arXiv:hep-ph/0510038v1 4 Oct 2005

XIth International Conference on
Elastic and Diffractive Scattering
Chateau de Blois, France, May 15 - 20, 2005

GLUEBALLS AND THE POMERON — A LATTICE STUDY"

HARVEY B. MEYER
Deutsches Elektronen-Synchrotron DESY,
Platanenallee 6, D-15738 Zeuthen

We perform lattice calculations of the lightest J = 0,2,4,6 glueball masses in the D=3+1
SU(3) gauge theory and extrapolate to the continuum limit. Assuming that these masses lie
on linear Regge trajectories we find a leading glueball trajectory a(t) = 0.93(24)+0.28(2)a/zt,
where oy ~ 0.9 GeV ™2 is the slope of the usual mesonic Regge trajectories. This glueball
trajectory has an intercept and slope similar to that of the Pomeron. We contrast this with
the situation in D=241 where the leading glueball Regge trajectory is found to have too
small an intercept to be important for high-energy cross-sections. We attempt to interpret
the observed states and trajectories in terms of open and closed string models of glueballs.

1 Introduction and main results

The Pomeron trajectory is qualitatively different from other Regge trajectories in that it is
much flatter (¢/ much smaller) and has a higher intercept-, ap(t = m2) ~ 1.08 + 0.25m? /GeV2.
There has been a long-standing speculation that the physical particles on the trajectory might
be glueballs. If we consider the high-energy hadron scattering in a world deprived of the u, d and
s quarks, it is difficult to imagine that the total cross-sections should behave very differently
from those in the real world. For instance, in leading-logarithmic perturbative calculations],
only the gluonic field contributes to the Pomeron. Thus it is reasonable to expect that the
Pomeron phenomenon would also be observed in the absence of light quarkbb. This consti-

tutes the main motivation for the present investigation: we use numerical lattice techniques
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Figure 1: Chew-Frautschi plot of the continuum SU(3) gauge theory, in D = 3+ 1 (left) and D = 2 + 1 (right).

to investigate whether the mass spectrum of the SU(3) pure gauge theory is consistent with
approximately straight Regge trajectories, the leading one of which possesses the properties of
the phenomenological Pomeron.

Our lattice calculations employ the standard Wilson action on a cubic lattice. We calcu-
late ground and excited state masses, m, from Euclidean correlation functions using standard
variational techniques. We calculate the string tension, o, by calculating the mass of a flux
loop that closes around a spatial torus. We perform calculations with a 2-level algorithnfl at
lattice spacings a ~ 0.10 —0.05 fm. The calculations are on lattices ranging from 16236 to 32348,
corresponding to a spatial extent L ~ 1.5fm. We also perform a calculation on a lattice of size
2fm so as to check that any finite volume corrections are small. We extrapolate the calculated
values of the dimensionless ratio m/y/o to a = 0 using an ac correction.

On the lattice, the problem with the identification of the lightest J > 4 states is that its
cubic symmetry group is much smaller than the continuum rotation group and has just a few
irreducible representations. Nonetheless, as a — 0 an energy eigenstate belonging to one of these
lattice representations will tend to some state that is labelled by spin J. So using continuity
we can refer to a state at finite a as being of ‘spin J’ if a is small enough. At a = 0 a state of
spin J is a multiplet of 2J + 1 degenerate polarisations; if we now increase a from zero, these
2J +1 polarisations will in general appear in different lattice representations, and the degeneracy
will be broken at O(a?). So a particular polarisation of the ground state of spin J = 4,56, ...
will in general be a (highly) excited state in some lattice representation, thus complicating its
identification. If we can perform this identification, then we can extrapolate the mass of the
state to a = 0, so obtaining the mass of the lightest state of spin J. Our identification techniqw;2
is to perform a Fourier analysis of the rotational properties of any given lattice eigenstate. For
this we may use as a ‘probe’ a set of fuzzy Wilson loops based on the propagator within one
time-slice of a massive scalar field in the gauge field background. If we keep its mass fixed
in physical units, it is guaranteed that the rotational invariance of the propagator is restored
as a — 0 (upon averaging over the gauge field). The Wilson loops, which have typically a
size of 0.5fm, then have a rotational symmetry that is broken only by O(a?) effects, so that
we can probe the rotational properties of the glueballs under rotations finer than 7/2 to that
accuracy. Subsequently we found more heuristic techniques to construct the probe operators,
which however are computationally much cheaper and provided as good rotational properties as
the propagator construction at the lattice spacings we were working at.

Having extrapolated our glueball masses to the continuum limit, we plot the squared masses
against the spins in a Chew-Frautschi plob2, as in Fig. [ (left). We now assume that the states
fall on approximately linear Regge trajectories. In that case the leading trajectory clearly passes
through the lightest J = 2 and J = 4 glueballs. We note that there is no odd J state on this



trajectory: it is even signature. The parameters of the trajectory are 2moa’ = 0.281(22), ap =
0.93(24), in agreement with the phenomenological Pomeron if we recall that the usual mesonic
trajectories have slopes o/ ~ ﬁ ~ 0.9GeV~2. Of course, in comparing our leading pure-glue
trajectory with the phenomenological Pomeron we should not ignore the fact that the latter will
mix with the flavourless mesonic trajectory: this effect will presumably increase the intercept
and the slope of the Pomeron.

We can identify the sub-leading glueball trajectory in Fig. [l as well. It contains the lightest
J = 0 glueball, the first-excited J = 2 glueball and the lightest J = 3 glueball. In striking
contrast to what one finds for the usual mesonic trajectories, this secondary trajectory is clearly
not parallel to the leading one. As we shall see, this is not unexpected in a string picture of
glueballs. The trajectories, if linear, would cross somewhere near J = 5; because of unitarity
the true trajectories will not cross but rather repel, as suggested on the figure.

