(Q, Q̃k)
]

+(4Cq − 2CG)Iq
{
f1(g̃, q, q̃j)− 2Re[Lq̃jR

∗
q̃j
]mqmg̃f4(g̃, q, q̃j)

}

+4CGIq
{
f3(g̃, q, q̃j)− 2Re[Lq̃jR

∗
q̃j
]mqmg̃f6(g̃, q, q̃j)

}

+C2
G

[
F1(g̃) + F2(g̃) + F3(g̃, g̃)

]
+ CGIq

[
2F3(g̃, q) + F4(g̃, q̃j)

]
. (5.3)

Here Cq = 4/3, CG = 3, and Iq = 1/2. The symbol q is summed over the 6 symbols (u, d, c, s, t, b), and the squark
squared-mass eigenstate labels j, k, n are summed over 1, 2. In terms whereQ appears, it is also independently summed
over (u, d, c, s, t, b). The symbols Lq̃j and Rq̃j describe the squark mixing and CP violation; they denote the left-handed
and right-handed squark content amplitudes of each squark mass eigenstate, as defined in ref. [56]. The loop integral
functions were listed in sections III and IV above, in terms of basis functions that can be evaluated numerically using
[43]. Each of them should be evaluated with s = m2

g̃ (the tree-level squared mass), with an infinitesimal positive
imaginary part. A computer program implementing this result is available from the author on request.
As a non-trivial check, I have verified that this result for the gluino pole mass is invariant under changes in the

renormalization scale governed by the two-loop SUSYQCD renormalization group equation for the running gluino
mass [58, 59], [39], up to consistently neglected terms at three-loop order in SUSYQCD and two-loop order in the
other couplings.
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In the limit that squark mixing and quark masses are neglected, the expressions above simplify and can be given
analytically in terms of polylogarithms [60]. The result for the pole squared mass is then:

M2
g̃ − iΓg̃Mg̃ = m2

g̃ +
g23

16π2
[CGΠ̃

(1,a)
g̃ (g̃) + IqΠ̃

(1,b)
g̃ (g̃, q̃j)]

+
g43

(16π2)2

[
C2

GΠ̃
(2,a)
g̃ (g̃) + CGIqΠ̃

(2,b)
g̃ (g̃, q̃j) + CqIqΠ̃

(2,c)
g̃ (g̃, q̃j) + I2q Π̃

(2,d)
g̃ (g̃, q̃j , Q̃k)

]
, (5.4)

where

Π̃
(1,a)
g̃ (x) = x[10− 6lnx], (5.5)

Π̃
(1,b)
g̃ (x, y) = 2x

[
(1 − y/x)2 ln(1− x/y) + lny − 2 + y/x

]
, (5.6)

Π̃
(2,a)
g̃ (x) = x[77 + 10π2 + 12ζ(3)− 8π2 ln 2− 78lnx+ 27ln

2
x], (5.7)

Π̃
(2,b)
g̃ (x, y) = (24y − 18x− 4y2/x)Li2(1− y/x) + 4x(x− y)M(0, y, y, 0, x) + 4(x2 − y2)M(0, x, y, 0, y)

+2(x− y)2[M(0, 0, y, y, 0) + 2M(0, 0, x, y, 0)− (4/x) ln2(1 − x/y)] + 8(y − x)f(
√
y/x)

+[(12y2/x− 12y − 2x)lnx+ (24y − 16x− 6y2/x)lny + 41x− 40y − y2/x] ln(1 − x/y)

+(10y − 8x− 2y2/x) ln2(x/y)− 18xlnxlny + (41x− 14y)lny + (9x+ 20y)lnx

+2y(1− y/x)π2/3− 41x− 9y, (5.8)

Π̃
(2,c)
g̃ (x, y) = 8x(y − x)M(0, y, y, 0, x)− 4(x− y)2M(0, 0, y, y, 0) + (4x− 24y + 24y2/x)Li2(1 − y/x)

−2(x− y)2(x/y2 − 2/x) ln2(1− x/y) + [(12x− 8y + 4x3/y2 − 8x2/y)lnx

+(4x− 8y − 4x3/y2 + 8x2/y)lny + 4(y − x)(x/y + 7y/x)] ln(1− x/y)

+[12y2/x− 12y + 4x2/y − 2x3/y2 + 2x] ln2(x/y) + (4x2/y − 20x+ 24y) ln(x/y)

