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We propose a generalization of the upgraded Karl- Sehgal  formula which relates baryon 

magnetic moments to the spin structure of  constituent quarks, by adding anomalous 

magnetic moments of quarks. We first argue that relativistic nature of quarks inside 

baryons requires introduction of two kinds of magnetisms, one axial and the other 

tensoriel. The first one is associated with integrated quark helicity distributions 
i i

∆ − ∆  

(standard ) and the second with integrated transversity distributions  
i i

δ δ− . The weight 

of each contribution is controlled by the combination of  two parameters, 
i

x  the ratio of 

the quark mass to the average kinetic energy and 
i

a  the quark  anomalous magnetic 

moment. The quark anomalous magnetic moment is correlated to transversity and both 

are necessary ingredients in describing relativistic quarks.  The proposed formula, then 

when  confronted with baryon magnetic moments data with reasonable inputs, yields 

beside quark magnetic densities, anomalous magnetic moments enough large to not be 

ignored.  

12.39.Ki, 13.40.Em, 24.10.Jv, 24.70.+s 

I – Introduction. 



Karl-Sehgal
1
 formula (upgraded first by Cheng and Li

2
 then by Di Qing

3
 et al.) relating 

baryon magnetic moments to the spin structure of the constituent quarks takes into 

account the relativistic nature of quarks inside the parent nucleon. The upgraded  formula 

by Di Qing et al.  is a model independent, field theoretical relation which includes  quark 

tensor charges in addition to the longitudinal spin part of the formula. At the relativistic 

level the transverse spin structure is an independent structure at , with respect to the  

longitudinal spin structure
4
.  A straightforward but however lengthy way to obtain the 

formula   is to expand  quark field operators in  nucleon matrix elements of quark 

currents in terms of a complete set of quark and antiquark wave functions. In performing 

such expansion,  quark-antiquark   pairs become operating   if the baryon state is a Fock 

decomposition  beyond the 3
q  state. 3 3

0| | |B c q c q qqα α
α

〉 = 〉 + 〉 +∑ "Attempts have 

been made to generalize the formula by taking into account the contributions from quark-

antiquark   pairs  in a  constituent quark model with valence 
3

q  and sea 
3

q qq  mixing. It 

is  found that  pair creations only contribute  a small amount  to the magnetic moment of 

the  proton ( 0.065 .n m−   with .n m  the nucleon magneton)
3
 . It is to note that the 

inclusion of  sea quarks by  authors of reference 3 through the Fock space configuration  

is a tentative to include quark interactions into the scheme. In this paper we reconsider 

the problem of introducing interactions into the baryon magnetic moments formula   by 

using a standard approach in which the baryon has the standard 3
q  configuration .There 

are several  possible sources of interactions which contribute to  baryon magnetic 

moments. Exchange magnetic moments5 6 ( they  are  generic  in any interacting field 

theory), transition moments and  individual anomalous magnetic moments (a.m.m) of  

quarks .Exchange magnetic moments contribute a non-additive piece to the baryon 



magnetic moments. This means that this contribution will add an additional term not 

proportional to the sum of individual quark magnetic moments. In the chiral quark model 

for instance, two- body exchange moments ( to consider only the leading )come from the 

exchange of one Nambu -Goldstone boson with one photon attached  in all possible 

ways. A rough estimate of the size of  exchange moments yields  0.010 .n m 5.The 

exchange correction, being  connected with exchange of charged pions, requires the 

presence of u and d quarks in the baryon and hence contributes only to the  proton and 

the neutron. Transition  moments add a (yet small) piece to the process Σ → Λ .Other  

contributions  are due to anomalous magnetic moments of quarks. Such contributions  on 

the contrary may be significant . Nonlinear chiral quark model for instance  may be  used  

to estimate the order of magnitude of the anomalous contribution. In fact one would 

expect an anomalous magnetic moment7  of order 

2

2
10%i

CSB

m
≈

Λ
( 360 , 1

i CSB
m Mev Gev≈ Λ ≈ ) with  

i
m  being  the constituent  mass of the 

quark,  supposed to be the effect of chiral symmetry breaking, and 
CSB

Λ  is the chiral 

symmetry breaking scale. There are several theoretical and experimental studies 

indicating quarks do have non negligible  a.m.m. To fit the measured magnetic moment 

