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Abstract

Non topological solitons, Q-balls can arise in many particle theories with U(1) global symmetries.

As was shown by Cohen et al. [2], if the corresponding scalar field couples to massless fermions,

large Q-balls are unstable and evaporate, producing a fermion flux proportional to the Q-ball’s

surface. In this paper we analyse Q-ball instabilities as a function of Q-ball size ans fermion mass.

In particular, we construct an exact quantum-mechanical description of the evaporating Q-ball.

This new construction provides an alternative method to compute Q-Ball’s evaporation rates. We

shall also find the new expression for the upper bound on evaporation as a function of the produced

fermion mass and study the effects of Q ball’s size on particle production.
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I. INTRODUCTION

A scalar field theory with an unbroken continuous global symmetry admits a remarkable

class of solutions, non-topological solitons or Q-Balls. These solutions are spherically sym-

metric non-dissipative solutions to the classical field equations [1, 2, 8]. In a certain way they

can be viewed as a sort of Bose-Einstein condensate of “classical” scalars. The construction

of these solutions uses the fact that they are absolute minima of the energy for a fixed value

of the conserved U(1)-charge Q. So in the sector of fixed charge the Q-Ball solution is the

ground state and all its stability properties are due to charge conservation. An important

amount of work has been done on Q-Ball dynamics and on their stability versus decay into

scalars [1, 9]. Apart some existence theorems that depend on the type of symmetry and the

potentials involved [8], the stability of Q-Balls is due to the fact that their mass is smaller

than the mass of a collection of scalars.

In realistic theories the scalar field has a coupling with fermionic fields. The addition of

this coupling modifies the criterions of Q-Ball stability since they can now produce fermions.

This fact will have an important interest for cosmology since Q-Balls can play the role of

dark matter [5, 6]. Particle production from the Q-Ball will reduce its charge Q and at a

certain point the Q-Ball will become unstable versus decay into scalars to finally disappear.

This problem has been considered in [2, 8] for the production of massless fermions by a

large Q-ball. The method used was to construct the quantum field as a superposition,

with operator valued coefficients, of the classical solutions. In most cases we can express

the general solution as a superposition of partial waves. The next step will be to use the

asymptotic behaviour of the fields, considering the far past and the far future where the

fields can be identified to free ones. In most configurations the fields in the far past and in

the far future are free fields and the relation, the S-matrix, linking them together contains

all the information needed to answer the question of particle production. The problem we

have here is that the Q-ball is a time-dependent configuration, so we need to be careful

when we identify the asymptotic states to free (static) ones. We must make sure that the

identification is made before the interaction is turned on and after it is turned off.

To avoid the problems linked to the time dependence of the Q-ball we shall propose

an alternative method. This uses Heisenberg’s picture of quantum mechanics. We shall

construct the time independent state representing particle production, it is done by solving
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the condition that no fluxes are coming from infinity (no particles are moving towards the Q-

ball). We can then build the Heisenberg field operator containing all the relevant information

and time dependence. Particle creation is then computed by using the number operator,

but any other operator valued quantity can be calculated. The use of this method needs

no limit calculations on the Q-ball’s size, so it can be used to study small Q-ball as well.

The difficulty now lies in solving the production condition. This condition can be solved

considering asymptotics of the fields far away from the Q-ball.

The major difference between the standard construction and this one lies in the kinemat-

ical conditions used. The standard S-matrix based method will solve matching conditions to

compute all the reflection and transmission amplitudes of an incident wave. The approach

used here is different in the sense that we construct a state having no incoming wave, making

the computation of scattered amplitudes useless. Using this construction implies that all

the particles are created inside the Q-ball, since they all move away from the Q-ball.

The other important fact to investigate is the production of massive fermions. Can a

Q-Ball produce any type of fermions, and is the fermion mass relevant for the Q-Ball’s life

time? To answer this question we can use both pictures, the problem is now that solutions to

massive field equations have twice as many degrees of freedom. Even if the construction of

the Heisenberg field operator is possible and not very difficult, the resolution of the particle

production condition is a complex task to achieve, so we shall use the S-matrix picture.

The partial wave expansion of the solution can easily be obtained when working with one

space dimension. In fact using this simple picture allowed us to obtain analytical results

describing a fermion field being scattered by a Q-ball. Computing the evaporation rate as a

function of the produced fermion mass will lead to a new definition for the absolute upper

bound of evaporation rate. An other important question we can ask is the role of the Q

ball’s size on the different particle creation regimes. To answer this question we shall study

both very big and small Q balls.

The paper is organised as follows. We first give a review of the simplest 3 dimensional

Q-Ball model to build up its basic properties and we then reduce it to 1 space dimension.

We then consider interaction of Q-Balls with massless fermions and construct a solution

where there are only fermions moving away from the Q-Ball, this construction will give

us the evaporation rate of Q-Balls for production of massless fermions. We then consider

production of massive fermions, using the incident wave outside the Q-Ball. This requires
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the knowledge of the reflection and transmission amplitudes on the Q-Ball’s surface. Finally

we extend our results to 3⊕ 1 dimensions.

II. A SIMPLE Q-BALL MODEL

We review here the basic properties of a 3-dimensional Q-Ball using the simplest possible

model. As we mentioned in the introduction, the Q-Ball is the ground state of a scalar theory

containing a global symmetry. We can now build the simplest model in 3 ⊕ 1 dimensions

having a Q-Ball solution: it is a SO(2) invariant theory of two real scalar fields (in fact it is

the U(1) theory of one complex scalar field) [1]. We start by writing down the Lagrangian

and the equations of motion for the scalar field, to obtain the conserved charge and current.

The Lagrangian of the scalar sector is given by :

L = ∂µφ
⋆∂µφ− U(|φ|). (1)

The U(1) symmetry is

φ→ eiαφ.

The conserved current is

jµ = i(φ⋆∂µφ− (∂µφ
⋆)φ), (2)

and the conserved charge is

Q =
∫

d3xj0. (3)

We build a solution with the minimal energy : if U(0) = 0 is the absolute minimum of the

potential, φ = 0 is the ground state and the U(1) symmetry is unbroken. It was shown in

[1] that new particles (Q-Balls) appear in the spectrum, if the potential is such that the

minimum of U
|φ|2 is at some value φ0 6= 0.

Min[2U/|φ|2] = 2U0/|φ0|2 < µ2 = U ′′(0). (4)

The charge and energy of a given φ field configuration are :

Q = 1
2i

∫

(−∂tφ⋆φ+ c.c.)d3x,

E =
∫ [1

2
|φ̇|2 + 1

2
|∇φ|2 + U(φ)

]

d3x.
(5)
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The Q-Ball solution is a solution with minimum energy for a fixed charge, we thus introduce

the following Lagrange multiplier

εω = E + ω[Q− 1

2i

∫

(φ⋆∂tφ+ c.c.)d3x]. (6)

Minimising this functional with the standard Q-Ball ansatz :

φ = φ(~x)eiωt, (7)

where φ(r) is a monotonically decreasing function of distance to the origin, and zero at

infinity. Inserting the Q-Ball ansatz in the equations of motion gives in spherical coordinates

d2φ

dr2
= −2

r

dφ

dr
− ω2φ+ U ′(φ). (8)

If we interpret φ as a particle position and r as time this equation is similar to a Newtonian

equation of motion for a particle of unit mass subject to viscous damping moving in the

potential 1
2
ω2φ2−U . We are searching for a solution in which the particle starts at t = 0 at

some position φ(0), at rest, dφ
dr

= 0, and comes to rest at infinite time at φ = 0. Solving this

problem is not difficult (see [1] for details). One of the solutions can be the localised step

function. Although we can solve exactly the equation of motion, we will not do it in this

work.

This construction is the Q-Ball we where looking for, in the sense that it is the ground

state of the theory with constant charge. We used only one field to describe it but it is in

fact made of a collection of scalars. Q-Balls rotate with constant angular velocity in internal

space and are spherically symmetric in position space. As the charge Q goes to infinity, ω

approaches

ω0 =
√

2U0/φ2, (9)

where U0 is the value of the potential at the minimum. In this limit, φ resembles a smoothed-

out step function. The two regions (r < R and r > R) are separated by a transition zone

of thickness µ−1. This leads to the consideration of two approximations the thick and thin

wall regime (see [8] and [3] for details). The radius of the Q-Ball can easily be calculated

using the definition of charge:

Q =
4

3
πR3ω0φ

2
0. (10)
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This calculation has been done φ(r) = 0 if r > R. All the properties of the Q-Ball are now

known except the exact profile of the Q-Ball field. We shall now build up the Q-Ball solution

to our problem. The energy is given by the integral (5) and using the previous properties

and taking the limit V →∞, where V is the volume of the Q-Ball, the energy becomes

E =
1

2
ω2|φ|2V + UV. (11)

The charge becomes

Q = ω0|φ|2V. (12)

We wish to minimise the energy with fixed charge. Using eq. (12) to eliminate ω, we have

in the limit of Q→∞,

E =
1

2

Q

|φ|2V + UV. (13)

As a function of V it has its minimum at

V =
Q

√

2|φ|2U
. (14)

Here the energy is given now by

E = Q

√

2U

φ2
, (15)

With some little modifications this construction can be adapted to any dimensions. The

model we shall use in the next section is a 1⊕ 1 dimensional model. In one space dimension

the Q-ball profile will be the standard step function localised in a space region of size l.

