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Abstract.

We argue that the electroproduction of exotic particles is a useful tool for study of their
partonic structure. In the case of hybrid mesons, the magnitude of their cross sections shows
that they are accessible for measurements in existing electroproduction experiments.

1. INTRODUCTION

Searching for exotic particles whose structure cannot be explained in the framework
of the constituent quark model is at present a very lively subject of studies. One
of their main streams concentrates on finding a firm evidence for the existence
(or absence) of pentaquarks, with the lowest Fock state containing uudds̄ quarks.
This is particularly important in view of some contradictory results of experimental
searches, reviewed at this conference by I. Strakovsky [1]. Because of the apparently
very small decay width of pentaquarks (≈ 1MeV) their theoretical description
represents a big challenge, as discussed by M. Polyakov [2]. Another family of
exotic particles which are at present a subject of intense studies are glueballs and
hybrid mesons, for their review see, e.g. [3]. The theoretical description of these
particles requires to include in the lowest Fock state the gluonic degrees of freedom.
All these facts stress the importance of studies of the structure of exotic particles
within Quantum Chromodynamics (QCD) for understanding the mechanism of
quark and gluon confinement.
The hard exclusive electroproduction of particles permits to probe the structure

of particles at the parton level. The scattering amplitude factorizes in this case into
perturbatively calculable coefficient function, the non-perturbative distribution
amplitude (DA) of a produced particle and the non-perturbative generalized parton
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distribution (GPD) describing the transition probability amplitude of the target.
The DA and GPD encode full information about parton distribution inside particles
participating in a collission, for a review see, e.g. [4].
Recently it was emphasized [5] that hard electroproduction can also be used to

reveal the partonic structure of exotic particles. In particular, for the processes
involving pentaquarks

γ∗p→ K̄0Θ+ , γ∗n→ K̄−Θ+ , (1)

as well as for their analogs with vector mesonsK∗, the necessary formalism based on
the GPD of p(n)→Θ+ was developed which has permitted next to evaluate some
contributions to the cross section in the Born approximation [5]. Unfortunately,
realistic cross section estimates based on these expressions are not possible at the
moment due to our ignorance of these p(n)→Θ+ GPDs.
Another example of processes in which the partonic structure of exotic particles

can be probed is supplied by the hard electroproduction of JPC =1−+ hybrid meson
π1(1400)

γ∗p→ π1p . (2)

The process (2) is the subject of recent studies in Refs. [6] and [7]. Below we present
in some details our results.

2. THE PUZZLE WITH DA OF JPC = 1−+ HYBRID
MESON

In Ref. [8] Jaffe et al. analyse the particle spectrum (including its exotic sector) by
construction of lowest-dimensional, gauge invariant, colorless local operators. As a
result of this study a hybrid meson with exotic quantum numbers JPC = 1−+ is
described by a local composite operator of dimension 5 built from quark and gluonic
fields, e.g. ψ̄γµGµν ψ, where G

µν is the field strength tensor of a gluon. Such local
operator has a twist equal to 4. Naively one could think therefore that this result
implies that the leading twist-2 DA of a hybrid meson vanishes. Consequently, the
scattering amplitude for hard hybrid meson electroproduction would be suppressed
(at large photon virtuality Q2) in comparison with the amplitude for production
in the same process of non-exotic ρ−meson (JPC = 1−−). The analysis of Ref. [6]
shows that this naive conclusion is not correct for longitudinally polarized hybrid
meson for which the leading twist-2 DA is not zero. Thus, the electroproduction
of such hybrid meson doesn’t need to be strongly suppresed in comparison with a
ρ−meson production.
The analysis of Ref. [6] consists in exploiting the fact that DAs of particles are

defined by a non local composite operators. In the case of a longitudinally polarised
hybrid meson H(p,0) of momentum p the DA has the form