of the baryon octet, it is found that quarks must have a sizable a.m.m. In  effect, non 

relativistic constituent quark model for light hadrons, with  measured anomalous 

magnetic moments for the proton and the neutron respectively 1.79
p

a =   and 

1.91
n

a = − yields the relations. 
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On the other hand, to fit hadron spectrum in the constituent quark model required masses  

of the up and down quarks to be of the order 420
u d

m m Mev=� .Such values of masses  

suggest a sizable anomalous magnetic moments of the order 0.24, 0.30
u d

a a� �  and a 

small difference 0.07
u d

a a− �  to recover the isospin symmetry 
u d

m m� . Bicudo et al8  

have shown in  several effective quark models, that in the case of massless-current 

quarks, chiral  symmetry breaking usually triggers the generation of an anomalous 

magnetic for the quark of the order 0.28a � .In the same spirit, Singh 9 has also proven 

that, in theories in which chiral symmetry breaks dynamically, quarks can have a large 

a.m.m. On the other hand, Köpp et al 10 have provided a stringent bound on the a.m.m 

from high-precision measurements at LEP, SLC, and HERA. In the second section we 

will give  theoretical arguments showing  that quark anomalous magnetic moments and 

tensor charges are  necessarily correlated.  



In the following we assume we have derived an effective lagrangian defined at the scale 

of low-energy  magnetic moments after having  integrated all unwanted fields . 

Constituent quarks have masses im  sdui ,,=  and do have  anomalous magnetic 

moments from  the term 
µν

µνψσψ F
m

Qa

i

ii

2
 in the effective lagrangian. Baryon magnetic 

moments 
N

µ
G

 are composed of a contribution  due solely to quark  electric charges and 

their longitudinal spins  (quark-antiquark pairs neglected) and other collective 

contributions such as exchange moments , transition moments and finally a contribution 

due the anomalous magnetic moments of quarks .The last two contributions are 

represented by dots.  

3

,

| |
2

i

i iN

i i

Q
PS dr r PSµ ψ γψ= 〈 × 〉 +∑ ∫

JG G G
! � ����

, , ,
i

Q i u d s=  are  quark charges, ( )
i i

ψ ψ
 
constituent  quark (antiquark) fields and | PS〉   

is  the baryon ground state with momentum P  and spin polarization S   .The spin 

structure of quarks is encoded in the axial and tensor charges, respectively 

denoted
i i

i∆ = ∆ + ∆ and 
i i

iδ δ δ= −  (the minus sign accounts for the odd charge 

conjugation parity of the transverse spin operator).The quark helicity density  (antiquark) 

( )
i i

∆ ∆  is defined in the parton  infinite momentum frame as  ( ) ( )i i idx q x q x↑ ↓∆ = −  ∫  

with ( ) , ( ( ))
i i

q x q x↑ ↓ , the probability of finding a quark with fraction x  of the baryon 

momentum and polarization parallel ( anti parallel) to the baryon spin .It  can also be 

shown to be related to the expectation value of the relativistic quark(antiquark) spin 

operator in the baryon  



3 †
| | 2i i iPS dx PS Sψ ψ〈 Σ 〉 = ∆∫

JGG � ����
Similarly 

i
δ  is given by the formula.  

3
| |i ii

PS dx PSψ ψ δ〈 Σ 〉 =∫
JG G � ����

 

and can be  shown to be related to the first moment of  the quark transversity distribution  

1

0

[ ( ) ( )]
i i i

dx q x q xδ → ←= −∫  11 .Similar expressions apply to the antiquark. Unpolarized quark 

distribution (well known),  quark helicity distribution(known), and  transversity distribution  

(unmeasured but calculated on  lattice, and several other models ), provide together, a 

complete description of the quark spin .To stress the difference between helicity and 

transversity , recall that if quarks moved non relativistically in the nucleon, ( )
i

xδ  and ( )
i

x∆  

would be identical as only large  components of the fermion field are leading in which case 

0
† †ψ ψ γ ψ= � and both definitions (4) and (5) coincide . Another way of seeing  this, is 

that   rotations and Euclidean boosts ( non relativistic case ) commute and a series of boosts 

and rotations can convert a longitudinally polarized nucleon into a transversely polarized 

nucleon at infinite momentum. So the difference between  transversity and helicity 

distributions reflects the relativistic motion of quarks inside  the nucleon.  