III. PRODUCTION OF MASSLESS FERMIONS

The solution to the problem of particle creation by a Q-ball can be solved using two

different pictures. The first one is based on the S-matrix formalism, using the idea that the

field is free for t→ ±∞. This construction is done by finding the solution to the equations

of motion for a fermion interacting with a Q-ball, in terms of a superposition of classical

solutions. The quantisation is made by upgrading expansion coefficients to operators, this

will give us the Heisenberg field operator. The S-matrix will then be constructed by iden-

tifying the fields in the far past and in the far future to fields having the exact positive
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and negative frequency behaviour. This method was widely used to solve the problem for

particle creation. This method was used to compute the evaporation rate of Q-balls ([2, 8])

where the expansion was made using rotational eigenfunctions. Once the total solution is

known it is simple to build the transformation from the far past to the far future. In the far

past only the incoming wave will survive and in the far future only the outgoing ones.

The construction we are going to use here is different, we shall in the first place solve

the equations of motion and obtain the Heisenberg field operator representing a fermion

interacting with a Q-ball. In one space dimension this solution will be expressed in the

form,

ΨQ =
1√
4π

∫

dǫ
(

ψ+
Q(ǫ, t, z)A(ǫ) + ψ−

Q(ǫ, t, z)B(ǫ)
)

,

where the ψ±
Q(ǫ, t, z) are a basis of the solution to the Dirac equation for fermions interacting

with a Q-ball of charge Q. A(ǫ) and B(ǫ) are operators depending on energy, their anti-

commutation relations are the standard ones if the ψ solutions satisfy proper orthogonality

conditions. The next step we shall use is consider the space asymptotics of this solution.

Far away from the Q-ball (z = ±∞ for one space dimension) the solution is the standard

free field solution. This identification will give us a relation between the solution operators

A(ǫ), B(ǫ) and the free asymptotic ones a(p), b(p). The only difficulty in this identification

is that the quantisation of the solution was made using energy (due to the time dependence

of interaction) while the asymptotical operators depend on momentum. The next step will

be to define and solve the particle production condition, saying that no particles are moving

towards the Q-ball. In terms of asymptotic operators it is

aL(p)|Ψ >= bL(p)|Ψ >= 0 for p > 0, on the left

aR(p)|Ψ >= bR(p)|Ψ >= 0 for p < 0, on the right.
(16)

The last step of the resolution will consist in using the total Heisenberg operator Ψ, and

the particle productive state to compute the fermionic flux giving evaporation rate. The

main idea used here is to construct a solution having no incoming wave, so we do not need

to compute any reflected or transmitted coefficients. This way all the particles come from

inside the Q-ball. As mentioned before this new construction gives a good alternative to the

standard scattering kinematics. The other advantage of this picture is to allow us giving a

consistent treatment of time continuity.
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In the next two subsections we shall build the solution and the relation to asymptotic

operators, while in the two last subsections we shall solve the production condition and

compute the evaporation rate.

A. Solutions to the equations of motion

Writing down the Lagrangian of a massless fermion having a Yukawa interaction with a

scalar field gives in one spatial dimension,

Lferm. = iψ̄σµ∂µψ + (gφψ̄Cψ + h.c), (17)

where the C superscript indicates the charge conjugated fermion. The equations of motion

and their solutions are fully described in literature on the subject ([1, 2, 8]). Instead of

treating separately the fermion and the anti-fermion, we shall construct the exact global

solution to this problem, this solution will be made of different parts first the solution inside

the Q-Ball (for z ∈ [−l, l]). Equations of motion for the two components of the Ψ field are :

(i∂0 + i∂z)ψ1 − gφψ⋆
2 = 0,

(i∂0 − i∂z)ψ⋆
2 − gφ⋆ψ1 = 0.

(18)

and φ = φ0e
−iω0t in the zone from −l to +l and zero everywhere else. Using the ansatz :






ψ1

ψ⋆
2




 =






e−i
ω0
2
t 0

0 ei
ω0
2
t











A

B




 e−iǫt+i(k+

ω0
2
), (19)

the equations of motion are reduced to the following 2× 2 linear system





k − ǫ M

M −(k + ǫ)











A

B




 = 0.

The determinant of the system gives k = ±
√
ǫ2 −M2 ≡ ±kǫ. Solving for the two cases

k = +kǫ and k = −kǫ, we obtain the solution inside the Q-Ball:

ΨQ =






ψ1

ψ⋆
2




 = A






1

kǫ+ǫ
M




 e−ikǫz +B






kǫ+ǫ
M

1




 eikǫz, (20)

where M = gφ0, g is the coupling constant and φ0 the value of the scalar field. The second

part is the solution when φ0 = 0 (outside the Q-Ball) it is,

Ψ =






ψ1

ψ⋆
2




 = e−iǫt






CL,R
1 eiǫz

CL,R
2 e−iǫz




 , (21)

8



where superscripts L,R indicate the left and right side of the Q-Ball. In order to solve

Dirac’s equation everywhere the solution needs to be continuous in space. Space continuity

gives at z = −l :

CL
1 = Aei(kǫ+ǫ)l +Bαǫe

−i(kǫ−ǫ)l,

CL
2 = Aαǫe

i(kǫ−ǫ)l +Be−i(kǫ+ǫ)l,

and at z = +l,

CR
1 = Ae−i(kǫ+ǫ)l +Bαǫe

+i(kǫ−ǫ)l,

CR
2 = Aαǫe

−i(kǫ−ǫ)l +Be+i(kǫ+ǫ)l.

These matching relations are used to express the solution only using the parameters coming

from the inner part of the solution. This construction will allow us to build a state where

there is no incoming fermion, all the fermions are now produced inside the Q-Ball. Putting

together all these parts gives the full solution continuous in space and time :






ψ1

ψ⋆
2




 =

∫

dǫ

































eiǫl(Aeikǫl +Bαǫe
−ikǫl)e−i(ǫ+

ω0
2
)tei(ǫ+

ω0
2
)z

e−iǫl(Aαǫe
ikǫl +Be−ikǫl)e−i(ǫ−ω0

2
)te−i(ǫ−ω0

2
)z




 z < −l






(Ae−ikǫz +Bαǫe
ikǫz)e−i(ǫ+

ω0
2
)tei

ω0
2
z

(Aαǫe
−ikǫz +Beikǫz)e−i(ǫ−ω0

2
)tei

ω0
2
z




− l ≥ z ≥ +l






e−iǫl(Ae−ikǫl +Bαǫe
ikǫl)e−i(ǫ+

ω0
2
)tei(ǫ+

ω0
2
)z

eiǫl(Aαǫe
−ikǫl +Beikǫl)e−i(ǫ−ω0

2
)te−i(ǫ−ω0

2
)z




 z > +l




























, (22)

where

αǫ =
kǫ + ǫ

M
. (23)

A little work on the solution and on its orthogonality properties leads to a solution of the

form :

ΨQ =
1√
4π

∫

dǫe−iǫt
(

ψ+
Q(ǫ)A(ǫ) + ψ−

Q(ǫ)B(ǫ)
)

ei
ω0
2
zΩ(t), (24)

with

Ω(t) =






e−i
ω0
2
t 0

0 ei
ω0
2
t




 , (25)
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and

ψ± =

































f±1 (ǫ, l)eiǫz

(f±2 (ǫ, l))⋆e−iǫz




 z < −l

1√
N±






(±e−ikǫz + αǫe
ikǫz)

(±αǫe
−ikǫz + eikǫz)




− l ≥ z ≥ +l






f±1 (ǫ,−l)eiǫz

(f±2 (ǫ,−l))⋆e−iǫz




 z > +l




























, (26)

and the functions f±
1,2 having the form

f±
1 (ǫ, l) =

1√
4πN±

eiǫl(±eikǫl + αǫe
−ikǫl),

f±
2 (ǫ, l) =

1√
4πN±

eiǫl(±α⋆
ǫe

−ik⋆ǫ l + eikǫl).
(27)

N± = 4π
(

cosh[Im[kǫ]l](1 + |αǫ|2)

± cos[Re[kǫ]l]Re[αǫ]) , (28)

Finally the time dependent matrix was introduced for simplicity, the N± are the normalisa-

tion constants. Quantisation of solution (24) was made using equal time anti-commutation

relations for Ψ. If the ψ± functions satisfy
∫

dz(ψσ′

(ǫ′))†ψσ(ǫ) = δσ′σδ(ǫ
′ − ǫ) we can show

that,

{A(ǫ), A†(ǫ′)} =
∫

dz
∫

dz′
(

ψ+
Q(z, ǫ)

)†(
ψ+
Q(z

′, ǫ′)
)

× {Ψ̂Q,
(

Ψ̂′
Q

)†}
︸ ︷︷ ︸

δ(z′−z)

= δ(ǫ′ − ǫ).

The ΨQ solution we obtained has now being upgraded to a Heisenberg field operator de-

scribing fermions interacting with a Q-ball.

B. Relation to asymptotic operators

First we conjugate the second component of the above solution, in order to compare

it with the standard free solution for a massless fermion in 1 ⊕ 1 dimensions (see [13] for
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details). We look at the asymptotic behaviour of the Q-Ball solution (24). On the left and

right-hand side of the Q-Ball, it has to be the standard free solution since the interaction is

zero outside the Q-Ball’s volume. After elimination of integrals and standard manipulations

and variable changes, we obtain at z → −∞ :

1√
2π






θ(p)

θ(−p)




 a(p) +






θ(−p)

θ(p)




 b

†(−p) =








f+1 (ǫ, l)A(ǫ)

∣
∣
∣
∣
ǫ=p−ω0

2

f+2 (ǫ, l)A†(ǫ)
∣
∣
∣
∣
ǫ=p+

ω0
2








+

+








f−1 (ǫ, l)B(ǫ)

∣
∣
∣
∣
ǫ=p−ω0

2

f−2 (ǫ, l)B†(ǫ)
∣
∣
∣
∣
ǫ=p+

ω0
2







. (29)

θ(p) is the heavy-side function, θ(p) = 0 if p is negative and θ(p) 6= 0 when p is positive.