+(4x2/y − 2x3/y2 − 4x/3− 8y/3 + 4y2/x)π2 − 22x+ 4y, (5.9)

Π̃
(2,d)
g̃ (x, y, z) = Π̃

(1,b)
g̃ (x, y)

[
(3 + 5z/x)(1− z/x) ln(1− x/z) + 3lnz − 5z/x− 2

]
/2. (5.10)

The integral M(0, x, y, 0, y)|s=x can be reduced using recurrence relations to results found in refs. [18, 19], and
was given in the present notation in [43]. The analytic formulas for the master integral cases M(0, 0, x, y, 0) and
M(0, y, y, 0, x)|s=x were also given in terms of polylogarithms in [43]. The integralM(0, 0, y, y, 0) was originally found
in [48], and listed in the present notation in [42]. The function f appearing in eq. (5.8) was defined in eq. (4.94)
above.
To illustrate the numerical significance of the two-loop correction, in fig. 6 I show the fractional difference between

the real part of the gluino pole mass and the running renormalized mass (evaluated at a renormalization scale equal
to itself) as a function of the ratio of the squark masses (assumed degenerate) to the tree-level gluino mass. Also for
simplicity, the top quark mass is neglected. In most realistic models of supersymmetry breaking, most of the squark
masses are larger than about 0.8mg̃. Then the two-loop contribution to the gluino pole mass is positive, and from 1%
to 2% for comparable gluino and squark masses, but it is larger when mq̃ ≫ mg̃.
The scale-dependence of the calculated pole mass is shown in fig. 7. To make this graph, a reference renormalization

scale Q0 is chosen such that the running gluino mass evaluated there is equal to it, i.e. Q0 = mg̃(Q0). Then, for three
different values of the ratio mq̃/mg̃ at the scale Q0, namely 0.9, 1.5 and 3.0, the one-loop and two-loop gluino pole
masses are computed as a function of Q. To do this, the relevant running parameters mg̃, mq̃, and αS = g23/4π are
evolved using their two-loop renormalization group equations from Q0 to Q, and then the pole mass is recomputed
using eqs. (5.4)-(5.10). In the ideal case, the lines shown would be exactly horizontal. The scale dependence of the
one-loop and two-loop results is about the same if the gluino mass is less than or about equal to the squark masses (as
for example in gaugino-mass dominated or “no-scale” models). For heavier squark masses, it is significantly improved
by going to two-loop order. Note that as usual, the scale-dependence of the one-loop approximation is considerably
less than the difference between the two-loop and one-loop results. This strongly suggests that the scale-dependence
should not be used as an indicator of the accuracy of the two-loop approximation either. A naive estimate of the
size of the three-loop SUSYQCD contribution to the gluino pole mass can be obtained by considering the cube of the
one-loop fractional contribution, and so is perhaps of the order of a few tenths of a per cent.
As mentioned above, results equivalent to those above in the limit of no squark mixing have previously been obtained

independently by Y. Yamada in [32], where numerical results were given and the analytical form for the pole mass of
the gluino was shown explicitly in the limit mq̃ ≫ mg̃. I have checked that the results found here do agree with those
in ref. [32]. (When comparing the numerical results, it is useful to note that small differences, formally of three-loop
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FIG. 6: The SUSYQCD corrections to the gluino pole mass Mg̃, in the simplifying approximation of degenerate squarks,
with no squark mixing or quark masses and Yukawa and electroweak effects neglected for simplicity. Here msquark ≡ mq̃

and mgluino ≡ mg̃ (often seen in the literature as M3) are the tree-level running DR
′
squark and gluino mass parameters, all

evaluated at a renormalization scale Q = mg̃(Q), and Mgluino pole ≡ Mg̃ is the square root of the real part of the pole mass. In
the first panel, the dashed line is the one-loop result, and the solid line is the two-loop result, for the ratio of the gluino pole
mass to the running gluino mass evaluated at itself. The second panel shows the difference between the two-loop and one-loop
results. The computations were done by specializing eqs. (5.4)-(5.10) in the text, using αS(Q) = g23/4π = 0.095.

order, arise due to the fact that the present paper works in terms of perturbative corrections to the pole squared
mass, while ref. [32] computed results for the pole mass.)
Further accuracy can be obtained by including the contributions of Feynman diagrams that are of order αS times

Yukawa or electroweak couplings squared. Such corrections could be particularly important if the gluino is relatively
light, since we are working in a non-decoupling scheme. These results are implicitly contained above in section
IV; obtaining their explicit form is only a matter of plugging in the couplings and masses of the MSSM. I will not
do that here, because this paper already contains plenty of lengthy formulas, but only note that it can be done
straightforwardly by use of a symbolic manipulation program, for example.

