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Coulomb and hadronic scattering in elastic high-energy nucleon collisions

V. Kundrát, M. Lokaj́iček
Institute of Physics AS CR, 182 25 Prague 8, Czech Republic

The commonly used West and Yennie model approach to the description of the interference
between Coulomb and hadronic scattering of nucleons is critically examined and its deficiencies
are clarified. The preference of the more general eikonal model approach is summarized.

High-energy elastic scattering of nucleons is realized mostly due to the strong hadronic
interactions, and in the case of charged hadrons also by the Coulomb interactions which are being
commonly described with the help of the total elastic amplitude FC+N (s, t). This amplitude is
usually written as the sum of hadronic amplitude FN (s, t) and of Coulomb amplitude FC(s, t)

being mutually correlated by a relative phase αΦ(s, t) 1:

FC+N (s, t) = FC(s, t) + FN (s, t)eiαΦ(s,t), (1)

where α = 1/137.036 is the fine structure constant; here s is the square of CMS energy. For the

phase function Φ(s, t) West and Yennie 2 have derived the formula

Φ(s, t) = ∓
[

ln

(−t

s

)

−
∫ 0

−4p2

dt′

|t− t′|

(

1− FN (s, t′)

FN (s, t)

)]

, (2)

which contains an integral over all admissible t values and, therefore, has not been considered
as an efficient tool for analysis of experimental data. In order to simplify it the following
assumptions for hadronic amplitude FN (s, t) have been accepted 2: (i) the spins of all the
particles involved can be neglected, (ii) the t dependence of the modulus |FN (s, t)| is purely
exponential in the whole kinematically allowed region of t and (iii) both the real and imaginary
parts of the FN (s, t) have the same t dependence for all admissible t values.

Then the total elastic scattering amplitude FC+N (s, t) takes the form

FC+N (s, t) = ±αs

t
f1(t)f2(t)e

iαΦ +
σtot
4π

p
√
s(ρ+ i)eBt/2, (3)

where the phase αΦ(s, t) equals 2

αΦ(s, t) = ∓α

[

ln

(−Bt

2

)

+ γ

]

. (4)

Here γ = 0.577215 is Euler’s constant, p is the value of the momentum in CMS and ρ =
ReFN (s,t=0)
ℑFN (s,t=0)

. Together with the diffraction slope B the ρ is assumed to be independent of t.

Both these quantities together with the total cross section σtot may be energy dependent only
and may characterize the elastic hadron scattering at given energy. The two form factors f1(t)
and f2(t) describe the space structure of colliding nucleons. The upper (lower) sign corresponds
to the scattering of particles of the same (opposite) charges.

It has been shown recently 3 that among the mentioned three assumptions the last one is
automatically involved in the requirement for the relative phase αΦ(s, t) given by integral formula
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(2) to be real. The reality of the phase requires immediately for the quantity ρ(s, t) ≡ ℜFN (s,t)
ℑFN (s,t)

to be constant for all admissible t values.

All other assumptions having played the role in the derivation of Eqs. (3) and (4) have been

studied in detail 3,4. First, it has been shown that the existence of diffractive minimum is in a
contradiction with the constant value of the quantity ρ. Second, it has been pointed out that
the exponential t dependence of the modulus of hadronic amplitude, i.e., |FN (s, t)| ∼ eBt/2 can
be considered as being approximately satisfied only in the region of t running from zero to the
position of diffractive minimum in the differential cross section. However, this position moves
to t = 0 when the energy increases. Thus the region of exponential behavior of the modulus
|FN (s, t)| becomes narrower with increasing energy. The deviations of the modulus |FN (s, t)|
from the exponential behavior can be exhibited by the t dependence of the diffractive slope
B(s, t) defined as

B(s, t) =
d

dt

[

ln
dσN

dt

]

=
2

|FN (s, t)|
d

dt
|FN (s, t)|. (5)

It is evident that in the case of West and Yennie approach this quantity should be t independent
while the experimental data exhibit its t dependence5. Thus, also the second assumption cannot
be fulfilled at all kinematically allowed t values as required in derivation of Eq. (4). And we
must conclude that both integral and simplified West and Yennie formulas contradict the elastic
nucleon scattering differential cross section data.

The preference should be given to the eikonal model approach that is not burdened by similar
limitations. The elastic scattering amplitude can be defined in this approach with the help of
Fourier-Bessel transformation as

F (s, q2 = −t) =
s

4πi

∫

Ωb

d2bei~q
~b
[

e2iδ(s,b) − 1

]

, (6)

where δ(s, b) stands for the eikonal and Ωb represents the two-dimensional Euclidean space of the
impact parameter ~b. Mathematically consistent formulation of Fourier-Bessel transformation is
guaranteed when the function F (s, t) in the region of unphysical t values is defined as analytical
continuation from the region of physical t values in agreement with formula (6), comp. Adachi

et al. 7 and Islam 8 who showed that it is then valid at any s and t.

