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1. Introduction

The understanding of gaps-between-jets processes has been subject to great progress

over the last few years. Of central importance in this context is the energy flow into

the interjet region as a very useful observable in the description of gaps-between-

jets processes. According to the method of Sterman et al. [1–4], the cross section for

interjet energy flow can be ‘refactorized’ into hard and soft parts at some factorization

scale µ. For all but the most trivial processes, these parts have a matrix structure in

the space of colour flows of the hard process, with the hard amplitude represented

by a vector A in this space and the sum of all possible soft corrections to the cross

section represented by a matrix S. The µ dependence of each is accounted for by an

anomalous dimension Γ, also a matrix in colour space. Logarithms of the ratio of the

hard and soft scales can be summed to all orders by taking µ of order the hard scale

in the hard amplitude and the soft scale in the soft matrix, using the exponential of

the integral of Γ to connect the two scales. The anomalous dimension matrix Γ has

been calculated for all (QCD) 2 → 2 processes and for various definitions of the final

state [5–8].

It is the purpose of this paper to calculate for the first time the anomalous

dimension matrix for a 2 → 3 process, namely qq → qqg; to distinguish it from the

one for the 2 → 2 process qq → qq, we denote it Λ. This can serve as a starting

point to improve the understanding of theoretical aspects in the description of gaps-

between-jets processes. The calculation of this matrix is also a first step towards

energy flow analyses of 3-jet processes which are particularly interesting at the LHC.

– 1 –



In this paper we consider the process qq → qqg with a gap defined by a central

rapidity region of length Y < ∆y where ∆y is the rapidity separation of the outgoing

quarks. The real gluon is restricted to the region outside the gap. Λ is then obtained

by calculating the virtual corrections to this process from a softer gluon connecting

the external lines in all possible ways. In common with other calculations of gaps-

between-jets cross sections [5–8], we assume a perfect real–virtual cancellation outside

the gap region. Thus the virtual gluon is integrated only over the rapidity interval

of the gap and over all azimuthal angles.

We represent the result for Λ in three colour bases and thereby shed light on

different aspects of it.

2. The anomalous dimension matrix for qq → qqg

Let us start with the colour structure. For the qiqj → qkqlga system (where the

subscripts are the colour indices) there are four independent colour states needed.

We first choose the t-channel basis

C1 = T a
kiδlj + δkiT

a
lj , (2.1)

C2 = T b
kiT

c
lj d

abc, (2.2)

C3 = T a
kiδlj − δkiT

a
lj, (2.3)

C4 = T b
kiT

c
lj if

abc. (2.4)

The lowest order soft matrix (which contains the traces of the squared operators of

the basis) is given in this basis by

S =











Nc(N
2
c − 1) 0 0 0

0 1
4Nc

(N2
c − 1)(N2

c − 4) 0 0

0 0 Nc(N
2
c − 1) 0

0 0 0 1
4
Nc(N

2
c − 1)











. (2.5)

The momenta of the hard process are labeled in the following way

q(p1) + q(p2) → q(p3) + q(p4) + g(k). (2.6)

We work in the frame in which 1 and 2 collide head on and the gap region is central

in rapidity,

p1 = E1(1; 0, 0, 1), (2.7)

p2 = E2(1; 0, 0,−1), (2.8)

p3 = q⊥3 (cosh y3; 0, 1, sinh y3) , (2.9)

p4 = q⊥4 (cosh y4; sinϕ, cosϕ, sinh y4) , (2.10)

k = k⊥ (cosh y ; sinφ, cosφ, sinh y ) . (2.11)
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Note that in the limit in which the emitted gluon is much softer than the quarks,

k⊥ ≪ q⊥3,4, momentum conservation implies q⊥3 = q⊥4 and ϕ = π and the kinematics

are identical to the lowest order process qq → qq. We are interested in the case that

the quark jets are either side of the gap and can therefore assume y3 > 0 and y4 < 0.

We denote the rapidity, azimuthal angle and transverse momentum of the virtual

gluon k′ by y′, φ′ and k′
⊥, respectively. For future use, we define

sy = sgn(y). (2.12)

The gap is defined by a central rapidity region of length Y . Since we are interested

in the case of k outside the gap and k′ within it, we have

|y′| <
Y

2
< |y| (2.13)

and hence

sgn(y − y′) = sgn(y) = sy. (2.14)

We denote the hard amplitude (2.6) evaluated at refactorization scale µ by the

(four dimensional) vector A(µ). The anomalous dimension matrix Λ is then defined

through the evolution of A(µ),

µ
d

dµ
A =

2αs

π
Λ A. (2.15)