Multiplying eq. (29) by






θ(p)

θ(−p)






†

and by






θ(−p)
θ(p)






†

we obtain the two following equations

:

1√
2π
aL(p) = [f+

1 (ǫ, l)A(ǫ) + f−
1 (ǫ, l)B(ǫ)]

∣
∣
∣
∣
ǫ=p−ω0

2

θ(p) +

+ [f+
2 (ǫ, l)A

†(ǫ) + f−
2 (ǫ, l)B

†(ǫ)]
∣
∣
∣
∣
ǫ=p+

ω0
2

θ(−p),

(30)

1√
2π
b†L(−p) = [f+

1 (ǫ, l)A(ǫ) + f−
1 (ǫ, l)B(ǫ)]

∣
∣
∣
∣
ǫ=p−ω0

2

θ(−p) +

+ [f+
2 (ǫ, l)A

†(ǫ) + f−
2 (ǫ, l)B

†(ǫ)]

∣
∣
∣
∣
ǫ=p+

ω0
2

θ(p).

In these two equations the l subscript indicates we are on the left-hand side of the Q-Ball,

the same manipulations on the right-hand side lead to :

1√
2π
aR(p) = [f+

1 (ǫ,−l)A(ǫ) + f−
1 (ǫ,−l)B(ǫ)]

∣
∣
∣
∣
ǫ=p−ω0

2

θ(p) +

+ [f+
2 (ǫ,−l)A†(ǫ) + f−

2 (ǫ,−l)B†(ǫ)]
∣
∣
∣
∣
ǫ=p+

ω0
2

θ(−p),

(31)

1√
2π
b†R(−p) = [f+

1 (ǫ,−l)A(ǫ) + f−
1 (ǫ,−l)B(ǫ)]

∣
∣
∣
∣
ǫ=p−ω0

2

θ(−p) +

+ [f+
2 (ǫ,−l)A†(ǫ) + f−

2 (ǫ,−l)B†(ǫ)]
∣
∣
∣
∣
ǫ=p+

ω0
2

θ(p).

Checking the anti-commutation relations of operators aL,R and bL,R is a tedious task but

using the different energy ranges and orthogonality properties of the f±
1,2 it can be done.
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These four equations will be the basis of the construction of particle productive state, since

they give a relation between free operators (lower case) and solution operators (upper case).

These relations will give the solution in terms of free operators, so the next task we need to

achieve is to define and construct the particle productive state.

C. Construction of particle productive state

As mentioned before, the construction of this quantum state Ψ will be done using the

fact that there are no particles moving towards the Q-Ball. These are negative momentum

particles on the left and positive momentum particles on the right. In terms of aL,R, and

bL,R operators :

aL(p)|Ψ >= bL(p)|Ψ >= 0 for p > 0, on the left

aR(p)|Ψ >= bR(p)|Ψ >= 0 for p < 0, on the right.
(32)

This construction will lead to the opposite sign of the fermionic current on the left and on

the right hand side of Q-Ball using eqs. (30-31). We then obtain four equations. For positive

p, we have :

(f+
1 (ǫ, l)A(ǫ) + f−

1 (ǫ, l)B(ǫ))

∣
∣
∣
∣
ǫ=p−ω0

2

|Ψ >= 0,

(f+
1 (ǫ, l))

⋆A†(ǫ) + (f−
1 (ǫ, l))

⋆B†(ǫ)

∣
∣
∣
∣
ǫ=−p−ω0

2

|Ψ >= 0,
(33)

and for negative p

(f+
2 (ǫ,−l)A†(ǫ) + f−

2 (ǫ,−l)B†(ǫ))

∣
∣
∣
∣
ǫ=p+

ω0
2

|Ψ >= 0,

(f+
2 (ǫ,−l))⋆A(ǫ) + (f−

2 (ǫ,−l))⋆B(ǫ))
∣
∣
∣
∣
ǫ=−p+

ω0
2

|Ψ >= 0.
(34)

Due to the relation between ǫ, p, ω0

2
given in the subindices of eqs. (33, 34) and the fact

that p is either positive or negative, we can identify three ranges for ǫ :

• For ǫ > +ω0

2
we only have the following two equations :

(f+
1 (ǫ, l)A(ǫ) + f−

1 (ǫ, l)B(ǫ))|Ψ >= 0,

((f+
2 (ǫ,−l))⋆A(ǫ) + (f−

2 (ǫ,−l))⋆B(ǫ))|Ψ >= 0.
(35)

• For the negative range ǫ < −ω0

2
we have :

((f+
1 (ǫ, l))

⋆A†(ǫ) + (f−
1 (ǫ, l))

⋆B†(ǫ))|Ψ >= 0,

(f+
2 (ǫ,−l)A†(ǫ) + f−

2 (ǫ,−l)B†(ǫ))|Ψ >= 0.
(36)
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• For the middle range ǫ ∈ [−ω0

2
,+ω0

2
] we have :

(f+
1 (ǫ, l)A(ǫ) + f−

1 (ǫ, l)B(ǫ))|Ψ >= 0,

(f+
2 (ǫ,−l)A†(ǫ) + f−

2 (ǫ,−l)B†(ǫ))|Ψ >= 0.
(37)

The range where |ǫ| > +ω0

2
is easy to solve, since we expect the solution to be the vacuum

and to lead to no evaporation. The determinant of the matrix :

det[






f+
1 (ǫ, l) f−

1 (ǫ, l)

(f+
2 (ǫ,−l))⋆ (f−

2 (ǫ,−l))⋆




] = 2(1− α2

ǫ ), (38)

is always different from zero. The only solution for an evaporating state in this range is the

trivial solution given by :

A(ǫ)|Ψ >= B(ǫ)|Ψ >= 0 for ǫ > ω0

2
,

A†(ǫ)|Ψ >= B†(ǫ)|Ψ >= 0 for ǫ < −ω0

2
.

(39)

In fact these two equations are the same, because we can always use the transformation

A(ǫ) = A′(ǫ)θ(ǫ) + B′†(ǫ)θ(−ǫ), all equations will have vacuum solutions. Here the anti-

commutation relations are trivial to check because of the two different energy ranges. For

the middle range ǫ ∈ [−ω0

2
,+ω0

2
] things are a little more complicated, this being the range

where particle production occurs as first shown in [2]. Taking a look at solution (26) in this

range, only particles are created and changing the sign of ω0 changes the particle type. We

now need to check normalisation of these new operators describing the evaporating state

and their anti-commutation relations. Defining the evaporation operators in all the energy

ranges, we have

ae(ǫ) =







A†(ǫ) ǫ < −ω0

2√
8π(f+

1 (ǫ, l)A(ǫ) + f−
1 (ǫ, l)B(ǫ)) ǫ ∈ [−ω0

2
,+ω0

2
]

A(ǫ) ǫ > +ω0

2

, (40)

and

be(ǫ) =







B†(ǫ) ǫ < −ω0

2√
8π(f+

1 (ǫ, l)
⋆A†(ǫ)− f−

1 (ǫ, l)
⋆B†(ǫ)) ǫ ∈ [−ω0

2
,+ω0

2
]

B(ǫ) ǫ > +ω0

2

, (41)

where the
√
8π factor is the normalisation 1√

|f+
1 (ǫ,l)|2+|f−

1 (ǫ,l)|2
. The anti-commutation rela-

tions of these operators are easy to check. They use the fact that |f±
1 |2 = 1

4π
. The particle
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production state is now fully characterised by the simple relation :

ae(ǫ)|Ψ >= be(ǫ)|Ψ >= 0. (42)

This simple relation gives the ground state for a Q-Ball producing fermions. We could now

compute lots of different properties of these fermions but we compute their number. The

state defined by this relation has no incident fermion, it is exactly the state we wanted to

build. The final step will now be to compute the fermionic flux and obtain the particle

production rate.

D. Particle production rate

The particle production rate is given by the current operator ~jµ(x) = ψ̄(x)γµψ(x), which

in our case is

ψ⋆
1ψ1 − ψ⋆

2ψ2 = ~j(x) (43)

that we shall apply on the evaporating state defined by the vacuum for ae and be operators.