B. SUSYQCD corrections to quark masses in minimal supersymmetry

As another application of the general results above, consider the relation between the running and pole masses of
the quarks in the MSSM, found earlier in [29–31]. Using the results of the present paper, I find for the top quark:

M2
t − iΓtMt = m2

t +
1

16π2
Π̃

(1)
t +

g43
(16π2)2

Π̃
(2)
t (5.11)

where:

Π̃
(1)
t = g23Cq

{
m2

t (10− 6lnm2
t ) + 2BFS(g̃, t̃j)− 4Re[Lt̃j

R∗
t̃j
]mtmg̃BFS(g̃, t̃j)

}
+ 2|Yttφ0

j
|2BFS(t, φ

0
j )

+2Re[(Yttφ0
j
)2]BFS(t, φ

0
j ) + (|Ytbφ+

j
|2 + |Ybtφ−

j
|2)BFS(b, φ

+
j ) + 2Re[Ytbφ+

j
Ybtφ−

j
]mbmtBFS(b, φ

+
j )

+(|YtÑi t̃
∗

j
|2 + |YtÑi t̃j

|2)BFS(Ñi, t̃j) + 2Re[YtÑi t̃
∗

j
YtÑi t̃j

]mtmÑi
BFS(Ñi, t̃j)

+(|YtC̃ib̃
∗

j
|2 + |YtC̃ib̃j

|2)BFS(C̃i, b̃j) + 2Re[YtC̃i b̃
∗

j
YtC̃ib̃j

]mtmC̃i
BFS(C̃i, b̃j)

+
4

9
e2m2

t [10− 6lnm2
t ] +

[
(g2 + g′2)/4− 2QtT

t
3g

′2 + 2Q2
t g

′4/(g2 + g′2)
]
BFV (t, Z)

+2Qtg
′2
[
Qtg

′2/(g2 + g′2)− T t
3

]
BFV (t, Z) + g2BFV (b,W )/2, (5.12)

Π̃
(2)
t = Cq(8Cq − 4CG)

{
Lt̃j

R∗
t̃j
L∗
t̃k
Rt̃k

MSFFSF (t̃j , g̃, g̃, t̃k, t) + |Lt̃j
Rt̃k

|2m2
tMSFFSF (t̃j , g̃, g̃, t̃k, t)
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FIG. 7: The scale-dependence of the computed gluino pole mass Mgluino pole ≡ Mg̃ , in the simplifying approximation of
degenerate squarks with no squark mixing or quark masses and Yukawa and electroweak effects. Here the top pair of lines are
for mq̃(Q0)/mg̃(Q0) = 3, the middle pair for mq̃(Q0)/mg̃(Q0) = 1.5, and the bottom pair for mq̃(Q0)/mg̃(Q0) = 0.9, where
mg̃ and mq̃ are the running gluino and squark mass parameters evaluated at a reference renormalization scale Q0 = mg̃(Q0),
with αS(Q0) = g23/4π = 0.095. In each case, the solid line is the two-loop result, and the dashed line is the one-loop result.
The parameters mg̃, mq̃, and αS are each run from the reference scale Q0 to the scale Q using two-loop renormalization group
equations, and the gluino pole mass is then recomputed. The computations were done by specializing eqs. (5.4)-(5.10) in the
text.