The influence of both the Coulomb and strong interactions can be described with the help
of the sum of Coulomb and hadronic eikonals 6 and the total elastic scattering amplitude may
be written as

FC+N (s, t = −q2) =
s

4πi

∫

Ωb

d2bei~q
~b
[

e2i(δ
C (s,b)+δN (s,b)) − 1

]

. (7)

Eq. (7) can be then transformed 6 into the form

FC+N (s, t) = FC(s, t) + FN (s, t) +
i

πs

∫

Ωq′

d2q′FC(s, q′2)FN (s, [~q − ~q′]2), (8)

where FC(s, t) and FN (s, t) are Coulomb and elastic hadronic amplitudes defined by expression
(6) with the eikonals δC(s, b) and δN (s, b). Eq. (8) includes the convolution integral of the two
amplitudes defined over kinematically allowed region of momentum transfers Ωq′ .

Eq. (8) can be rewriten as 9

FC+N (s, t) = ±αs

t
f1(t)f2(t) + FN (s, t)

[

1∓ iαG(s, t)

]

, (9)



where

G(s, t) =

0
∫

tmin

dt′
{

ln

(

t′

t

)

d

dt′

[

f1(t
′)f2(t

′)

]

+
1

2π

[

FN (s, t′)

FN (s, t)
− 1

]

I(t, t′)

}

, (10)

and

I(t, t′) =

2π
∫

0

dΦ′′ f1(t
′′)f2(t

′′)

t′′
; (11)

here t′′ = t + t′ + 2
√
tt′ cos Φ′′. For the case of nucleon - nucleon scattering tmin = −s + 4m2.

Formulas (9) - (11) hold generally for any s and t up to the terms linear in α. The expression
in the last bracket of Eq. (9) may be regarded as the first term in the Taylor series expansion
of the exponential e∓iαG; then one can write within the same precision

FN+C(s, t) = FC(s, t) + FN (s, t)e∓iαG(s,t), (12)

the form being analog of original formula (1) of West and Yennie. The G(s, t) (being complex)
cannot be interpreted as a mere relative phase. The reality of G(s, t) would be equivalent to
require for the quantity ρ(s, t) to be constant and vice versa.

Formulas (9) - (11) can be used to determine the elastic hadronic amplitude from the differ-
ential cross section data provided its modulus and the phase are conveniently parameterized (for

detail see analysis of pp and pp̄ scattering at ISR and SPS energies9) and for accurate prediction
of the differential cross section at any t if the hadronic amplitude is given.

The analysis9 of the mentioned experimental data showed that: (i) the quantites B(s, t) and
ρ(s, t) are t dependent in the whole t region, (ii) the influence of Coulomb scattering cannot be
neglected at higher |t| values, either, and (iii) the peripheral picture of elastic nucleon scattering
seems to be slightly statistically preferred by experimental data.

The acurate determination of the elastic amplitude is also important when the luminosity L
should be calibrated on the basis of elastic process; it holds 10

1

L
dNel

dt
=

π

sp2
|FC+N (s, t)|2, (13)

where dNel

dt is the counting rate established at corresponding t. The so called Coulomb calibration
in the region of smallest |t| where the Coulomb amplitude is dominant (reaching nearly 100 %)
can be hardly realized at the LHC due to technical problems. The approach allowing to avoid
corresponding difficulties may be based on Eq. (13), when the total elastic scattering amplitude
FC+N (s, t) with required accuracy at the smallest achievable |t| is established.

However, then it is very important which formula for the total elastic amplitude FC+N (s, t)
is made use of. In the following we will demonstrate possible difference at different t values. We
have calculated the quantity

R(t) =
|FC+N

eik (s, t)|2 − |FC+N
WY (s, t)|2

|FC+N
eik (s, t)|2

∗ 100, (14)

where FC+N
eik (s, t) and FC+N

WY (s, t) are the values of total elastic scattering amplitudes calculated

in the framework of Bourelly-Soffer-Wu model 11,12 for pp elastic scattering at the LHC energy
14 TeV (the central behavior in the impact parameter space); the former quantity with the help
of Eqs. (9) - (11) and the latter one with the help of Eqs. (2) - (3). The t dependence of
the quantity R(t) is represented in Fig. 1. Its maximum value is 0.8 % at t = −0.006 GeV2

showing that the resulting differential cross sections determined with the help of commonly used
West and Yennie method and with the help of mathematically and physically consistent eikonal



Figure 1: t dependence of the quantity R(t) defined by Eq.(14) and calculated for the Bourrely-Soffer-Wu model

Figure 2: t dependence of the same quantity R(t) defined by Eq. (14) and calculated for the model of Islam et al.

approach differ. This difference is a function of the t variable. Similar behavior of the quantity
R(t) has been also obtained in the preliminary analysis 13 in the case of model of Islam et al.14

where the maximum value of the quantity R(t) is much higher.
R(t) will also differ for the other types of the phase of elastic hadronic amplitude - see the

analysis of pp and pp̄ scattering at ISR and SPS energies 9 corresponding to the central and
peripheral distributions of elastic hadron scattering where this difference is yet larger in the
peripheral case. It means that the luminosity determined for the central as well as peripheral
distributions of elastic pp scattering at LHC energy of 14 TeV may be burdoned by a non-
negligible systematic error.
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