We can extract Λ from a one-loop calculation by expanding (2.15) to leading order,

A(1) = −
2αs

π

∫

dk′
⊥

k′
⊥

Λ A(0), (2.16)

where A(0) and A(1) are respectively the lowest order and one-loop amplitudes. The

latter is calculated from the virtual corrections to the hard process from a gluon

coupling two external lines in all possible ways. We work in the eikonal effective

theory. The region of integration is

0 < φ′ < 2π (2.17)

−Y/2 < y′ < Y/2. (2.18)

Details of the calculation of Λ can be found in the Appendix. We only state the

result here written as a sum of four parts.
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Λ =











Nc

4
(Y − iπ) + 1

2Nc

iπ (1
4
− 1

N2
c

)iπ −Nc

4
syY 0

iπ Nc

4
(2Y − iπ)− 3

2Nc

iπ 0 0

−Nc

4
syY 0 Nc

4
(Y − iπ)− 1

2Nc

iπ −1
4
iπ

0 0 −iπ Nc

4
(2Y − iπ)− 1

2Nc

iπ











+











Nc 0 0 0

0 Nc 0 0

0 0 Nc 0

0 0 0 Nc











1

4
ρ(2|y|)

+











CF 0 0 0

0 CF 0 0

0 0 CF 0

0 0 0 CF











(

1

4
ρ(2|y3|) +

1

4
ρ(2|y4|)

)

+











Nc

4
(−1

2
λ) 0 Nc

4
(−1

2
syλ)

1
4
(1
2
syλ)

0 Nc

4
(−1

2
λ) 0 Nc

4
(1
2
syλ)

Nc

4
(−1

2
syλ) 0 Nc

4
(−1

2
λ) 1

4
(−1

2
λ)

1
2
syλ (Nc

4
− 1

Nc

)(1
2
syλ) −1

2
λ Nc

4
(−1

2
λ)











, (2.19)

where we have defined

ρ(y) ≡ log
sinh(y/2 + Y/2)

sinh(y/2− Y/2)
− Y, (2.20)

λ ≡
1

2
log

cosh(|ȳ|+ |y|+ Y )− cos(φ̄)

cosh(|ȳ|+ |y| − Y )− cos(φ̄)
− Y (2.21)

with

φ̄ ≡

{

φ y > 0,

ϕ− φ y < 0,
(2.22)

and

ȳ ≡

{

y3 y > 0,

y4 y < 0.
(2.23)

We have grouped the four terms of Λ in the following way. For fixed Y , the first line

contains all the terms that remain when y, y3, y4 → ±∞ (the high energy limit), the

second line contains the additional terms that remain when y is finite, the third line

contains the additional terms that remain when y3 or y4 is finite and the last line

contains the additional terms that remain when y3, y4 and y are finite. For future

reference we define these four lines to be Λ1,2,3,4 respectively.

For reasons that will become apparent shortly, it will be useful to modify the

matrix Λ. Adding a multiple of the identity matrix to any matrix does not change its

eigenvectors and simply adds a constant to all of its eigenvalues. Moreover, adding

an imaginary constant to all the eigenvalues of Λ will not change the physics, since
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the energy dependence comes from combinations λ(i)∗ + λ(j). Therefore we are free

to add any imaginary constant times the identity matrix to Λ. From now on we shall

denote Λ the matrix obtained from (2.19) by

Λ → Λ+Nc/4 iπ. (2.24)

The eigenvalues of this matrix Λ are:

λ(1) =
Nc

2
Y +

Nc − 1

2Nc

iπ +Nc
1
4
ρ(2|y|) + CF

(

1
4
ρ(2|y3|) +

1
4
ρ(2|y4|)

)

+ 1
4
λ, (2.25)

λ(2) =
Nc

2
Y −

Nc + 1

2Nc

iπ +Nc
1
4
ρ(2|y|) + CF

(

1
4
ρ(2|y3|) +

1
4
ρ(2|y4|)

)

− 1
4
λ, (2.26)

λ(3) =
N2

c Y − 2iπ −Nc

√

N2
c Y

2 − 4Y iπ − 4π2

4Nc

+Nc
1
4
ρ(2|y|) + CF

(

1
4
ρ(2|y3|) +

1
4
ρ(2|y4|)

)

− Nc

4
λ, (2.27)

λ(4) =
N2

c Y − 2iπ +Nc

√

N2
c Y

2 − 4Y iπ − 4π2

4Nc

+Nc
1
4
ρ(2|y|) + CF

(

1
4
ρ(2|y3|) +

1
4
ρ(2|y4|)

)

− Nc

4
λ (2.28)

and it is diagonalized by

R =











1
2
sy −1

2
sy (− 3

2Nc

− iNcY
2π

+ iλ(3)

π
)sy (− 1

2Nc

− iλ(3)

π
)sy

Nc

Nc+2
sy

Nc

Nc−2
sy −sy −sy

−1
2

1
2

− 1
2Nc

− iNcY
2π

+ iλ(3)

π
1

2Nc

− iλ(3)

π

1 1 1 1











. (2.29)

Note that whereas Λ1 has four different eigenvalues, two eigenvalues of Λ4 are degen-

erate.