−Re[Lt̃k
R∗

t̃k
]mtmg̃MSFFSF (t̃j , g̃, g̃, t̃k, t) +

1

2
(|Lt̃j

Lt̃k
|2 + |Rt̃j

Rt̃k
|2)m2

g̃MSFFSF (t̃j , g̃, g̃, t̃k, t)

−Re[Lt̃j
R∗

t̃j
]mtmg̃MSFFSF (t̃j , g̃, g̃, t̃k, t) + Re[Lt̃j

R∗
t̃j
Lt̃k

R∗
t̃k
]m2

tm
2
g̃MSFFSF (t̃j , g̃, g̃, t̃k, t)

}

+8CqIq

{1
2
VSFFFS(t̃j , g̃, g̃, q, q̃k) + 2Re[Lt̃j

R∗
t̃j
L∗
q̃k
Rq̃k ]mtmqVSFFFS(t̃j , g̃, g̃, q, q̃k)

−2Re[Lt̃j
R∗

t̃j
]mtmg̃VSFFFS(t̃j , g̃, g̃, q, q̃k) +

1

2
m2

g̃VSFFFS(t̃j , g̃, g̃, q, q̃k)

−2Re[Lq̃kR
∗
q̃k
]mqmg̃VSFFFS(t̃j , g̃, g̃, q, q̃k) + 2Re[Lt̃j

R∗
t̃j
Lq̃kR

∗
q̃k
]mqmtm

2
g̃VSFFFS(t̃j , g̃, g̃, q, q̃k)

}

+4C2
q

{
VFSSFF (g̃, t̃j, t̃j , t, g̃)− 2Re[Lt̃j

R∗
t̃j
]mtmg̃[VFSSFF (g̃, t̃j , t̃j , t, g̃) + VFSSFF (g̃, t̃j , t̃j , t, g̃)]

+2(Re[Lt̃j
R∗

t̃j
Lt̃k

R∗
t̃k
] + |Lt̃j

Rt̃k
|2)m2

tm
2
g̃VFSSFF (g̃, t̃j , t̃k, t, g̃)] +

1

2
|Lt̃j

L∗
t̃k
−Rt̃j

R∗
t̃k
|2YFSSS(g̃, t̃j , t̃j, t̃k)

−Re[L∗
t̃j
Rt̃k

(Lt̃j
L∗
t̃n

−Rt̃j
R∗

t̃n
)(Lt̃n

L∗
t̃k
−Rt̃n

R∗
t̃k
)]mtmg̃YFSSS(g̃, t̃j , t̃k, t̃n)

+
{
BFS(g̃, t̃j)− 2Re[Lt̃j

R∗
t̃j
]mtmg̃BFS(g̃, t̃j)

}{
B′

FS(g̃, t̃k)− 2Re[Lt̃k
R∗

t̃k
]mtmg̃B

′
FS

(g̃, t̃k)
}

+Re[Lt̃j
R∗

t̃j
]Re[Lt̃k

R∗
t̃k
]m2

g̃BFS(g̃, t̃j)BFS(g̃, t̃k)− |Lt̃j
Rt̃k

|2BFS(g̃, t̃j)BFS(g̃, t̃k)/m
2
t

}

+CGCqf1(t, g̃, t̃j) + 2(CG − Cq)Cqf2(t, g̃, t̃j) + 2C2
q f3(t, g̃, t̃j)

−2CqRe[Lt̃j
R∗

t̃j
]mtmg̃

{
CGf4(t, g̃, t̃j) + 2(CG − Cq)f5(t, g̃, t̃j) + 2Cqf6(t, g̃, t̃j)

}

+C2
qF1(t) + CGCq

[
F2(t) + F3(t, g̃)

]
+ CqIq

[
2F3(t, q) + F4(t, q̃j)

]
. (5.13)

The gauge group constants are Cq = 4/3, CG = 3, Iq = 1/2, Qt = 2/3 and T t
3 = 1/2. The results for the bottom

quark can be obtained by taking t↔ b everywhere, with Qt → Qb = −1/3 and T t
3 → T b

3 = −1/2. The one-loop part
given by eq. (5.12) was given in a different notation in [61]. It includes all effects, including those due to the exchange
of virtual neutral Higgs scalars [φ0j = (h0, H0, G0, A0) for j = 1, 2, 3, 4] charged Higgs scalars [φ±j = (G±, H±) for

j = 1, 2], neutralinos [Ñj for j = 1, 2, 3, 4], and charginos [C̃j for j = 1, 2] and top and bottom squarks. In each of the
loop integral functions in eqs. (5.12) and (5.13), one should take s = m2

t with an infinitesimal positive imaginary part.
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[Here I have only listed the pure SUSYQCD corrections explicitly in the two-loop part, but the corrections involving
Yukawa couplings and scalar trilinear couplings are also given implicitly by specializing the results of section IV.]
I have checked that the result given above is consistent with the two-loop renormalization group equations, in the

