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5 FORWARD HADRONIC SCATTERING FROM FEW GeV TO MULTI TeV

WITHIN REGGE THEORY

J.R. Peláez
Departamento de F́ısica Teórica II. Universidad Complutense. 28040 Madrid. Spain.

The Regge description of forward hadronic scattering is extended from ∼ 1GeV above each
threshold up to the multi TeV range. This is achieved with a simple parametrization, that
includes mass effects, a logarithmic growth based on an improved unitarity bound at interme-
diate energies and a separate factorization of singularities. This parametrization can be easily
implemented for phenomenological use but also sheds light on subdominant trajectories and
the Pomeron logarithmic growth law.

1 Introduction

In recent works1 we have shown how it was possible to extend down to roughly 1 GeV above
threshold the Regge description of those combinations of total cross sections that involved the
Pomeron, P ′ and ρ Regge trajectories only. In particular we provided several fits to the (p̄p+pp),
(K+p+K−p), π±N and ππ cross sections.

I report here on preliminary results2 that include the a and ω trajectories and extend the
analysis to the total hadronic cross sections of p̄p, pp, p̄n, pn, K±p, K±n, π±N and ππ, as well
as the ImF/ReF ratios of p̄p, pp, pn, π±N and K±p forward elastic amplitudes, F . The data
has been obtained from the extensive compilation of the COMPAS group. Given the fact that
the original references did not treat the systematic uncertainties uniformly, we have followed
two fitting strategies: First, we keep the original uncertainties as such. This allows for an easy
comparison with previous works, including the PDG and the extensive ones of the COMPETE
group3. However, this introduces a bias toward those data sets, usually the oldest, that do
not provide systematic uncertainties. Indeed, many of these data are incompatible within their
statistical errors, and cannot be described simultaneously. This produces an artificially large
χ2/d.o.f. no matter what function is fitted. For that reason, in our second strategy, we have
added a systematic error, but only to those data without it, of 0.5% for pp, 1% for p̄p and 1.5%
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for other processes. The size of these additional errors has been chosen of the same order of
magnitude given by other experiments for the same process, so that we give similar weight to
all sets without discarding any point. To account for different ways of combining statistical and
systematic errors, in the first strategy we have added them in quadrature and linearly in the
second. In addition, we use σtotal data10 on π+π−, π−π−,π+π0, above 1.42GeV, plus one data
point per channel reconstructed from phase shift analysis1 at 1.42GeV. If using ππ low energy
information1,2, the ρ residue and intercept come out somewhat smaller and larger, respectively.

The contributions to the FAB→AB amplitudes from the Pomeron P , the f (or P ′), ρ, ω and
a trajectories, are

Fp±p = (PNN + fNN + aNN ∓ ωNN ∓ ρNN )/2, Fp±n = (PNN + fNN − aNN ∓ ωNN ± ρNN )/2,

FK±p = (PKN + fKN + aKN ∓ ωKN ∓ ρKN )/2, FK±n = (PKN + fKN − aKN ∓ ωKN ± ρKN)/2,

Fπ±p = (PπN + fπN)/
√
6∓ ρπN/2, Fπ±π− = (Pππ + fππ)/3 ± ρππ/2, Fπ0π− = (Pππ + fππ)/3,

where N = p±, n and isospin Clebsch Gordan coefficients have been extracted to simplify the
factorization8 relations RAB(ν) = fR

A fR
BR(ν), where for R = ρ, f, a, ω

R(ν) = βR

(

1 + τe−iπα

sinπα

)

ναR , (1)

where τ is the signature of the trajectory. If we want to take account of the masses, the energy

dependence should appear through ν = (s− u)/2, instead of the usual choice of s. Note that for
forward scattering ν = s−m2

a −m2
b > s − sth. For the intercepts αR we will assume, following

the QCD version of Regge theory, and the recent analysis by the COMPETE group 3, that the
f/a and ρ/ω trajectories are degenerate, that is, that αa = αf and αω = αρ. In addition, some
factors are redundant and can be absorbed by setting fR

π = 1, for R = P, f, ρ and βR = 1 for

R = a, ω. This choice eases the notation and the comparison with previous works 1.

For the Pomeron, we propose the use of a “constant plus logarithm”, i.e.,

PAB = CAB + LAB, ImP (ν) = ν

(

βP +A log2
[

ν − νth

ν1 log
7/2(ν/ν2)

])

, (2)

where the logarithmic law follows an improved unitarity bound9. The choice ν−νth yields slightly
better fits. Note that νth is ν at the branch point of the right cut for each amplitude. Indeed,
it has been confirmed 3 that the σtot growth and the ReF/ImF ratios, are better described

with s log s or, slightly better 3, with s log2 s terms rather than with αP > 1. Our Eq.(2) grows
faster than s log s but slower at intermediate energies than the s log2 s Froissart bound, which is
nevertheless recovered at very high s. The recent generalization of the “factorization theorem”6

requires each singularity to factorize separately. Thus, as a first approximation, and for the
Pomeron, we use separated factors: fC

A and fL
A .