First we invert the systems (40) and (41) to obtain :

• ǫ < −ω0

2







A(ǫ) = a†e(ǫ)

B(ǫ) = b†e(ǫ)
(44)

• ǫ > ω0

2







A(ǫ) = ae(ǫ)

B(ǫ) = be(ǫ)
(45)

• ǫ ∈ [−ω0

2
,+

ω0

2
]







A(ǫ) = 1√
8π2f+

1 (ǫ,l)
(ae(ǫ) + b†e(ǫ))

B(ǫ) = 1√
8π2f−

1 (ǫ,l)
(ae(ǫ)− b†e(ǫ))

(46)

Now we can compute the first term of the current on the left hand side of the Q-Ball : Using

anti-commutation relations and the separate range of integrals and the definition of A(ǫ)

and B(ǫ) in terms of evaporation operators ae(ǫ), be(ǫ) we obtain :

< 0|ψ†
1ψ1|0 > =

∫ ω0
2

−∞
dǫ(|f+

1 (ǫ, l)|2 < 0|ae(ǫ)a†e(ǫ)|0 > +|f−
1 (ǫ, l)|2 < 0|be(ǫ)b†e(ǫ)|0 >)

+
1

8π

∫ +
ω0
2

−ω0
2

dǫ

∣
∣
∣
∣

f+
1 (ǫ, l)

2η
− f−

1 (ǫ, l)

2ζ

∣
∣
∣
∣

2

< 0|be(ǫ)b†e(ǫ)|0 > . (47)
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The other term of the current, proportional to ψ⋆
2ψ2, is very similar but we need to be careful

with the fact that ψ2 is proportional to f±
2 (ǫ, l). Applying the same method we obtain :

< 0|ψ†
2ψ2|0 > =

1

8π

∫ +
ω0
2

−ω0
2

dǫ
∣
∣
∣
∣

(f+
2 (ǫ, l))

⋆

2f+
1 (ǫ, l)

+
(f−

2 (ǫ, l))
⋆

2f−
1 (ǫ, l)

∣
∣
∣
∣

2

< 0|ae(ǫ)a†e(ǫ)|0 > (48)

+
∫ +∞

+
ω0
2

dǫ
(

|(f+
2 (ǫ, l))|

2
< 0|ae(ǫ)a†e(ǫ)|0 > +|(f−

2 (ǫ, l))
⋆|2 < 0|be(ǫ)b†e(ǫ)|0 >

)

.

It is easy to check that |f2(ǫ, l)|2 = |f1(ǫ, l)|2 leading to the compensation of terms with

infinite bounds. Finally the expression for the fermionic current on the left is :

~jL =
∫ +

ω0
2

−ω0
2

dǫ
∣
∣
∣
∣

(f+
2 (ǫ, l))

⋆

2f+
1 (ǫ, l)

+
(f−

2 (ǫ, l))
⋆

2f−
1 (ǫ, l)

∣
∣
∣
∣

2

=
∫ +

ω0
2

−ω0
2

dǫ
∣
∣
∣
∣

αǫ sinh[2ikǫl]

e2ikǫl − α2
ǫe

−2ikǫl

∣
∣
∣
∣

2

(49)

If the real part of kǫ equals zero (ω0

2
≤ M), we use the definitions

kǫ = i
√
M2 − ǫ2, αǫ =

kǫ + ǫ

M
, |αǫ|2 = 1

and the current is then:

jL =
∫ +

ω0
2

−ω0
2

dǫ
sinh2[−2

√
M2 − ǫ2l]

|e−2
√
M2−ǫ2l − α2

ǫe
2
√
M2−ǫ2l|2

. (50)

In the limit Ml → ∞ we can neglect the negative exponentials and the only factor we are

left with is the 1
2
coming from the hyperbolic sine. The right hand side the current is the

same except for the sign, so the total current is equal to one half. Using the continuity

equation we can write :

∂j0
∂t

+
∂j1
∂z

= 0⇒ dQ

dt
=
∫

∂zj(z)dz = jL − jR = 2jL. (51)

The current does not depend on z so the value of the current is constant on both sides, so

after integration of the current over ǫ we obtain :

dQ

dt
=

1

4π
ω0. (52)

This expression gives the particle production rate as a function of ω0 when ω0 is smaller

than M in the limit of big Ml. It is in fact [2] an evaporation rate since it does not depend

on the Q-Ball’s size. The other importance of this result is that it gives a absolute upper

bound on evaporation rate. The case when the imaginary part of kǫ is equal to zero is a bit

more complicated to solve. In this case we need to explicitly compute the current integral,

so this case will be studied numerically. The value obtained for the evaporation rate in (52)

is the 1⊕ 1 equivalent of the results found in literature on the subject.
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FIG. 1: Particle production rate for small values of Ml and for a fixed value of ω0
2M = 0.5.

1. Production rate in function of size

We shall first consider the limit where l is small. In this case we write

sinh2[2
√
M2 − ǫ2l] = 4(M2 − ǫ2)l2 = 4(Ml)2(1− (

ǫ

M
)2)

∣
∣
∣
∣e

−2
√
M2−ǫ2l − α2

ǫe
2
√
M2−ǫ2l

∣
∣
∣
∣

2

= e−4
√
M2−ǫ2l + e+4

√
M2−ǫ2l − 2Re[α2

ǫ ]

= 2(1− 2ǫ−M2

M2
) = 2(1− ǫ2

M2
). (53)

These two terms will simplify to give after integration over ǫ :

jL = l2M2 ω0

8π
, (54)

leading to the particle production rate:

dQ

dt
= l2M2 1

4π
ω0. (55)

This result enshures us the fact that whenMl = 0, the Q ball does not exist, the evaporation

rate is zero. This behaviour is shown on figure 1. The next limit we shall study is the very

large Q ball limit. To do so we take a look at the production rate for large values of the

size parameter, Ml and observe that the production rate becomes constant for big values

of the size parameter (see fig 2). These considerations also stand for all the possible values

of the frequency parameter the only difference is when ω0

2M
gets bigger the stability of the

evaporation rate comes for bigger values of Ml.
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FIG. 2: Particle production rate in function of Ml and for a fixed value of ω0
2M = 0.5.

2. Energy flux far away form the Q ball

The next calculation we can do is the calculation of the energy flux far away from the

Q-ball. In the case where we consider the observer very far from the Q-ball the only relevant

coordinate is the distance to the Q-ball, we are in a one spacial dimension case. The energy

flux a distant observer can measure is given after normalisation by M ,

dE

Mdtdσ
=
∫ +

ω0
2M

− ω0
2M

d(
ǫ

M
)
∣
∣
∣
∣

α( ǫ
M

) sinh[2ik̄( ǫ
M

)l̄]

e
2ik( ǫ

M
) l̄ − ᾱ2

( ǫ
M

)e
−2ik( ǫ

M
) l̄

∣
∣
∣
∣

2

(
ǫ

M
)2, (56)

this expression is obtained by computing the energy flux through a sphere containing the

Q-Ball. When the real part of kǫ equals zero the fraction becomes equal to one. The result

in this range will be proportional to ω3
0 [2, 8].

3. Results of numerical integration

We can now give the evaporation rate of a Q ball into massless fermions in function of

its internal frequency. In the first figure we can observe a limit in the evaporation rate. The

absolute upper bound can be computed using

dN

dt
≤
∫ +−ω0

2

−ω0
2

dǫ = ω0,

this absolute upper bound will be used to normalise the evaporation rate.
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FIG. 3: Particle production rate 2πdN
Mdt

as a function of ω0
2M in the limit of very big Ml parameter.
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FIG. 4: Normalised particle production rate 2πdN
Mdt

1
upper bound as a function of ω0

2M in the limit of

a very big Ml parameter.

IV. PRODUCTION OF MASSIVE FERMIONS

The evaporation of a Q-ball into massive fermions is more complicated than the previous

case. We can quite easily obtain the Heisenberg field operator but solving the evaporation

condition is a difficult task, even with only one space dimension. So the method we are

going to use is the same S-matrix based method used in [2, 8]. This picture will need as

starting point the expression of the solution as a superposition of wave packets. It is done

by expressing the motion equations in matrix form and then expanding the solutions over
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the eigenfunctions. This gives the separation into left and right movers. Choosing which

wave is the incident one, we can write the solution as

ΨL = [B1e
ip̄1xup̄1 +B2e

ip̄2xup̄2 + r1e
−ip̄1xu−p̄1 + r2e

−ip̄2xu−p̄4], (57)

ΨR = [t1e
ip̄1xup̄1 + t2e

ip̄2xup̄2], (58)

where the u’s and p̄’s describe the solution away from the Q-ball and the L, R subscripts

stand for the left- or right-hand side of the Q-ball. This solution has two incident waves

associated with particles or anti-particles moving towards the Q-ball, giving two solutions.

The reflected and transmitted waves are associated with particles moving away from the

Q-ball. The same construction is done on the other side of the Q-ball, to give four solutions.

Finally we obtain the total solution as a superposition of these four solutions with the

expansion coefficients becoming operators. This canonical quantisation does not introduce

any big problem and can be done in a straightforward way. The next step will be to

consider that in the far past only the incoming wave survives, giving us a relation between

the operators in the far past and in the far future (where only outgoing waves survives).

The last step we shall do is compute the number operator.

The only difficult task is the computation of reflection and transmission amplitudes ap-

pearing in the solutions. Will shall provide two methods for calculating these amplitudes.

One method will consist in calculating all the scalar products of the motion eigenvectors,

while the other one will consist in the diagonalisation of the motion matrices. The results

are fully consistent, and the two methods serve to illustrate a variety of physical insights.

The main objective we shall reach is the computation of the new value of the upper bound

on evaporation rate. This bound will now depend on the produced fermion mass and not

only on the internal Q-ball frequency.

The first three subsections describe the solutions in terms of eigenvectors of 4×4 matrices.

In the three next subsections we compute the transmission and reflection amplitudes for

massive waves on the Q-Ball’s surface. In the last subsections we compute the evaporation

rate and simplify the problem by diagonalisation of the motion matrices.
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A. Preliminaries

Using the same Lagrangian as for the massless case and adding a Dirac mass coupling

for massive fermions, gives the fermionic Lagrangian :

L = ψ̄iγµ∂µψ + g(ψ̄Cψφ+ h.c.) +MD(x)ψ̄ψ. (59)

The equations of motion using two component ψ-field, in 1⊕ 1-dimensions are

(i∂t + i∂z)ψ1 −Me−i
ω0
2
tψ⋆

2 +MDψ2 = 0,

(i∂t − i∂z)ψ2 +Me−i
ω0
2
tψ⋆

1 +MDψ1 = 0.
(60)

These equations can be solved if we use fields with four degrees of freedom. Solving this

system will give us the solution inside the Q-Ball, which is the first step. To solve these

equations of motion we use the following ansatz

ψ1 = f1(z)e
i(ǫ−ω0

2
)t + f2(z)e

−i(ǫ+
ω0
2
)t,

ψ2 = g1(z)e
i(ǫ−ω0

2
)t + g2(z)e

−i(ǫ+
ω0
2
)t.