〈H(p,0)|ψ̄(−z/2)γµ[−z/2;z/2]ψ(z/2)|0〉 = ifHMHe
(0)
Lµ

1
∫

0

dyei(ȳ−y)p·z/2φH
L (y) , (3)



where [−z/2;z/2] on the l.h.s. denotes the path-ordered gluonic exponential along
the straight line connecting the initial and final points (−z/2, z/2) which provides
the gauge invariance for bilocal operator and equals unity in a light-like (axial)
gauge. In Eq. (3) fH , MH , e

(0)
µ denote the hybrid meson coupling constant, its

mass and the longitudinal polarisation vector, respectively. Because of the positive
charge parity of the hybrid meson, its DA, φH , is an antisymmetric function:
φH(y) =−φH(1−y). This last property implies in particular that

1
∫

0

dy φH(y) = 0 ,

which means that the first term of the Taylor expansion in z of l.h.s of (3) vanishes
and generally only terms with odd powers of z contribute to this expansion

〈H(p,λ)|ψ̄(−z/2)γµ[−z/2;z/2]ψ(z/2)|0〉 = (4)
∑

nodd

1

n!
zµ1

..zµn
〈H(p,λ)|ψ̄(0)γµ

↔

Dµ1
..
↔

Dµn
ψ(0)|0〉,

in which Dµ is the usual covariant derivative and
↔

Dµ=
1
2
(
→

Dµ −
←

Dµ). The first
non-vanishing term of the expansion (4) corresponds to n = 1 and its twist-2
contribution involves operator

Rµν = S(µν)ψ̄(0)γµ
↔

Dν ψ(0), (5)

where S(µν) denotes the symmetrization operator (S(µν)Tµν = 1/2(Tµν +Tνµ)). Let
us note that Rµν is proportional to the quark energy-momentum tensor, Rµν =
−iΘµν . Its matrix element of interest is

〈H(p,λ)|Rµν |0〉=
1

2
fHMHS(µν)e

(λ)
µ pν

1
∫

0

dy(1−2y)φH(y). (6)

Examining symmetry properties of the operator Rµν and the matrix element (6)
reveals indeed that the C and P parities of Rµν are (−1), equal to those of the
hybrid meson. This proves that fH is non zero and allows to determine its value
through non perturbative methods, such as, e.g. the QCD sum rules method [9]:
a) using the equations of motion one derives that ∂µΘµν = gψ̄γµGµνψ ,
b) the value of the coupling constant fH is determined by the correlator of two
ψ̄γµGµνψ operators.
This results in the estimate fH ≈ 50MeV .
The description of the DA of hybrid meson is complete by fixing the form of

φH(y). This DA satisfies usual non-singlet evolution equations and, forgetting the
slowly varying logarithmic scaling violation factor, we assume in our estimates that
it is given by the asymptotic expression [12]: φH(y)as = 30y(1−y)(1−2y).



qγ∗ (    )

N(p1) N(p2)

H(p)

FIGURE 1. Typical diagram describing the electroproduction of a meson at lowest order. The
grey blobs are the nonperturbative meson distribution amplitude and nucleon generalized parton
distribution.

3. THE HYBRID MESON PRODUCTION

3.1. The scattering amplitude

Knowing the DA of the hybrid meson (3) one can determine the scattering
amplitude at the leading order in strong coupling constant αs. The calculations
proceed in a full analogy as in the ρ-meson case. The electroproduction process (2)
occurs in the scaling regime where the virtuality of the photon Q2 =−q2, see Fig. 1,
is large and scales with the energy of the process, and the momentum transfer t
is small, −t << Q2. In such kinematics the conditions for the QCD factorization
are fulfilled and the scattering amplitude at leading twist is at given factorisation
scale µ expressed as a convolution

A=

1
∫

0

du

1
∫

0

dx φ(u,µ2)H(x,u,Q2,µ2,µ2
R)F (x,µ

2)≡ φ⊗H⊗F (7)

of the DA φ(u,µ2) of meson, the GPD of the target nucleon F (x,µ2) and the
perturbatively calculable coefficient function H(x,u,Q2,µ2,µ2