Finally, the real parts of amplitudes are obtained from the dispersive representation, whereas
total cross sections are given by:

σab = 4π2ImFa+b→a+b(s, 0)/λ
1/2(s,m2

a,m
2
b), λ(s,m2

a,m
2
b) = s2 + (m2

a −m2
b)

2 − 2s(m2
a +m2

b)

However, λ is usually approximated by s2. Only very recently7 a slight improvement in χ2/dof
has been found by keeping the whole λ, instead of s2, down to

√
s = 5GeV. Let us remark that,

if Ekin ≃ 1GeV, the effect of using s2, instead of λ, yields a 30% overestimation for NN .



2 Results

We show in Table 1 the parameters of the fits to data for different strategies and different Emin
kin ,

including the nominal uncertainty obtained from the χ2/dof minimization routine MINUIT.
Since the parameters are very strongly correlated these errors should be taken only nominally
around the central values provided for strategy 2. Since there are flat directions in parameter
space it is possible to get somewhat different parameter sets with almost the same χ2/dof but
beyond those nominal errors. An indication of the systematic error in the determination of

single parameters can be obtained from the difference between strategies.

strategy 2 strategy 1 Minuit
Emin

kin 1-1.3 GeV 1-1.3 GeV errors

βP 0.746 0.937 0.003
fP
N 1.792 1.705 0.007
fP
K 0.731 0.714 0.004
A 0.043 0.050 0.001
ν1 0.0005 0.001 0.0001
ν2 0.676 0.633 0.001

f log
N 1.02 0.993 0.001

f log
K 0.723 0.733 0.012
βf 1.70 1.77 0.014

f f
N 1.78 1.75 0.01

strategy 2 strategy 1 Minuit
Emin

kin 1-1.3 GeV 1-1.3 GeV errors

f f
K 0.30 0.32 0.01
αf 0.646 0.640 0.002
fa
N -0.24 0.25 0.04

fa
K -0.55 0.5 0.1
βρ 1.28 1.34 0.11
fρ
N 0.51 0.46 0.04

fρ
K 0.49 0.54 0.04
αρ 0.464 0.464 0.003
fω
N 1.97 1.98 0.015

fω
K 0.66 0.65 0.01

σLHC 109 mb 110 mb 1mb

Table 1. Fit parameters with different strategies. The Minuit errors are just statistical, and nominal, since

the parameters are strongly correlated and can only be used with the central values of strategy 2.

Emin
kin (GeV) 1-1.3 1.5 2 3

# data points 1186 1002 895 768

Parametrization χ2/d.o.f. for strategy 2 / 1

Ours 0.85/1.56 0.63/1.14 0.57/1.05 0.52/0.95

ν1 ≡ 0.01 GeV2 0.85/1.57 0.63/1.26 0.58/1.06 0.52/0.97

powers of sα 1.58/2.87 1.16/2.11 0.99/1.80 0.78/1.42

Pomeron logarithmic term

ν log(ν) 1.01/1.83 0.69/1.26 0.59/1.09 0.52/0.97

ν log(ν − νth) 1.03/1.83 0.69/1.27 0.59/1.12 0.52/0.98

ν log2(ν) 0.97/1.79 0.68/1.24 0.59/1.10 0.52/0.95

ν log2(ν − νth) 0.91/1.68 0.65/1.18 0.58/1.06 0.52/0.95

Factorization of Pomeron logarithms

fL
a ≡ 1 (as PDG) 0.92/1.70 0.66/1.23 0.59/1.10 0.54/1.01

fC
a = fL

a 0.89/1.67 0.64/1.41 0.60/1.14 0.58/1.02

Table 2. χ2/d.o.f. for several Emin
kin and different modifications of our parametrization.

In Table 2 we compare the χ2/d.o.f. of parameterizations where we have not implemented
some of our suggestions. Let us recall that these are: i) using ν instead of s, ii) the Eq.(2),
iii) the separate factorization, i) and the correct flux factor. For each one of them we find an

improvement in χ2/d.o.f., with both fitting strategies.

In Figure 1 we show the curves obtained from our parametrization including, as gray bands,
the nominal uncertainties from strategy 2. The dashed lines correspond to the PDG2004
parametrization 4, valid above

√
s = 5 GeV, but naively extrapolated below. We see that

the simple parametrization reported here describes remarkably well 20 observables extending



from several TeV down to ∼ 1GeV above the threshold of each reaction. Further details will be
given in a forthcoming publication2, but apart from establishing the logarithmic growth of the
Pomeron, we hope it could be easily used for dispersive studies in hadronic physics that involve
integrals from the resonance region to infinity.
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Figure 1: Results from our fit down to 1 GeV above threshold. Total NN , ππ, π±N ,K±p and K±n cross sections

as a function of
√
s, with detail of pp and p̄p at low energies. In the bottom row we show the results for ReF/ImF .

The bands cover the nominal uncertainties in the parameters.
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