To express  baryon magnetic moments in terms of spin degrees of freedom we  compute (3) 

using the field current
i i i
j ψ γψ=
G G

 and assume  the ground state of the baryon to have  a 

vanishing non-relativistic orbital magnetic moment. To this end it is useful to decompose the 

quark current into two distinct pieces using Gordon decomposition and  to not expand  

quark field operators in terms of a complete set of quark and antiquark wave functions as 



in the  previous cited work  . The convection current part  and the spin current part 

contribute differently, giving  respectively.  

( )
2(1 )

( )
2

i i i

i

i i

i i i

i

i

x

x x

x

x

µ δ

µ δ

∆ −
+

∆ +

� ����

 

where i

i

i

m
x

E
=

〈 〉
 is the ratio of the constituent quark mass to the average   kinetic energy of 

the quark in the baryon ground state. Adding antiquarks  and denoting 

| |N NP Pµ µ= 〈 ↑ ↑ 〉
G G

 we get. 
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Equation (7) is the upgraded Karl-Sehgal formula cited in reference 3 but obtained in  

another rearrangement of terms. Equation (7) is the   weighted sum of two distinct 

combinations ( )
i i

i

i

x

δ
∆ − ∆ −  and ( )

i i

i

i

x

δ
∆ − ∆ + .The former combination shrinks to zero in 

the non relativistic limit. The latter combination survives the non relativistic limit and has the 

advantage that it is the only one which will be  affected by the anomalous magnetic moments 

of  quarks. Let us cite by the way a misuse of the Gordon decomposition which occurred 



twice in literature 12   and 13 .In  Gordon decomposing  the magnetic moment, the spin part  

takes  the form
1

| ( )
2

spin
r

m

ν
νµ ψσ ψ∝ × ∂∫

G G G
  where 

νσ
G

is a vector which components are 

νσ i
.The spatial derivative i∂  gives (after neglecting a total derivative) the term 

ψψΣ∫
G

m2

1 a while  the time derivative 0∂  gives a  non vanishing contribution, as   quark 

fields do depend on time .What induced the above authors in error is probably the fact that 

the quark field  ),( tx
G

ψ  being interacting with gluons can not be expanded  in terms of Dirac 

spinors in a free manner but can still be  expanded at a given time say t=0, hence )0,(x
G

ψ .We 

can proceed this way  but after having performed the time differentiation if Gordon 

decomposition is to be used. In the appendix we give a correct computation of the spin part. 

II – Tensor charge and anomalous magnetic moment correlation. 

Let us have a close look to formula (7). This formula has an insufficiency .It leads to an 

absence of magnetism in the ultra-relativistic limit due in part to the that, it is the average 

energy of the quark inside the  baryon that  builds up the intrinsic magnetic moment and 

not the constituent mass 
i

m  i.e. 
0 0

1 1i

i

i i i

m
x

E m E
µ =

〈 〉 〈 〉
�  which goes to zero for infinite 

kinetic energy. The  reduction factor x  is explicit in (7) and is simply the Lorentz-

Fitzgerald contraction length due to the relativistic boost as the magnetic moment is a  

vector ( space components of a four vector).   On the other hand, tensor charges in the 

formula, being there to account for constituent quark masses ( the mass term mψψ flips 

helicity and hence involves transversity ), should also disappear in this limit. We have 

                                                   

a
 The error made by cited authors is that they  only retain the Σ

G
term 



indeed | ( ) 0
N ultra

i iµ δ δ− + =� .The absence of magnetism in this limit suggests  that 

formula (7) does have a missing term and that this term   is associated with  the 

anomalous magnetic moment of the quark.  Why did we say that the anomalous magnetic 

moment of the quark is the missing term?. Formula (7) is a relativistic formula which 

describes how a magnetic photon couples to quarks being spinning  point like objects. It 

also says that this coupling  is decreasing  with energy due to the reduction factor . On 

the other hand we know from  quantum mechanics that  particles  of definite  energy and 

momentum are not localized. It then follows   a  possible current in the lagrangian of the 

form
b
  

�
m

αβ
α βψσ ψ∂ � ����

 

Perturbatively, for a photon to probe such a current, a quark should  radiate a field ( 

gluon or goldstone boson or whatever ) at position x and reabsorbed at a distant position 

y , once it interacts with the photon ( vertex interaction and not a self-energy interaction 

).In this process the probing photon sees the quark as an extended object or rather an 

electric current circulating in the area of the extension .This is what we call “anomalous” 

magnetism. The correlation of the anomalous magnetic moment to the tensor charge is 

suggested by the structure of the current (8) which, as the mass term,  flips helicity. 