2.1 Block Diagonalization of Λ

The anomalous dimension matrix Γ for the hard process qq → qq is defined in exact

analogy to Λ, (2.16). In the high energy limit (|y3,4| → ∞) and in the t-channel

singlet–octet basis it reads:

Γ =

(

0
(

1
4
− 1

4N2
c

)

iπ

iπ Nc

2
Y − 1

Nc

(iπ)

)

. (2.30)

Two of the eigenvalues of Λ1 coincide with the eigenvalues of Γ (to enable this was

the reason for the modification (2.24) of Λ). We can therefore construct a matrix

R̂ =

√

Nc

2(N2
c − 1)











1
2
sy −1

2
sy sy

1
2Nc

sy
Nc

Nc+2
sy

Nc

Nc−2
sy 0 sy

−1
2

1
2

1 − 1
2Nc

1 1 0 −1











. (2.31)
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which diagonalizes Λ4 and transforms Λ1 in the following way:

R̂−1Λ1R̂ =













λ
(1)
1 0 0 0

0 λ
(2)
1 0 0

0 0 0
(

1
4
− 1

4N2
c

)

iπ

0 0 iπ Nc

2
Y − 1

Nc

(iπ)













. (2.32)

where λ
(i)
1 are the eigenvalues of Λ1, which can be obtained from (2.25-2.28) by setting

ρ and λ to 0. Not only is this matrix block diagonal but, remarkably, the upper left

block is itself diagonal, and the lower right block is identical to Γ.

Note that the soft matrix in this basis,

R̂†SR̂ =











N2
c

2
Nc+1
Nc+2

0 0 0

0 N2
c

2
Nc−1
Nc−2

0 0

0 0 N2
c 0

0 0 0 1
4
(N2

c − 1)











, (2.33)

is still diagonal and that its lower right block is identical to the soft matrix of the

2 → 2 process (the latter property is the reason for our choice of normalization for R̂).

It is also interesting to note that in this basis the anomalous dimension matrix Λ is

sy independent and that all of the sy dependence is carried by the definitions of the

basis states, which are different for sy = ±1.

2.2 The s-channel basis

Reference [9] advocated using the set of s-channel projectors as the colour basis for

2 → 2 processes. In this section we present our results for Λ in an alternative block-

diagonal form in which its lower right block is identical to Γ transformed into the

s-channel basis and show that its basis states have a simple form.

For a qq state, the projectors are

P3̄ =
1

2

(

δkiδlj − δliδkj

)

, (2.34)

P6 =
1

2

(

δkiδlj + δliδkj

)

. (2.35)

We can transform between the t-channel basis we have been using so far and the

s-channel basis using the matrix

Rst =

(

Nc−1
2Nc

Nc+1
2Nc

−1 +1

)

. (2.36)

That is, Γ transforms to

R−1
st ΓRst =

(

1
4
(Nc + 1)Y − Nc+1

2Nc

iπ −1
4
(Nc + 1)Y

−1
4
(Nc − 1)Y 1

4
(Nc − 1)Y + Nc−1

2Nc

iπ

)

(2.37)
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in the high energy limit and S to

R†
st SRst =

(

1
2
Nc(Nc − 1) 0

0 1
2
Nc(Nc + 1)

)

. (2.38)

Note that the imaginary terms appear only in the diagonal of Γ and that the entries

in S correspond to the multiplicities of the basis states, 3 and 6 for Nc = 3, two of

the advantages of the s-channel projector basis.

We wish to express Λ in a block diagonal form in which the bottom right block

is equal to Γ in the s-channel basis, Eq. (2.37). To this end we define a matrix

R̂st =













√

Nc+2
Nc

0 0 0

0
√

Nc−2
Nc

0 0

0 0 Nc−1
2Nc

Nc+1
2Nc

0 0 −1 +1













, (2.39)

in which the bottom right block is equal to Rst and the diagonal entries in the top

left block are arbitrary – the particular choice made here will lead to a convenient

result for the soft matrix.