(61)

Due to the separation of time components this ansatz will lead to four equations. These

equations can easily be modified to reduce the numbers of parameters : we divide all equa-

tions by M 6= 0. We shall now re-write these equations, taking

f1(z) = Aeipz, f ⋆
2 (z) = Beipz, g1(z) = Ceipzg⋆2(z) = Deipz. (62)

After some re-arrangement of the equations we obtain :

−ǫ−f1 − g⋆2 +MDg1 = pf1,

ǫ−g1 − f ⋆
2 −MDf1 = pg1,

−ǫ+f ⋆
2 + g1 −MDg

⋆
2 = pf ⋆

2 ,

ǫ+g
⋆
2 + f1 +MDf

⋆
2 = pg⋆2,

(63)

where ǫ− = ǫ− ω0

2
and ǫ+ = ǫ + ω0

2
. This arrangement has the advantage that we can now

write the ψ-field in terms of four component spinors as :

Ψ =


















f1

g1











f ⋆
2

g⋆2


















. (64)
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The idea of using four-component spinors is that now the fermion field contains both energy

components, just like the solution used in the previous chapter. The other advantage is that

this rearrangement leads to the standard four component spinor solution. The equations of

motion become in matrix form,












−ǫ− MD 0 −1
−MD ǫ− −1 0

0 1 −ǫ+ −MD

1 0 MD ǫ+

























A

B

C

D













=Mp













A

B

C

D













. (65)

All the parameters are normalised by M . The fact that we have the M factor one the right

hand side will allows us to simplify the space components and replace l by Ml. All the

parameters we are left with now are all dimensionless, we should read the matrix elements

to be all divided by M and thus dimensionless. These satisfy

τMτ =MT , (66)

with τ = DiagonalMatrix[1,−1, 1,−1]. This symmetry will be used to perform the nor-

malisation of eigenvectors.

B. Solution inside the Q-Ball

Using the dimensionless parameters and the eigenvectors of the motion matrix we can

write the time independent solution inside the Q-Ball in the form :

ΨQ =
4∑

j=1

Cjvje
ipjz, (67)

The v’s are the eigenvectors of the motion matrix while the p’s are its eigenvalues. We shall

not compute here the exact form of these eigenvectors, but we can prove that the eigenvalues

are either purely imaginary or purely real. For reasons that will become clear later on, the

first two terms of this solution have positive momentum while the two last have negative

momentum. This arrangement does not modify the shape or any properties of the solution,

but will greatly simplify the rest of the work. Inside the Q-ball the time dependent solution

is :

Ψ =
4∑

j=1

Cje
i(ǫ−ω)tvuppj e

ip̄jz + C⋆
j e

−i(ǫ+ω)t(vdown
pj

eip̄jz)⋆, (68)
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where the up superscript stands for the first two components of the eigenvectors, while the

down one indicates we take the two last components.

C. Solution without Q-Ball background.

Outside the Q-Ball the solution is given by the eigenvalues and eigenvectors of the fol-

lowing matrix :












−ǫ− MD 0 0

−MD ǫ− 0 0

0 0 −ǫ+ −MD

0 0 MD ǫ+

























A

B

C

D













= p













A

B

C

D













. (69)

All its parameters are normalised by M , so they are all dimensionless. The eigenvalues are

given by :

p̄1,3 = ±
√

ǫ2− −M2
D ≡ ±p̄1,

p̄2,3 = ±
√

ǫ2+ −M2
D ≡ ±p̄2,

(70)

Let us stress that all parameters are dimensionless since we have to read them as being

divided by M , the Majorana mass coupling. The exact eigenvectors can be easily calculated

but we do not need them. Here the p̄1,2 momentum can be complex or real. If we want some

particle to propagate outside Q-ball we need both p̄1,2 to be real, it gives for ǫ

|ǫ−| ≥MD,

to solve this we must identify two cases. The first case is,

ǫ− ≥ 0⇒ ǫ ≥ ω0

2

ǫ− ≥MD ⇒ ǫ ≥MD +
ω0

2
>
ω0

2
,

the last inequality is verified if ω0

2
≥MD. The second case is,

ǫ− ≤ 0⇒ ǫ ≤ ω0

2

−ǫ− ≥MD ⇒
ω0

2
≥ ω0

2
−MD ≥ ǫ,

once more the last inequality is valid when ω0

2
≥ MD. A similar calculation for |ǫ+| ≥ MD

gives :

ǫ ≥MD −
ω0

2
and ǫ ≤ −MD −

ω0

2
. (71)
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ǫ

−ω0

2
+MD

ǫ

0 0

ω0

2
−MD

ω0

2
+MD

−ω0

2
−MD

FIG. 5: Sketch of the possible ranges for ǫ

The only way to avoid the gaps and have the two waves (both p1 and p2) is for ǫ to be in

the range :

ǫ ∈ [MD −
ω0

2
,
ω0

2
−MD]. (72)

This range will mix both the particles and anti-particles and thus lead to the non-trivial

Bogolubov transformation. We also have :

ω0

2
≥ MD. (73)

This range is the equivalent as the range defined for the massless case. Following the same

construction as in the previous section, the static solution outside the Q-Ball can also be

written in the form

Ψ0 =
4∑

j=1

Ajuje
ip̄jz, (74)

Ψ0 =
4∑

j=1

Bjuje
ip̄jz, (75)

this time the Bj coefficients are on the left-hand side of Q-Ball while the Aj are on the right

hand side. The time dependent solution is once more given by,

Ψ =
4∑

j=1

(Aj , Bj)e
i(ǫ−ω)tuuppj e

ip̄jz + (A⋆
j , B

⋆
j )e

−i(ǫ+ω)t(udown
pj

eip̄jz)⋆. (76)

These considerations allow us to find the particle production energy range where particles

can propagate outside the Q-ball. The first part of our calculation is over, the next task is

to compute the reflection and transmission amplitudes. It is in fact solving the matching

equations in matrix form. The solution will give a relation from the far left to the far right

of the Q-ball and the centre part (the Q-ball itself) will not appear directly.
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D. Construction of scattering matrix

We want to construct the matrix linking the solution at z = −∞ to the solution at

z = +∞. We are searching for the matrix:













B1

B2

B3

B4













= V













A1

A2

A3

A4













. (77)

As a reminder the B’s are on the left while the A’s are the right hand side of the Q-Ball. This

construction will not contain directly any inside parameters so the A and B can be considered

as free parameters while the reflection and transmission amplitudes will be contained in the

V matrix. To compute the matrix elements we need to solve the matching equations.

E. Matching in space

We first start by matching the solutions at z = −l we have:

B1up̄1e
−ip̄1l + B2up̄2e

−ip̄2l +B3up̄3e
−ip̄3l +B4up̄4e

−ip̄4l =

C1vp1e
−ip1l + C2vp2e

−ip2l + C3vp3e
−ip3l + C4vp4e

−ip4l (78)

We redefine the Bi and the Ci in the way

B̃i = Bie
−ip̄il, C̃i =

Ci√
Ni

. (79)

Multiplying equation (80) by ũTi τ , orthogonality property coming from the symmetry of the

motion matrices :

B̃iu
T
pi
τupi =

4∑

j=1

uTi τvje
−ipj lC̃j, (80)

Doing the same for all the B’s and writing down all the relations in matrix form we obtain :

U













B1

B2

B3

B4













= SE













C1

C2

C3

C4













, (81)
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with,

S =













uT1 τv1 uT1 τv2 uT1 τv3 uT1 τv4

uT2 τv1 uT2 τv2 uT2 τv3 uT2 τv4

uT3 τv1 uT3 τv2 uT3 τv3 uT3 τv4

uT4 τv1 uT4 τv2 uT4 τv3 uT4 τv4













, (82)

E(l) =













e−ip1l 0 0 0

0 e−ip2l 0 0

0 0 e−ip3l 0

0 0 0 e−ip4l













, (83)

and

U =













uTp̄1τup̄1 0 0 0

0 uTp̄2τup̄2 0 0

0 0 uTp̄3τup̄3 0

0 0 0 uTp̄4τup̄4













, (84)

We can then write for the expression we obtain at z = −l












B1

B2

B3

B4













= U−1SE













C1

C2

C3

C4













. (85)

At z = +l we have using the same definitions as for before :

U













A1

A2

A3

A4













= SE(−l)













C1

C2

C3

C4













, (86)

Mixing up these two relations we obtain for the total transformation matrix V the following

relation :












B1

B2

B3

B4













= U−1SEE ′−1
S−1U













A1

A2

A3

A4













. (87)
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Using the definition

E(l)E(−l)−1 ≡ E, (88)

we can easily show that :

[E, τ ]− = 0. (89)

As we shall find out later on the last form is a transformation that allows us to diagonalise

the motion matrix inside the Q-ball. Using this matrix we shall construct all the reflection

and diffusion coefficients for all the waves moving inside and outside of the Q-Ball. Before

we continue we need to remember that p3 = −p1 and p4 = −p2 for both sets of p’s (barred

ones and no bar ones). We see here that the choice for normalisation of eigenvectors will

just act on the U matrix that can be either the identity or the τ matrix or any other choice

we can make. Finally the diffusion matrix V we where looking for is given by :

V = U−1SES−1U. (90)

In fact nothing we shall do depends on these matrices but we have shown the full procedure

for completeness.