                                                   

b
 Differentiation of the field is non zero only if the field has a spatial and/or temporal extension. Point like 

objects have a current without derivatives  such as αψγ ψ  for instance. 



Adding  quark anomalous magnetic moments of quarks to  formula (7), this one  

generalizes to (see appendix). 
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There is another different way of seeing that quark anomalous moments are  missing . 

Let us  rearrange   formula (7) as this. 

� 2 ( ) ( )
i i i i ii i

W A B δ δ= ∆ − ∆ + − � ����������������������������������
 

Parameters 
i

A  and 
i

B  are expressed in terms of  
i

x . 

�
1

1
1

1
1

1

i

i i

i

i

A

x x

B
x

= +
+

= − +
+

� �����

�
Being functions of only  one common parameter 

i
x , 

i
A  and 

i
B are  not independent 

parameters  .Hence, these parameters could not distinguish between the  contribution to  

baryon magnetic moments coming from helicities and  the contribution coming from  

transversities, while  these are supposed to be independent contributions  in a relativistic 

regime. In general one may imagine that having two different spin structures in 

relativistic physics, namely, the longitudinal spin ,
i i

∆ ∆  and the transverse spin ,
i i

δ δ , 

quarks necessarily would  carry  two different magnetisms respectively of the form   



( )
i i i i
Aµ ∆ − ∆ and ( )

i i i i
Bµ δ δ− c

.So in the relativistic case ,the most general contribution 

to the baryon magnetic moments of quarks and antiquarks would be of the form(10)  but 

where 
i

A  and 
i

B  are two independent parameters .Identifying coefficients of axial and 

tensoriel magnetic densities in both (9) and  (10)we get  two independent parameters . 

�
1

1
1

1
1

1

i

i

i i

i i

i

A
a

x x

B a
x

= + +
+

= − + +
+

� �����

�
We understand that the introduction of  anomalous magnetic moment is a necessary 

requirement of relativity, otherwise  parameters 
i

A  and 
i

B  would be dependant 

parameters ( i.e. depend only on one parameter 
i

x ) which means that  helicity and 

transversity would no longer be two different spin structures in relativity. On the other it 

becomes also clear in this approach , that the quark anomalous magnetic moment is 

correlated to the quark transversity. Such a correlation is manifest at the ultra relativistic 

at which 
i

W  function in (9) takes the form.  

� 2 ( )
i i ultra

W a iδ= � �����
 

where 
2 2

( )
3 3

NR NR

ultra i i
iδ δ= = ∆  is the ultra relativistic limit according to the solution of 

equations(18) .This limit makes it explicit that   quark anomalous magnetic moments 

together with tensor charges dominate the ultra relativistic regime. 

                                                   

c
 Hereafter we will call the first, axial magnetism ( although it is not the axial charge i i

∆ + ∆  (sum) 

which is involved but i i
∆ − ∆  (difference)) and the second, tensoriel magnetism. 



 

III – Baryon magnetic moments analysis. 

To include all baryons in the proton scheme, we assume  SU(3) flavor symmetry. This   

enables us to write all baryon magnetic moments in terms of 
i

W  associated  to   the 

proton.  
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 A consequence of the SU(3) symmetry is that   magnetic moments can be written with 4 

parameters ,instead of the 6 parameters 
i

µ  and 
i

W .Denoting the four parameters 

0 3 8, ,c c c  and r  we get 
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where  
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We have a system of four equations  (once  coefficients ,s
c r  are fixed) but  six 

independent variables. To solve it we need   two assumptions. To this end we first 

rewrite the system in terms of only five (new) variables , ,u u

i i i

d s

W W
µ µ

µ
µ µ

= �  and then 



making the standard assumption 2u

d

µ
µ

= − ,  we end up with a soluble system ( four 

equations and four variables) . Putting 0

3 8

3

3

rc
f

c rc
=

−
 we get. 
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It remains to fix one of the parameters, say 

u
µ   to get access to the s

i
W  from the 

experimental data  ,s

i
c r  .Parameters 

i
x  which appear in equation (18) remain 

undetermined . To fix them we call for Melosh-Wigner rotation reductions of nucleon 

spin which are due to quarks being relativistic particles  inside baryons
d
. Indeed we have 

following  relations between  Pauli and Dirac spinors 

3 5 †

' ' 3

0 3 5 †

' ' 3

( ) ( )