sense that the pole mass is invariant under changes in the renormalization scale given by the two-loop SUSYQCD
renormalization group equation for the top quark mass. As another non-trivial consistency check, I have verified
that in the (clearly unrealistic) supersymmetric limit, the top-quark pole mass given above is precisely equal to the
top-squark pole mass as found in eqs. (5.28)-(5.30) of ref. [34]. [In the published and original preprint versions of that
paper, the term in eq. (5.30) proportional to Iq was missing a factor of 2.]
The two-loop SUSYQCD contribution and Yukawa contributions had already been found in refs. [29–31], using a

method in which loop integrals are evaluated using an expansion in small mass hierarchies. In principle, the present
paper generalizes this somewhat, since here I use two-loop integral basis functions without mass expansions. However,
as was recently pointed out in [31], the actual top and bottom quark masses are such that the leading terms in the
mass expansion already give an extremely good approximation throughout most of the parameter space left available
to supersymmetry. I have also checked agreement with eqs. (57)-(62) in ref. [29]. References [29–31] also include an
extensive study of the impact of the two-loop top and bottom quark mass corrections in the MSSM.

C. SUSYQCD corrections to neutralino and chargino masses

In this section, I present the two-loop corrections to neutralino and chargino masses that involve the strong coupling.
These arise from gluon and gluino propagator lines added to the one-loop Feynman diagrams that involve quarks and
squarks, and so are parametrically of order αSy

2
t , αSy

2
b , αSg

2, αSgg
′ and αSg

′2. These two-loop contributions are
evaluated by specializing the results above, and do not require the neglect of W and Z boson masses.
Using the general results of sections III and IV, one can write the neutralino pole masses as:

M2
Ñi

− iΓÑi
MÑi

= m2
Ñi

+
1

16π2
Π̃

(1)

Ñi

+
1

(16π2)2
Π̃

(2)

Ñi

, (5.14)

for i = 1, 2, 3, 4, where m2
Ñi

are the tree-level squared mass eigenvalues, and the one-loop part is [61, 62],

Π̃
(1)

Ñi
= 2nf

(
|YfÑif̃

∗

j
|2 + |YfÑif̃j

|2
)
BFS(f, f̃j) + 4nfRe[YfÑif̃

∗

j
YfÑif̃j

]mÑi
mfBFS(f, f̃j)

+2|YÑiÑjφ
0
k
|2BFS(Ñj , φ

0
k) + 2Re[(YÑiÑjφ

0
k
)2]mÑi

mÑj
BFS(Ñj , φ

0
k)

+2(|YC̃+

j
Ñiφ

−

k
|2 + |YC̃−

j
Ñiφ

+

k
|2)BFS(C̃j , φ

+
k ) + 4Re[YC̃+

j
Ñiφ

−

k
YC̃−

j
Ñiφ

+

k
]mÑi

mC̃j
BFS(C̃j , φ

+
k )

+2(g2 + g′2)
{
|O′′L

ij |2BFV (Ñj , Z)− Re[(O′′L
ij )2]mÑi

mÑj
BFV (Ñj , Z)

}

+2g2(|OL
ij |

2 + |OR
ij |

2)BFV (C̃j ,W ) + 4g2Re[OL
ijO

R∗
ij ]mÑi

mC̃j
BFV (C̃j ,W ), (5.15)

and the two-loop SUSYQCD part (i.e., the part involving the strong interactions) is

Π̃
(2)

Ñi
= 16g23

{1
2
(|YqÑi q̃

∗

j
|2 + |YqÑiq̃j
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∗
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YqÑiq̃j
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∗
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Y ∗
qÑiq̃k
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Y ∗
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qÑiq̃k

Rq̃jRq̃k + Y ∗
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∗

j
Y ∗
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qÑiq̃j
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]mÑi
mqVSFFFS(q̃j , q, q, g̃, q̃k)

−2Re[YqÑi q̃
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]}
. (5.16)

In eq. (5.15), f is summed over the symbols e, µ, τ , νe, νµ, ντ , u, d, c, s, t, b, with nf = 1 for leptons and 3 for
quarks, and in eq. (5.16) the symbol q is summed over u, d, c, s, t, b. The indices j, k, n are each summed over
the appropriate ranges (1, 2 for squarks, sleptons, charginos, and charged Higgs scalars, 1, 2, 3, 4 for neutralinos and
neutral Higgs scalars, including the Goldstone bosons) wherever they appear. The masses and couplings appearing

on the right-hand side are always running renormalized DR
′
parameters. In all of the self-energy functions appearing

in eqs. (5.15) and (5.16), the external momentum invariant is s = m2
Ñi

with an infinitesimal positive imaginary part.