F. Construction of reflection and transmission amplitudes

We shall first construct the reflection and transmission amplitudes from the left side to

the right hand side of the Q-Ball. To do so we shall use the definition of the V matrix given

by equation 77. The first two coefficients are linked to right-moving waves while the last

two coefficients are linked to left-moving waves. This choice for arranging the waves was

done for simplicity, we can show that any other arrangement leads to same results. In fact,

we choose the simplest possible arrangement. Due to the shape of the u spinors and the Ω

matrix in front the first and the third coefficients of the free solution have the same energy

while the second and the fourth coefficients correspond to another energy wave. We shall

identify these two energy ranges to the type one particles (1) and type two particles (2).

26



Using equation 77 and separating the matrix into four two by two blocs we can write :












→
→
r1

r2













=






V11 V12
V21 V22


















t1

t2

0

0













, (91)

where the two arrows stand for the incoming waves, the first two coefficients will be replaced

by one. Using the bloc separation of the matrix we find :





→
→




 = V11






t1

t2




 , (92)






r1

r2




 = V21






t1

t2




 , (93)

leading to





t1

t2




 = V−1

11
︸︷︷︸

T






→
→




 , (94)






r1

r2




 = V21V−1

11
︸ ︷︷ ︸

R






→
→




 . (95)

The R and T matrices will give the reflection and transmission amplitudes when they are

applied on the incoming wave coefficients. These two matrices are two by two the first

line corresponding to transmission or reflection of particles with two different incoming

waves, while the second line gives the coefficients for anti-particles. We shall construct the

transmission and reflection coefficients from the right to the left hand side of Q-Ball. Using

the same method as before we have this time :












0

0

t̃1

t̃2













=






V11 V12
V21 V22


















r̃1

r̃2

←
←













, (96)

leading this time to





0

0




 = V11






r̃1

r̃2




+ V12






←
←




 , (97)






t̃1

t̃2




 = V21






r̃p

r̃a−p




+ V22






←
←




 . (98)
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First case Second case

FIG. 6: Sketch of both cases used to build the solution : we have each time two incident particles,

two reflected and two transmitted. It is an effect of massive particles because we can not identify

any more the particles with the anti-particles.

Solving these two equations gives the reflection and transmission matrices for incoming

particles from the left, they are :

R̃ = −V12V−1
11 , (99)

T̃ = V22 − V21V−1
11 V12. (100)

Now that all the coefficients are known we can construct and quantise the solution.

G. Construction of standard solution

Using the transmission and reflection coefficients we can identify two different cases the

first case is when incident particles are on the left hand side of the Q-Ball, while the other

case stands for incident particles coming from the right hand side (see fig. 6). We shall treat

separately the solution on the left and the solution on the right, the matching coefficients

are those found in the previous section, they link the expansion coefficients on the right to

those on the left. Writing down these two possibilities we have :

ΨL = [B1e
ip̄1xup̄1 +B2e

ip̄2xup̄2 + r1e
−ip̄1xu−p̄1 + r2e

−ip̄2xu−p4], (101)

ΨR = [t1e
ip̄1xup̄1 + t2e

ip̄2xup̄2], (102)

for the first case, the two incident particles coming from the left hand side of the Q-Ball and

ΨL = [t̃1e
−ip̄1xu−p̄1 + t̃2e

−ip̄2xu−p̄2], (103)

ΨR = [r̃1e
ip̄1xup̄1 + r̃2e

ip̄2xup̄2 + A1e
−ip̄1xu−p̄1 + A2e

−ip̄2xu−p̄2], (104)

for the second case. In both of these definitions we have :





r1

r2




 = R






B1

B2











t1

t2




 = T






B1

B2




 , (105)
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




r̃1

r̃2




 = R̃






A1

A2











t̃1

t̃2




 = T̃






A1

A2




 . (106)

To clearly understand the construction, the B’s are the incident amplitudes from the left

while the A’s are the amplitudes from the right. The 1 and 2 subscript indicate the type

of particle we are dealing with, we have two different exponentials in Ω(t). We then need

to take the complex conjugate of the terms corresponding to the two last components of

spinors. To continue building the solution we still need to separate each of these two cases

in two, considering only one type of incident particle at the time. This construction leads

to the four following pieces, that will be identified to the four degrees of freedom that our

solution has :

ΨL = [eip̄1xup̄1 + r11e
−ip̄1xu−p̄1] + [r12e

−ip̄2xu−p̄2],

ΨR = [t11e
ip̄1xup̄1] + [t12e

ip̄2xup̄2],
(107)

for the one incident type one particle from the left and

ΨL = [r21e
−ip̄1xu−p̄2] + [eip̄2xup̄2 + r22e

−ip̄2xu−p̄2],

ΨR = [t21e
ip̄1xup̄1] + [t22e

−ip̄2xup̄2],
(108)

for an incident type two particle. The coefficients are given by :





r11

r12




 = R






1

0











t11

t12




 = T






1

0




 , (109)






r21

r22




 = R






0

1











t21

t22




 = T






0

1




 . (110)

The two other pieces for particles incident from the right we have :

ΨL = [t̃11e
−ip̄1xu−p̄1] + [t̃12e

−ip̄2xu−p̄2],

ΨR = [r̃11e
ip̄1xup̄1 + e−ip̄1xu3] + [r̃12e

−ip̄2xu2],
(111)

for one incident type one particle from the right and

ΨL = [t̃21e
−ip̄1xu−p̄1] + [t̃22e

−ip̄2xu−p̄2],

ΨR = [r̃21e
ip̄1xup̄1] + [r̃22e

−ip̄2xup̄2 + e−ip̄2xu−p̄2],
(112)

for an incident type two particle and finally the coefficients are given by :





r̃11

r̃12




 = R̃






1

0











t̃11

t̃12




 = T̃






1

0




 , (113)






r̃21

r̃22




 = R̃






0

1











t̃21

t̃22




 = T̃






0

1




 . (114)
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If we want to easily remember the coefficients there is an easy trick. For the coefficients

without the tilde we read the subscript from the left to the right, r21 is the coefficient for an

incident type two particle being reflected as a type one particle. The same lecture stands

also for the tilde coefficients representing incident particles from the right.

H. Quantisation and Bogolubov transformation

Quantisation of solution is now easy, the total quantised solution will be a linear combina-

tion of all four parts, with expansion coefficients becoming operators after the normalisation

is made. The solution is given by :

Ψ =
4∑

j=1

(Aj , Bj)e
i(ǫ−ω0

2
)tuuppj e

ip̄jz + (A⋆
j , B

⋆
j )e

−i(ǫ+
ω0
2
)t(udown

pi
eip̄iz)⋆, (115)

in our case only the eigenvectors corresponding to the p̄1 eigenvalue have up components,

while only the eigenvectors corresponding to p̄2 have down components.

ΨL = ei(ǫ−
ω0
2
)t[eip̄1xuupp̄1 + r11e

−ip̄1xuup−p̄1] + ei(ǫ+
ω0
2
)t[r12e

−ip̄2xup̄2], (116)

incident particle is the wave containing up̄1, all this superposition must be represented using

the same operator so we are sure to have only four degrees of freedom. Quantisation will be

done using energy, for the incident wave we have :

ei(ǫ−
ω0
2
)tu1 → ǫ− ω0

2
≥MD,

→ ǫ ≥ MD + ω0

2
,

(117)

leading for this first wave to

ΨL =
∫ ∞

MD+
ω0
2

dǫ{ei(ǫ−
ω0
2
)t[eip̄1xuup1 + r11e

−ip̄1xuup3 ] +

ei(ǫ+
ω0
2
)t[r12e

−ip̄2x(udown
−p̄2

)⋆]}b†(p̄1), (118)

after the conjugation of the term proportional to ei(ǫ+
ω0
2
)t we have,

ΨL =
∫ ∞

MD+
ω0
2

dǫ{ei(ǫ−
ω0
2
)t[eip̄1xuupp̄1 + r11e

−ip̄1xuup−p̄1]b
†
p̄1
+

e−i(ǫ+
ω0
2
)t[r⋆12e

ip̄⋆2x(udown
−p̄2

)⋆]bp̄1}. (119)

Applying the same method to all the terms we finally obtain for the total solution having

four degrees of freedom :

ΨL =

∫ ∞

MD+
ω0
2

dǫ{ei(ǫ−
ω0
2
)t[eip̄1xuupp̄1 + r11e

−ip̄1xu
up
−p̄1

]b†p̄1 + e−i(ǫ+
ω0
2
)t[r⋆12e

ip̄⋆2x(udown
−p̄2

)⋆]bp̄1}
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+

∫ ∞

MD−ω0
2

dǫ{ei(ǫ−
ω0
2
)t[r21e

−ip̄1xu
up
−p̄1

]a†p̄2 + e−i(ǫ+
ω0
2
)t[e−ip̄⋆2xu⋆p̄2 + r⋆22e

ip̄⋆2x(udown
−p̄2

)⋆]ap̄2}

+

∫ ∞

MD+
ω0
2

dǫ{ei(ǫ−
ω0
2
)t[t̃11e

−ip̄1xu
up
−p̄1

]b†−p̄1
+ e−i(ǫ+

ω0
2
)t[t̃⋆12e

ip̄⋆2x(udown
−p̄2

)⋆]b−p̄1}

+

∫ ∞

MD−ω0
2

dǫ{ei(ǫ−
ω0
2
)t[t̃21e

−ip̄1xu
up
−p̄1

]a†−p̄2
+ e−i(ǫ+

ω0
2
)t[t̃⋆22e

ip̄⋆2x(udown
−p̄2

)⋆]a−p̄2}.