( ) ( )

s s A s s

s s T s s

u k u k M

u k u k M

γ γ χ σ χ

γ γ γ χ σ χ

=

=
�

 

,
A T

M M  being the known Melosh14 15 16 rotations  .These rotations are shown to verify 

identities which in terms of spin densities take the form   . 

                                                   

d
 We have already invoked reduction of magnetic moments as consequence of Lorentz boost. Here it is 

rather, the reduction of the spin which matters as we know the value of the spin before and after the 

reduction hence the value of the reduction factor i
x . 
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The second expression is obtained if one  assumes, in addition, that quark momentum 

distributions of  nucleon ground state is spherically symmetric, that is 
2 2

32k k⊥〈 〉 = 〈 〉 . 

These relations serve to extract   parameters i
x    from knowledge of  naïve quark model spin 

densities 
NR

i
∆  and  relativistic spin densities i

∆ .  

IV – Numerical applications. 

As far, we have the experimental data 17 for seven magnetic moments( 
0

( )µ Σ is not 

available) and one transition moment 0 0( )µ Σ → Λ .Various calculations estimated 

collective contributions to be small. They are however shown to be necessary in order to 

satisfy sum rules which are consequences of SU(3) symmetry.  In doing so one   gets  a 

best fit to the baryon magnetic moments and avoids  introduction of artificial errors as in 

the Karl analysis of Karl-Sehgal  equations .These  corrections to magnetic moments 

however concern only the proton , the neutron and the transition 
0 0Σ → Λ  and are 

accounted for by adding a constant to their magnetic dipole moments.  
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The following numeric values
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correspond to a   best fit with 
2

/ . . 1.3d o fχ = .We will base our numeric analysis of 

baryon magnetic moments on these values. Parameter 0.266 0.01 .V n m= ±  serve to 

predict  
0

( )µ Σ  but is of no relevance to  
s

i
W  as it describes  only collective effects. 

Inserting these values into    (17) we get . 
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To estimate  i
x   we use equation (18) and write ( u d

x x x= = ) 

� 9 1 9 1
( ) ( ) 0.60

10 2 10 2
u d A

x g η= ∆ − ∆ − = − − = � �����
 

Where values 4 / 3, 1/ 3
NR NR

u d
∆ = ∆ = −  have been used together with the Bjorken sum 

rule 1.27A
g u d= ∆ − ∆ =  and the result from HERMES collaboration 19 

0.05u dη = ∆ − ∆ =   .Remember that in changing variables from 
s

i
W  to 

s s

i i i
W Wµ=�  we 

reduced the number of variables by one unit and were able to solve the system of 

equations. The price we paid  is the  unknown parameter u
µ  ( other i

µ  are linked to this 

one )still present in our formula.  
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One  look at the above formula as a family of parametric sheets (magnetic sheets) in the 

3-dimensional space of coordinates , ,
i ii

i aδ∆ − ∆  , the parameter being i
µ . To 

continue we select one magnetic sheet  which corresponds to 2.38 .
u

n mµ =  

( 263
u

m Mev� ). This value is obtained from the non relativistic form of (22)   with  

vanishing anomalous magnetic moments
e
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To investigate   equation (20) further, we make the approximation
u d

a a a=� .( this is 

suggested by the estimation we did in (2) ).Subtracting u quark contribution from  d 

quark contribution in (20) and plug in  the experimentally measured 

quantity 2 ( ) ( )
A d u ud

gη − = ∆ − ∆ − ∆ − ∆ we get. 

2 1
(2 ) ( 2 ) (1 )( 2 )

(1 )
d u A A

u

d u d u
W W g a g

x x x x

δ δ δ δ
η η

µ
− −

+ = − + + + − −
+

� � � �����

 

All parameters in the above equation are fixed except the values of tensor charges, and 

the average over the up and the down quark anomalous magnetic dipole  moment a . 