R). The hard part
of the scattering amplitude depends also on the renormalisation scale µR. The
expression for H(x,u,Q2,µ2,µ2

R) is obtained by adding the contributions of 4
diagrams, one of which is shown in Fig. 1. Taking into account the contributions
of all diagrams one arrives to the scattering amplitude of the form

Aγ∗

L
p→H0

L
p =

eπαsfHCF√
2NcQ

[

euH−uu− edH−dd
]

VH−, (8)



where

H±ff =
1

∫

−1

dx
[

U(p2)n̂U(p1)Hff (x,ξ)+U(p2)
iσµαn

µ∆α

2M
U(p1)Eff (x,ξ)

]

×
[

1

x+ ξ− iǫ ±
1

x− ξ+ iǫ

]

, (9)

and

VM,± =

1
∫

0

dyφH(y)
[

1

y
− 1

1−y

]

.

The functions H and E are standard leading twist GPD’s having well known
properties. Eq. (9) also show definitions of H+

ff and VM,+ necessary for comparison
with the production of ρ-meson.

3.2. Scale fixing and numerical predictions.

The QCD factorisation of the scattering amplitude as given by Eq. (7) introduces
dependence of the coefficient function H , the soft DA φ and the target GPD
F on the factorization scale µ and on the renormalisation scale µR, which in
principle should be treated as two independent parameters. Since in the coefficient
function H only first terms of its perturbative expansion are at best known, the
dependence of the amplitude A on µ and µR can be large and leads to significant
theoretical uncertainties of results. In order to minimalize this uncertainty a scale
fixing procedure has to be invoked.
Inspired by results obtained in calculations of the pion form-factor we adapted

the convention that both scales are equal, µ = µR [7]. Fixing of the scale µ is
then done by applying a modified version of the Brodsky-Lepage-McKenzie (BLM)
procedure: the scale µ is chosen in such a way which leads to a vanishing of large
terms proportional to the β-function (which governs the µ-behaviour of the strong
coupling constant αs(µ

2)) in the square of the scattering amplitude known with
at least the next-to-leading order accuracy, see [10] for details. In more physical
terms the BLM procedure consists in absorbing numerically large terms originating
from the renormalisation into redefinition of the argument of the strong coupling
constant αS(µ

2).
Results of the numerical analysis of hybrid meson electroproduction are shown

in Fig. 2. The solid line represents the cross-section of the non-exotic ρ-meson
electroproduction (quark exchange contribution only) obtained with the BLM scale
fixing. The dashed line describes the cross section for production of the hybrid
meson π1(1400). The comparison of these two curves leads to the conclusion that
the production process of hybrid meson has a sizeable cross section, so that it should
be already now accessible to measurements. Fig. 2 also contains the comparison
of our results with the predictions of Ref. [11] on the ρ-meson production which



takes into account the intrinsic transverse momenta of partons without invoking
the BLM procedure.
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FIGURE 2. Differential cross-section for exotic hybrid meson electroproduction (dashed line)
with µ2

R = e−5.13Q2 compared with the quark contribution to ρ0 electroproduction (solid line)
with µ2

R = e−4.9Q2, as a function of Q2, for xB ≈ 0.33. The dash-dotted line is the result of
Vanderhaegen et al [11] for ρ electroproduction.

4. HYBRID MESON PROBED THROUGH THE
ELECTROPRODUCTION OF πη PAIRS
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FIGURE 3. The kinematics of the electroproduction of πη pair
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FIGURE 4. Typical diagram describing the electroproduction of πη pair. The grey blobs are
non-perturbative the πη-pair GDA and the nucleon GPD.