The upper integration bound is ω0

2
−MD so we are only left with the terms containing the

a operators,

ΨL =
∫ ω0

2
−MD

MD−ω0
2

dǫ{ei(ǫ−
ω0
2
)t[r21e

−ip̄1xuup−p̄1]a
†
p̄2
+ e−i(ǫ+

ω0
2
)t[e−ip̄⋆2x(udown

p̄2
)⋆ + r⋆22e

ip̄⋆2x(udown
−p̄2

)⋆]ap̄2}

(120)

+
∫ ω0

2
−MD

MD−ω0
2

dǫ{ei(ǫ−
ω0
2
)t[t̃21e

−ip̄1xuup−p̄1]a
†
−p̄2 + e−i(ǫ+

ω0
2
)t[t̃⋆22e

ip̄⋆2x(udown
−p̄2

)⋆]a−p̄2}.

One interesting result can be found here is that like in the massless case if we change the

sign of ω0

2
we change the particle type since we change the operator type. For the moment

the a coefficients are only expansion coefficients since we have not quantised the wave yet.

The solution on the right hand side of the Q-Ball is given by :

ΨR =
∫ ω0

2
−MD

MD−ω0
2

dǫ{[t12eip̄1xup̄1]a†p̄2 + [t⋆22e
−ip̄⋆2xup̄2]ap̄2}

(121)

+
∫ ω0

2
−MD

MD−ω0
2

dǫ{[r̃12eip̄1xup̄1]a†−p̄2 + [r̃⋆22e
−ip̄1xup̄2 + eip̄1xu−p̄2]a−p̄2}

At t = +∞ only the terms without any incident wave will survive we have then

r⋆22a(p̄2) + t̃⋆22a(−p̄2) + r21a
†(p̄2) + t̃12a

†(−p̄2) = aout(p̄2), (122)

this is the Bogolubov transformation we where looking for. If we want the aout coefficient

to be a operator we need to check that it satisfies the same anti-commutation relations as

ain. We have :

{(a†out)′, aout} =
(

(r⋆21)
′ap̄′2 + (r⋆22)

′a†p̄′2
+ (t̃⋆21)

′a−p̄′2
+ (t̃⋆22)

′a†−p̄′2

)

×
(

(r12)a
†
p̄2
+ (r22)ap̄2 + (t21)a

†
−p̄2 + (t22)a−p̄2

)

=
(

(r⋆21)
′r21 + (r⋆22)

′r22 + (t̃⋆21)
′t̃21 + (t̃⋆22)

′t̃22
)

{(a†in)′, ain}.

This relation can also be obtained if we set that the incident current is equal to the outgoing

one, or even with the normalisation of wave packets. At this stage it can be important to
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use some normalised eigenvectors. As will shall show later on it is always the case if we

diagonalise the matrix outside the Q-Ball. The number of created particles is now given by

in < 0|a†outaout|0 >in=

(

|r21|2 + |t̃21|2
|r21|2 + |r22|2 + |t̃21|2 + |t̃22|2

)

δ(ǫ− ǫ′). (123)

We need to smooth out this result, to do so we shall use the same argument as [2] to finally

obtain

dN

dt
=

1

2π

∫ ω0
2
−MD

MD−ω0
2

(

|r21|2 + |t̃21|2
|r21|2 + |r22|2 + |t̃21|2 + |t̃22|2

)

dǫ. (124)

Since we are dealing with a Bogolubov transformation we have

(

|r21|2 + |t̃21|2
|r21|2 + |r22|2 + |t̃21|2 + |t̃22|2

)

≤ 1, (125)

dN

dt
≤ ω0 − 2MD, (126)

In fact the best thing to do is to consider the solution in all space on the left and on the

right instead of considering only one side. To do so we just need to consider an incident

particle on the left and build the solution without tilde factors. The rest of the procedure

is the same we have,

ΨL+R =
∫ ω0

2
−MD

MD−ω0
2

dǫ{ei(ǫ−
ω0
2
)t[r21e

−ip̄1xuup−p̄1]a
†
p̄2
+ e−i(ǫ+

ω0
2
)t[e−ip̄⋆2x(udown

p̄2
)⋆ + r⋆22e

ip̄⋆2x(udown
−p̄2

)⋆]ap̄2},

(127)

+
∫ ω0

2
−MD

MD−ω0
2

dǫ{ei(ǫ−
ω0
2
)t[t21e

ip̄1xuupp̄1 ]a
†
−p̄2 + e−i(ǫ+

ω0
2
)t[t⋆22e

−ip̄⋆2x(udown
p̄2

)⋆]a−p̄2},

this time leading to

dN

dt
=

1

2π

∫ ω0
2
−MD

MD−ω0
2

(

|r21|2 + |t21|2
|r21|2 + |r22|2 + |t21|2 + |t22|2

)

dǫ, (128)

after normalisation of operators. These results seem to be correct because when the fermions

become massless there is identification of both types of produced particles so the total

coefficient becomes equal to one as in the previous section and there is total reflection. We

could stop our calculations here since we’ve got the expression of particle production state

and all the matrix elements are known. But we can greatly simplify this problem so the

expressions we obtain become simpler and more readable.

32



I. Direct construction of S Matrix

Using the shape of the different matrices we deal with we think there is a simpler way

to construct the diffusion matrix. In fact all the matrices of motion equations can be

diagonalised using simple transformations that preserve the symmetry of the problem. If

the matrices can be diagonalised the eigenvectors will have automatic orthogonality and

normalisation properties. This diagonalisation will be done using simple transformations

depending on six parameters. The symmetry to conserve is given in (66).

Taking a look at theM0 matrix defined in eq. (69) we can diagonalise it using the Lorentz

boost-transformation :

M ′
0 = τvT1 τM0v1, (129)

with,

v1 =













cosh(x1) sinh(x1) 0 0

sinh(x1) cosh(x1) 0 0

0 0 cosh(x2) − sinh(x2)

0 0 − sinh(x2) cosh(x2)













, (130)

vT1 τv1 = τ. (131)

The last equation ensures us the fact that τvT τ = v−1 and that the symmetry of the problem

is conserved. Setting x1 and x2 being solutions of :

cosh(2x1) =
ǫ− sinh(2x1)

MD
,

cosh(2x2) =
ǫ+ sinh(2x2)

MD
,

(132)

we find for the M ′
0 matrix the following diagonal form,

M ′
0 =













k1 0 0 0

0 −k1 0 0

0 0 k2 0

0 0 0 −k2













, (133)

where

k1 =
(M2

D
−ǫ2

−
) sinh(x1)

MD
,

k2 =
(M2

D
−ǫ2+) sinh(x2)

MD
.

(134)
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All the parameters we find after this transformation are real, the k’s that we find represent

the momentum of the particles in this new base. The same transformation applied on the

M1 matrix defined by eq. (65) gives :

M ′
1 =













k1 0 sinh(x) − cosh(x)

0 −k1 − cosh(x) sinh(x)

sinh(x) cosh(x) k2 0

cosh(x) sinh(x) 0 −k2













, (135)

with x = x1 + x2. We can check that this new matrix has the same symmetry properties as

M1. This simple transformation allows us to eliminate the Dirac coupling of our equations

but in presence of the Q-Ball it is replaced by a double Majorana coupling. Since this

transformation is made every where, it will not change any of the properties. A solution of

equations (132) is easy to construct it is :

cosh(2x1)

sinh(2x1)
= coth(2x1) =

ǫ−
MD

2x1 = argcoth(
ǫ−
MD

) (136)

Once this transformation is made inside and outside of the Q-Ball the eigenvectors outside

of the Q-Ball only contain one non zero component, the important fact here is that the

M ′
0 matrix is now self adjoint so its eigenvectors have the standard orthogonality properties

without the τ matrix. When we do the matching in space eq. (80) instead of multiplying by

uTi τ we multiply by u†i and the S matrix is made of the components ofM ′
1 eigenvectors, so the

only thing we did was to diagonalise the transformed matrix. To continue the Diagonalisation

process we now transform M ′
1 in the way :

M ′′
1 = τ(s1s2)

T τM ′
1(s1s2) (137)

with,

s1 =













cosh[y/2] 0 0 sinh[y/2]

0 cosh[y/2] − sinh[y/2] 0

0 − sinh[y/2] cosh[y/2] 0

sinh[y/2] 0 0 cosh[y/2]













, (138)
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s2 =













cos[z/2] 0 sin[z/2] 0

0 cos[z/2] 0 − sin[z/2]

− sin[z/2] 0 cos[z/2] 0

0 sin[z/2] 0 cos[z/2]













. (139)

As before we have :

(s1s2)
T τ(s1s2) = τ, (140)

to preserve the symmetry of the problem. This set of transformations looks more complicated

then the simple boost we used to start, it is the case for the parameters we shall need to

use. But it is of great use for the final simplifications and results. Setting y and z to be

solutions of :

sin(z) =
−2 cos(z) cosh(y) sinh(x)

k1 − k2
, (141)

sinh(y) =
2 cosh(y) cosh(x)

k1 + k2
, (142)