                                                   

e
 The constituent quark mass i

m ( or equivalently i
µ ) is a free parameter in our approach .It is not fixed by 

baryon magnetic moments data. The best way to estimate its order of magnitude  is to take the non 

relativistic limit of our formulas.  



Tensor charges are not measured yet, but are estimated in various models. Using tensor 

charges from  various models
f
 such as,  Chiral soliton (NJL)

20
 

21
,
22

 Lattice(LAT)
23

, 

Melosh-Wigner (M-W)
24

, Valence sea quark mixing model (VSQMM) 1,  Quark soliton 

model (QS)
25

, Bag model (BAG)
26

 
27

, the constituent quark model with Goldstone boson 

effects (CQ)
28

, Qcd sum rules(SR)
27

,
 

we compute  anomalous magnetic moments 

u d
a a a= �  of quarks, averaging over models, and also axial magnetic densities. Our 

results are as follows. 

0.38

0.78

0.39

u d

u u

d d

a a

∆ − ∆

∆ − ∆ −

� �

�

�

� �����

We may use above axial magnetic densities 0.83 ; 0.44
u u d d

∆ + ∆ = ∆ + ∆ = −  to infer 

sea quark polarizations 

0.03

0.05

u

d

∆

∆ −

�

�
� �����

to compare with   those obtained in the latest publication which used a standard non 

relativistic zero anomalous magnetic moment approach
18

 0.01, 0.06
u d

∆ − ∆ −� � . 

Predictions for the strange quark suffer from lack of experimental information. To get an  

order of magnitude of the anomalous magnetic moment of the strange quark we consider 

following hypothesises, usually applied not only to strange quarks but to  all flavours   

simultaneously
29

  

                                                   

f
 If tensor charges for quarks get  measured accurately, then one may use formula (22) to extract precise 

values of quark anomalous magnetic moments and vice versa . 



Hypothesis A) Strange antiquarks in a polarized baryon are generated entirely by the 

perturbative splitting of gluons g ss→ .In such a case, it is reasonable to expect 
s s

∆ ≈ ∆  

that is a vanishing  axial magnetism, 0
s s

∆ − ∆ = .In this case 
s

W�  of (20) takes the 

simpler form . 

( ) 1
2 (1 )

(1 )

s

s

s s

W B
a s

x
δ

µ
= + −

+

�

� �����

�
�

Hypothesis B) Strange antiquarks in a polarized baryon  reside entirely in a cloud of spin 

–zero strange mesons. In this case ,strange antiquarks have no net polarization , i.e., 

0
s

∆ = , so that 
s s s s

∆ − ∆ = ∆ + ∆ .Equation (20) become in this case 

� ( ) 1
2 ( ) (1 )( )

(1 )

i

i i ii i

i i i i i

W B i i
a

x x x x

δ δ
µ

= ∆ + ∆ − + + ∆ + ∆ +
+

�

� �����

�
 

We cannot  extract  
s

x from Melosh-Wigner rotation as we did for the light quarks 

simply because  there is no transformation relation between ( )
s s

δ∆  and ( )NR NR

s s
δ∆ ).But 

the strange quark being  heavier that the up and the down quark,  gets less kinetic energy, 

so we may take for illustration  0.8 1
s

x −�  .Our results for the strange quark are 

displayed in Tableau 1. 

 

 



0.33 0.86
s u

µ µ= =  sδ  0.8s

s

x

a

�
 

1s

s

x

a

�
 

QS -0.01 1.41 0.9 

VSQMM -0.024 1.17 0.76 

LATT -0.046 0.91 0.58 

Chiral Quark 

potential
30

 

-0.133 0.38 0.20 

 

Tableau 1:Strange quark anomalous magnetic moments in model B for  ratios 

0.8 1
s

x −� and for various models. 

We do not display results in model A, because they gave unrealistic values for the 

strange quark anomalous magnetic moments. On the other hand we note that  only the 

chiral quark potential model  seems to give  acceptable values 0.20 0.38
s

a −�  while the 

lattice model producing  a too small value for the tensor charge, yields a too high 

unacceptable anomalous magnetic moment 0.91
s

a � .It leads however to moderately 

reasonable value 0.58
s

a �  for strange quarks nearly at rest 1
s

x � . 