In the case where there is no recoil detector which allows to identify the hybrid
meson production events through a missing mass reconstruction, one has to base
an identification process through the possible decay products of the hybrid meson
H0. Since the particle π1(1400) has a dominant πη decay mode one can use the
electroproduction process (see Fig. (3)),

e(k1)+N(p1)→ e(k2)+π
0(pπ)+η(pη)+N(p2) (10)

or γ∗(q)+N(p1)→ π0(pπ)+η(pη)+N(p2), (see Fig. (4)), to probe the hybrid meson
properties. The computation of the process in Fig. (4) requires a knowledge of the
generalized distribution amplitude (GDA) for the πη pair [13]:

〈π0(pπ)η(pη)|ψ̄f2(−z/2)γµ[−z/2;z/2]τ 3f2f1ψf1(−z/2)|0〉=

pµπη

1
∫

0

dyei(ȳ−y)pπη ·z/2Φ(πη)(y,ζ,m2
πη), (11)

where the total momentum of πη pair is pπη = pπ+pη while m
2
πη = p2πη. The πη dis-

tribution amplitude Φ(πη) describes non resonant as well as resonant contributions.
It does not possess any symmetry properties concerning the ζ̃-parameter

ζ̃ =
p+π

(pπ+pη)+
−m2

π −m2
η

2m2
πη

, 1− ζ̃ = p+η
(pπ+pη)+

+
m2

π −m2
η

2m2
πη

, (12)

which describes roughly the fraction of total ‘+’ momentum of the pair carried
by the π-meson (in case of particles with equal masees ζ̃ = p+π /p

+) and which is
related to the angle θcm, defined as the polar angle of the π meson in the center of



mass frame of the meson pair:

2ζ̃−1 = β cosθcm , β =
2|p|
mπη

, (13)

In the reaction under study, the πη state may have total momentum, parity
and charge-conjugation in the following sequence JPC = 0++, 1−+, 2++, ..., that
corresponds to the following values of the πη orbital angular momentum L: L =
0, 1, 2, ..., respectively. Thus a resonance with a πη decay mode for odd orbital
angular momentum L should be considered as an exotic meson. The mass region
around 1400 MeV is dominated by the strong a2(1329)(2

++) resonance, it is
therefore natural to look for the interference of the amplitudes of hybrid and a2
production, resulting in the angular asymmetry in πη production.
Asymmetries are often a good way to get a measurable signal for a small

amplitude by means of its interference with a larger one. In the asymmetry a
small amplitudes enters linearly rather than quadratically as in the cross section
which increases chances for sizeable effects. In our case, since the hybrid production
amplitude may be rather small with respect to a continuous background, we use the
supposedly large amplitude for a2 electroproduction as a magnifying lens to unravel
the presence of the exotic hybrid meson. Since these two amplitudes describe
different orbital angular momentum of the π and η mesons, the asymmetry which
is sensitive to their interference is an angular asymmetry defined by

A(Q2,yl, t̂,mπη) =

∫

cosθcm dσ
π0η(Q2,yl, t̂,mπη,cosθcm)

∫

dσπ0η(Q2,yl, t̂,mπη,cosθcm)
(14)

as a weighted integral over polar angle θcm of the relative momentum of π and η
mesons. The variable yl is the longitudinal fraction of the electron momentum k1
carried by the virtual photon.
Our estimation of the asymmetry (14) is shown on Fig. 5 and it has a sizable

magnitude. The structure of this asymmetry is very natural: the first positive
extremum is located at mπη around the mass of a2 meson while the second negative
extremum corresponds to the hybrid meson mass.

5. SUMMARY

We advocate to use hard electroproduction to uncover the partonic structure of
exotic particles. In the case of the exotic JPC = 1−+ hybrid meson π(1400) we
presented quantitative estimates of the leading twist contribution to the electro-
production amplitude, which lead to sizeable effects. The resulting order of mag-
nitude of cross section is smaller than the ρ electroproduction but similar to the π
electroproduction. Thus the exotic hybrid meson effects should be measurable at
dedicated experiments at JLab, Hermes or Compass.
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FIGURE 5. The angular asymmetry as a function of mπη.
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