The right plot shows the spec‘crum9 in D =2+ . In contrast to D = 3 + 1, a linear
trajectory between the lightest J = 2 and J = 4 states passes through the lightest J = 0 state.
Between them the J = 0, 2,4 states provide strong evidence for the approximate linearity of the
trajectory. In contrast to D = 3 4+ 1 the secondary trajectory is approximately parallel to the
leading one. The parameters of the leading trajectory are 2roa/ = 0.384(16), ap = —1.144(71).

Unlike the intercept, the slope of the trajectory is similar to what we found in D = 3 + 1.

2 Interpreting the glueball spectrum in terms of string models

A natural model for a high J meson is to see it as a rotating string with a ¢ and ¢ at its ends
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and at the classical level this leads to linear Regge trajectories, J T2 %m2. If we now go to

the pure gauge theory, this simple ‘open string’ model has an immediate analogue: two gluons

joined by a string containing flux in the adjoint representatior]. The rotating adjoint string

produces a linear Regge trajectory J i 27r10A 2~ %nﬂﬂ (assuming Casimir scaling). The

trajectory is much flatter than the usual mesonic Regge trajectory, although not quite as flat
as the phenomenological Pomeron or the leading glueball trajectory that we identified. Since
the adjoint string comes back to itself under C, P or rotations of =, its spectrum contains
0,27 47+ . states, as expected for an even-signature Pomeron.

An equally natural modeP pictures glueballs as composed of a closed loop of fundamental
flux with no constituent gluons at all (one might expect some glueball states to be open strings
and others to be closed strings, with mixing between the two). There are phonon-like excitations
of this closed string which propagate around it and contribute to both its energy and its angular
momentum. The whole loop can rotate around its diameter, obtaining angular momentum that
way too. If one considers the set of states where the angular momentum is purely phononic one

obtains an asymptotically linear Regge trajectory with slop:;3 J 72 L2 while for a loop
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with purely (non-relativistic) orbital motion one obtains a linear trajectory with J T ??2%3; 2

In either case the slope o’ ~ 0.2 — 0.3 GeV 2 is in the right range for the Pomeron. The orbital
trajectory leads to a trajectory of states with positive parity and C = (-1)’, J =0,1,2...
For the leading phononic trajectory, the most striking feature is the absence of a J = 1 state:
apart from a 0% state, all PC combinations are then expected for J > 2.

The SU(3) gauge theory in D = 2+ 1 is linearly confining and therefore an effective string
theory description is equally well motivated. Since the rotating open string lies in a plane, it
provides a natural model for glueballs in two space dimensions. It will contribute states with J
even and C' = +. The closed string is also a possibility; the quantum numbers for the leading C =
+ and C = — phononic trajectories are 07+, 2++ 3+t 4++  and 0-—, 2+, 3+~ 4+ ..
In the simplest form of the model, the two trajectories are degenerate.

YWe do not refer to parity, because in two space dimensions one has automatic parity-doubling for J # 0.



Returning to the data, the D = 2 + 1 leading trajectory contains only even J states with
C' = + and so is naturally interpreted as arising from a rotating open string. Since the intercept
is sufficiently low, it can and does include a J = 0 state, in contrast to the case of 3 spatial
dimensions. The first subleading trajectory has no J = 1 state, although it contains a J = 3
state, and possesses a C' = +/— degeneracy for the lower J where we have reliable calculations.
All this strongly suggests a phononic trajectory of the closed string.

In D =3+1, for J < 4 the leading trajectory contains only even spin states with PC' = ++.
This again suggests that the trajectory arises from a rotating open string carrying adjoint flux
between the gluons at the end points. The subleading trajectory has no J = 1 state although it
does appear to have a J = 3 state, again a feature of the closed string phononic spectrum.

The states one might expect to lie along the odderor? are the lightest odd J, PC = ——
glueballs. From Fig. [l we see that a trajectory defined by the lightest 17~ and 37~ will have
a slope similar to the Pomeron and a very low, negative intercept. However, if the leading
trajectory has an intercept around unity, as claimed phenomenologically, then the lightest 17~
glueball cannot lie on it, but will rather lie on a subleading trajectory. To test this possibility
we need a good calculation of the lightest 57— glueball, something we do not yet have.

3 Conclusions

Using novel lattice techniques, we have calculated the masses of higher spin glueballs in the
continuum limit of the SU(3) gauge theory. We find a leading PC' = ++ glueball trajectory
ap(t) = 0.93(24) +0.25(2)t/GeV? (assuming linearity) which is entirely consistent with the phe-
nomenological Pomeron. The sub-leading trajectory has a larger slope and eventually ‘crosses’
the Pomeron. We argue that such a rich Regge structure for glueballs occurs naturally within
string models.

In contrast to this, we find that in 241 dimensions the intercept of the leading trajectory
is negative so that it does not contribute significantly to scattering at high energies. We find
evidence that the leading trajectory is an open string while the non-leading one is a closed string.
In this case we have enough accurately calculated glueball states along the leading trajectory to
demonstrate its approximate linearity.

In a world deprived of the u, d and s quarks, the mass gap would be given by the lightest
glueball, mg ~ 1.6GeV; the Froissart bound is then stronger by two orders of magnitudel() .
Experimentally, the high-energy pp cross-section lies only slightly below that bound. If the
cross-section is found to exceed it at the LHC, then it will definitely be necessary to include the
effects of light quarks in the description of the hadronic wave-functions at that energy.
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