V – Conclusion 

Magnetic moments of the nucleon are static properties  ( nucleon at rest). The quark 

inside the nucleon are  nevertheless   strongly bound relativistic objects. Being 

relativistic, the spin structure of  quarks  involves in general,  both  quark helicity 

distributions and quark transversity distributions. Transversity  distributions encode 



relativistic effects of quarks inside the nucleon. We have shown in this study that since 

relativity requires existence of two independent spin structure, one longitudinal and the 

other transverse, it then follows, the existence of two independent magnetisms which we 

may call respectively axial and tensoriel. The contribution of each component is 

weighted by two independent  parameters namely 0 1
i

xE E  the ratio of the quark 

constituent mass to the quark average kinetic energy, and the anomalous magnetic 

moment 
i

a .Hence the  quark anomalous magnetic moment 
i

a is strongly correlated to the 

tensor charge iδ  and this correlation is made more explicit in the ultra relativistic limit. 

Upgraded  Sehgal-Karl-Chen formula relating baryon magnetic moments to the quark 

spin is a relativistic formula which necessarily includes quark tensor charges, but 

according to  above considerations such formula is lacking  essential ingredients which 

are   quark  anomalous magnetic moments which are  correlated to tensor charges. To get 

a consistent formula for baryon magnetic moments we do add the missing part. We then   

confront our formula with baryon magnetic moments data  using  reasonable inputs such 

as 2u

d

µ
µ

= − , non relativistic limit to extract the quark mass 263
u

m Mev� , Melosh –

Wigner rotation reductions of nucleon spin to estimate ,
u d

x x   and tensor charges from 

various model computations .Anomalous magnetic moments of the u, d, and s quarks are 

evaluated, 0.38
u d

a a� � , 0.20 0.38
s

a −�  and turn out to be enough large to not be 

ignored in any reliable analysis. Axial magnetic  densities 
i i

∆ − ∆   for the up and down 

quarks or equivalently sea antiquark polarizations are also extracted and are different 

from values obtained in standard analysis of baryon magnetic moments. Our values are 



0.03, 0.05
u d

∆ ∆ −� �  to be  compared  with values obtained in an approach without 

quark anomalous magnetic moments nor quark tensor charges  0.01, 0.06
u d

∆ − ∆ −� � . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 

To prove the anomalous part of formula (9)  , we  Fourier transform the anomalous part 

of the magnetic moment operator. We consider only one flavor and no antiquark to 

simplify notations 

�
3

3

0

( ( )́ ( ) )
2 2 (2 )

N anomalous

q

aQ d p
P k k q P

q m

ν

ν

σ
µ ψ ψ

π =

∂
= − ↑ × ↑

∂∫
G

G
G �

� �

with '
q k k= −

G GG
, 

'

2

k k
p

+
=

G G
G

 and νσ
G

 is a vector whose components are iνσ . Then write  

�
0( )i i

ij ijk

k

io i

q q i q

i

ν
νσ α

σ

σ α

− = − × Σ +

=∈ Σ

= −

G GG

�
 

Differentiate  each term of the above expression 

 

�

0 0

0

5 5 0

0

†

0

0

( )

( ) 2

q

q

k
i q i

q k

m

k

m

k

q
q

ψαψ
ψα ψ

ψγγ ψ ψγγ γ ψ

ψ ψ ψ ψ

ψ ψ ψ ψ

=

=

∂ ×
× =

∂

= −

= Σ − Σ

∂
− × × Σ = Σ

∂

G G
G

G

G G

G G

G GG
G

�

To get the second  term in the first equation we used the identity 

�
0 5

( . ) ( . )
( )

2

k k
i k

γ γ γ γ
γ γ γ

+
= ×

G GG G G G GG �



Using the definition of the tensor and axial currents  

�

3 †

3

| |
2

| |

i i i

i i i

PS dx PS S

PS dx PS

ψ ψ

ψ ψ δ

Σ
〈 〉 = ∆

〈 Σ 〉 =

∫

∫

JG
JG

JG G �

we get for the anomalous part 

�

3
†

3

0

0

| ) |
4 (2 )

1 1
| ( ) |

2 2 2

( )
4

( )
2

N anomalous

aQ m d k
P P

m k

S
aQ P P

k m

axQ

m x

ax

x

µ ψ ψ ψ ψ
π

δ

δ

µ δ

= 〈 ↑ Σ + Σ ↑〉

= 〈 ↑ + ↑〉

= ∆ +

= ∆ +

∫
G G

G
G

�
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