⇒ tan(z) =
−2 cosh(y) sinh(x)

k1 − k2
⇒ tanh(y) =

−2 cosh(x)
k1 + k2

we have

M ′′
1 =













A −M̄ 0 0

M̄ −A 0 0

0 0 B M̄

0 0 −M̄ −B













, (143)

with,

A =
1

2

(

(k1 − k2) cos(z) + (k1 + k2 −
4 cosh(x)2

k1 + k2
) cosh(y)

+
4 cos(z) sinh2(x) cosh2(y)

k1 − k2

)

, (144)

B =
1

2

(

(−k1 + k2) cos(z) + (k1 + k2 −
4 cosh(x)

k1 + k2
) cosh(y)

−4 cos(z) sinh
2(x) cosh2(y)

k1 − k2

)

, (145)

M̄ =
cosh(y) sinh(2x)

k1 + k2
. (146)
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Taking a look at this M ′′
1 matrix we see it has the same form as the M0 matrix so we shall

diagonalise it using the same boost transformation. This time the transformation will not

be a boost since some parameters can be complex. In fact before going any further we have

to find the solution to equation (142) that night be complex, k1 + k2 is small so the fraction

on the right hand side is always bigger than one. We shall have to set y = iπ
2
+ η, this little

trick allows us to easily solve all these equations. Finally to finish the diagonalisation we

transform using the v1 matrix :

M ′′′
1 = τvT1 τM

′′
1 v1

= τvT1 ττv
T
2 τM

′
1v2v1

= τvT3 τM
′
1v3, (147)

with v3 = v2v1. This last transformation can also be done using a slightly different matrix

the v′1 matrix defined by :

v′1 =













cosh(a) sinh(a) 0 0

sinh(a) cosh(a) 0 0

0 0 cosh(b) − sinh(b)

0 0 − sinh(b) cosh(b)













, (148)

v′T1 τv
′
1 = τ. (149)

We finally have for the M ′′′
1 matrix the form

M ′′′
1 =













ξ1 0 0 0

0 −ξ1 0 0

0 0 ξ2 0

0 0 0 −ξ2













, (150)

with

M̄ξ1 = (A2 − M̄2) sinh(2a),

M̄ξ2 = (B2 − M̄2) sinh(2b),
(151)

where

M̄ cosh[2a] = A sinh(2a),

M̄ cosh[2b] = B sinh(2a).
(152)
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Using these transformation the diffusion matrix V can be expressed in terms of the diago-

nalisation matrices in the way :

V = τ(s1s2v
′
1)

T τE(s1s2v
′
1). (153)

This form will be in fact far more simple then all the other possible ones, so this is the reason

why we decided to use it rather then the form with the scalar products of the eigenvectors.

What we do is exactly the same since we work in a base where the matrix of motion equations

is diagonal. If we keep the scalar products with the τ matrix we see that the only to vectors

having negative values are the negative moving ones, with a simple calculation we could link

the τ matrix to the helicity operator. This final expression we obtained will lead to simple

results and is used to compute all the reflection and transmission amplitude the results are

given in the next section.

1. Small sized Q balls

Using the results of previous section we where able to compute all the amplitudes for

small sized Q balls. The method used was to replace the exponentials in the E matrix

by : (1 − ip1,2,3,4l). These amplitudes still have complicated expressions but all of them

exept t22 are proportional to the size parameter Ml ≡ l. In the limit where l goes to zero

all the amplitudes fall to zero except t22 going to one. The t22 amplitude representing the

probability of a fermion remaining a fermion. This probability is obviously one if the Q ball

disappears. If the size parameter is small the amplitudes will become proportional l2 as for

massless particle production. This quadratic behaviour is shown on figure 7.

V. RESULTS OF NUMERICAL INTEGRATION

We first tested the stability of production rate in function of size to see if like in the

previous case the particle production rate becomes constant and stable for big values of

the size. If the production becomes constant above a certain size then we do not need to

care about complex averaging processes. Figure 8 shows the stability of evaporation rate

for large Q balls. The little oscillations are due to numerical instabilities that vanish for

very big values of size. We can now compute the evaporation rate for values of the Dirac
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FIG. 7: Particle production rate for small values of the size parameter.
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FIG. 8: Particle production rate for small values of the size parameter.

mass smaller then the Majorana mass (the coupling inside the Q ball). The next task we

need to do is test the stability of our computations when the fermion mass parameter is

bigger then the Majorana coupling inside the Q-Ball, it is the case when MD ≥ 1. This case

shows exactly the same behaviour of the other one except for the fact that it takes more

computer time to obtain the plot of evaporation. The results are on figure 10. A quick

analysis of these results shows that there is a superior limit for all parameter sets, this limit

does not depend on the mass parameter. Is seems to be normal since an infinite Q-Ball with

an infinite internal frequency can produce any mass fermions. The last words we shall say
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FIG. 9: Evaporation rate, 2πdN
Mdt

for infinite (very big) Q-Balls in function of the frequency parameter

for different values of the fermion mass parameter.
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FIG. 10: Evaporation rate, 2πdN
Mdt

for infinite (very big) Q-Balls in function of the frequency pa-

rameter for different values of the fermion mass parameter bigger then one.

about these results is that the “angle” in the curve correspond to the value of the frequency

where the imaginary part of the impulsion inside the Q-Ball becomes zero, it is the point

where particles start to propagate inside the Q-Ball. The normalisation of evaporation by

its upper bound will lead to the same shape as the massless case but there will be a gap

from zero to the value of the fermion mass.

VI. ENERGY FLUX FAR AWAY FROM THE Q BALL

The last step we need to achieve is compute the energy flux far away from the Q-Ball it

is done by considering the flux through a sphere surrounding the Q ball. As before if the

observer is far away from the Q ball the only important dimension is the distance to the Q
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FIG. 11: Energy spectrum far away from the Q ball in function of ω0
2M once for a very big Q ball

and once for a small one.

ball. We have,

dE

Mdtdσ
=
∫ +

ω0
2M

−MD
M

− ω0
2M

+
MD
M

(

|r21|2 + |t21|2
|r21|2 + |r22|2 + |t21|2 + |t22|2

)

ǭ2dǭ, (154)

the transmission amplitudes disappear when the Q-Ball’s size is very big. This integration

can be done numerically and we can also introduce the Q ball’s size to see its influence on

the energy flux. The only difference is that a small Q ball will produce less energy for until

the value of the frequency parameter becomes big. We could normalise these figures with

the absolute upper bound. This normalisation does not introduce any new features since

the normalised curve for very big Q ball would start with a constant part to then fall down.

For the small one we will not find any constant part in the normalised curve.
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VII. CONCLUSIONS

As we have seen the coupling between the scalar field and fermionic field leads to par-

ticle production from the Q-ball [2]. To study this particle production we constructed the

exact quantum-mechanical state describing the particle producing Q-ball. We used Heisen-

berg’s picture of quantum mechanics, the state describing the produced fermions is fully

characterised by the fact that no fluxes are moving towards the Q-ball. This condition is

solved considering the asymptotics of the fields far away from the Q-ball. Using this state

we constructed the Heisenberg field operator describing massless fermions produced by a

Q-ball. This construction allowed us to prove that for large Q-balls in one space dimension

the particle production does not depend on the Q-ball’s size. While for small Q-balls the

particle production rate is proportional to l2. The extension of these results to three space

dimensions is simple. For large Q-balls particle production is an evaporation, while for small

Q-balls it depends on the size. The other result we need to point out is that we can consider

a variety of kinematical constructions to compute the evaporation rates. The first one is the

standard one where we compute the reflection and transmission amplitudes for an incoming

wave. The second one we used is based on the fact that no particles are moving towards the

Q-ball. We proved that these two pictures are equivalent.

The fact that fermions acquire a Dirac mass does not introduce many changes. In 1⊕ 1

dimensions the particle production rate does not depend on the Q-ball’s size for sufficiently

big ones. This result is not very surprising, since taking the limit m → 0 leads to the

same results as the coupling with massless fermions. In this case the only difference is that

evaporation occurs in a different range. The internal frequency ω0, the energy of one single

scalar forming the Q-ball, must be bigger than the produced fermion mass. This result is

also quite intuitive, the scalars forming the Q-ball desintegrate into fermions so their energy

must be bigger than the fermion mass. The second fact is that particle production occurs

in the range mixing positive and negative frequency terms. In this range the Bogolubov

transformations we build are non trivial. Using these two results we proved that evaporation

can only take place in the range : [MD− ω0

2
; ω0

2
−MD], with

ω0

2
≥MD. This result is in total

accordance with the previous work done on the subject [2, 8], and extends it a significant

way. This new definition for the evaporation range will introduce a new upper bound for

the evaporation rate.
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When the Q ball’s size becomes small there is no more evaporation since the production

rate depends on the size. For small sized Q balls the particle production rate is proportional

to l2. The size will also slow down the energy flux a distant observer can measure. Taking

the limit l →∞ does not need any complex averaging processes since the evaporation rate

is constant and l independent for big values of the size.

We also computed all the transmission and reflection coefficients for a massive fermion be-

ing scattered by a large Q-ball. This construction allowed us to compute the exact profile of

the evaporation rate. Using these profiles we proved that both constructions are equivalent.

The last result we have proved is that evaporation rate is proportional to ω0 in one space

dimension while it is proportional to ω3
0 in three dimensions. In fact in three dimensions it

is proportional to (ω0

2
−MD)

3. These reflection and transmission amplitudes will be used to

study the behaviour of Q Balls in matter.
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