Similarly, the pole masses for charginos in the MSSM can be written as

M2
C̃i

− iΓC̃i
MC̃i

= m2
C̃i

+
1

16π2
Π̃

(1)

C̃i

+
1

(16π2)2
Π̃

(2)

C̃i

, (5.17)

for i = 1, 2, where m2
C̃i

are the tree-level squared mass eigenvalues, and the one-loop part is [61, 62],
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2)BFV (Ñj ,W ) + 2g2Re[OL

jiO
R∗
ji ]mC̃i

mÑj
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, (5.18)

and the two-loop part involving the strong interaction is
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. (5.19)

In the one-loop part eq. (5.18), nf = 1 for leptons and
nf = 3 for quarks, and the symbols (f, F ) are summed
over the 12 ordered pairs: (e, νe), (νe, e), (µ, νµ), (νµ, µ),
(τ, ντ ), (ντ , τ), (u, d), (d, u), (c, s), (s, c), (t, b), (b, t),
while in the two-loop part eq. (5.19) the symbols (q,Q)
are summed over the last 6 of these. The indices j, k, n
are each summed over the appropriate ranges (1, 2 for
squarks, sleptons, charginos, and charged Higgs scalars,
1, 2, 3, 4 for neutralinos and neutral Higgs scalars, includ-
ing the Goldstone bosons) wherever they appear. In all
of the self-energy functions appearing in eqs. (5.18) and
(5.19), the external momentum invariant is s = m2

C̃i
with

an infinitesimal positive imaginary part.
The numerical values of the two-loop neutralino and

chargino pole masses are rather sensitive to the values of
the model parameters. Most often, they can be expected
to be at least several tenths of a per cent, but larger in
some regions of parameter space. A study of the numer-
ical significance of these results, and other contributions
to the neutralino and chargino masses that are implicitly
given in section IV, is deferred to future work.

VI. OUTLOOK

In this paper, I have presented results for radiative cor-
rections to the self-energy functions and pole masses of
fermions at two-loop order. The main specific motivation
for this work is to allow future experimental data on su-
perpartner masses to be connected to hypotheses for the
mechanism of supersymmetry breaking. However, the
strategy used is designed to be more flexible, with po-
tential application to any semi-perturbative theory that
may appear, anticipated or not, at the TeV scale.
The application to the gluino mass may be particularly

crucial, because of the relative strength of the SU(3)C
gauge coupling, and the color octet representation of the

gluino. When one extrapolates the soft-supersymmetry
breaking parameters to very high energies [63]-[67] using
two-loop or even three-loop [68] renormalization group
equations, the gluino mass can also have a quite strong
effect on the determination and running of other param-
eters. It has been found that the combination of the
Large Hadron Collider and a future Linear Collider may
be able to pin down the gluino mass to 1% or so [1]. In
that case, the two-loop corrections to the gluino mass
will definitely be required. In general, the two-loop con-
tributions for other fermions are parametrically smaller,
but still worth including on the grounds that theoretical
errors should be made negligible if at all practicable, in
order to cleanly isolate the experimental implications of
new data.
For reasons of relative simplicity (and not principle),

the calculations presented in this paper have neglected
the masses of vector bosons in the two-loop part. Al-
though this is a quite adequate approximation for many
purposes, it can and should be improved on in future
work. Also, the calculations have been presented here
in a general form, and require specialization; this can be
non-trivial for reasons related more to fatigue in writ-
ing and typing than to conceptual difficulty. However,
this specialization of general results seems well-suited to
symbolic manipulation programs. In any case, the more
lengthy results for specific contributions to the neutralino
and chargino masses, for example, might be better placed
in the innards of computer codes of the type described
in [64]-[67] rather than explicitly on paper.

I am grateful to Dave Robertson for valuable conver-
sations and collaboration on the two-loop self-energy in-
tegral computer program TSIL (ref. [43]) and Howard
Haber and Herbi Dreiner for useful comments on section
II C. This work was supported by the National Science
Foundation under Grant No. PHY-0140129.
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