Transforming Λ1 and S from the original t-channel basis, we obtain

R̂−1
st R̂−1Λ1 R̂ R̂st =











λ
(1)
1 0 0 0

0 λ
(2)
1 0 0

0 0 1
4
(Nc + 1)Y − Nc+1

2Nc

iπ −1
4
(Nc + 1)Y

0 0 −1
4
(Nc − 1)Y 1

4
(Nc − 1)Y + Nc−1

2Nc

iπ











(2.40)

and

R̂†
st R̂

† S R̂ R̂st =











1
2
Nc(Nc + 1) 0 0 0

0 1
2
Nc(Nc − 1) 0 0

0 0 1
2
Nc(Nc − 1) 0

0 0 0 1
2
Nc(Nc + 1)











. (2.41)

By construction, the lower right block of Λ is equal to Γ in the high energy limit, the

lower right block of S is equal to S in the 2 → 2 s-channel basis and the upper left

entries of Λ are left unchanged. The upper left entries of S are set by our arbitrary

choices in R̂st for reasons that will be seen shortly. Beyond the high energy limit, the

bottom right block of Λ contains a term 1
4
CF (ρ(2|y3|) + ρ(2|y4|)) +

1
4
Nc(ρ(2|y|)− λ)

times the identity matrix while Γ contains just a term 1
4
CF (ρ(2|y3|)+ ρ(2|y4|)) times

the identity matrix, resulting in a small mismatch.

The actual definitions of the basis states can be read off from the columns of

R̂ R̂st and can be written in forms proportional to the s-channel projectors for the

incoming quarks. Since the matrix R̂ depends on sy, these states are different for
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sy = ±1 (recall that sy = +1 implies that the gluon is on the same side of the

rapidity gap as incoming quark i and outgoing quark k, while sy = −1 implies that

it is on the other side). For sy = +1 we have

Ĉ1 ∝
1

2

(

δmiδnj + δniδmj

)(

δkmT
a
ln −

1

Nc + 1
T a
kmδln

)

, (2.42)

Ĉ2 ∝
1

2

(

δmiδnj − δniδmj

)(

δkmT
a
ln +

1

Nc − 1
T a
kmδln

)

, (2.43)

Ĉ3 ∝
1

2

(

δmiδnj − δniδmj

)(

T a
kmδln

)

, (2.44)

Ĉ4 ∝
1

2

(

δmiδnj + δniδmj

)(

T a
kmδln

)

, (2.45)

while for sy = −1 we have

Ĉ1 ∝
1

2

(

δmiδnj + δniδmj

)(

T a
kmδln −

1

Nc + 1
δkmT

a
ln

)

, (2.46)

Ĉ2 ∝
1

2

(

δmiδnj − δniδmj

)(

T a
kmδln +

1

Nc − 1
δkmT

a
ln

)

, (2.47)

Ĉ3 ∝
1

2

(

δmiδnj − δniδmj

)(

δkmT
a
ln

)

, (2.48)

Ĉ4 ∝
1

2

(

δmiδnj + δniδmj

)(

δkmT
a
ln

)

. (2.49)

It is important to note that although we have made arbitrary choices that affect

the normalizations of these states in order to get S into the form Eq. (2.41), their

forms are otherwise determined entirely by the physics of Λ. We see that the two

states that evolve like a qq → qq system have a colour structure given by the qq → qq

projectors followed by a gluon emission from the outgoing quark it is on the same

side of the gap as. The two other states are given similarly by projectors followed by

an emission from the other outgoing quark, up to colour-suppressed terms coming

from emission on the same side.

3. Conclusions

We have calculated the anomalous dimension matrix Λ for the five-parton process

qq → qqg and presented it in several different colour bases. It seems likely that the

generalization of the s-channel basis, Eq. (2.40), will be most useful both for gaining

insight into the physics of Λ and for performing practical calculations. We anticipate

using Λ to improve the theoretical understanding of gaps-between-jets processes and

ultimately to calculate energy flow observables in 3-jet processes, which are particu-

larly interesting at the LHC. The latter however requires the anomalous dimension

matrices for all 3-jet processes to be calculated, a highly non-trivial problem: in the

most complicated case of gg → ggg one expects up to 44 independent colour ampli-

tudes and a deeper theoretical insight seems necessary to organize the calculation.
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In particular it would be extremely interesting to see whether the block diagonal

structure we found for qq → qqg can be generalized to arbitrary processes, with one

block always equal to the anomalous dimension matrix of a lower-order process.

A. Calculation of Λ

In the basis (2.1-2.4) Λ has the following colour structure

Λ =





























1
2Nc

(Ω12 + Ω34 + Ω14 + Ω23) (
1
4
− 1

N2
c

)(Ω12 + Ω34 + Ω14 + Ω23) 0 1
4
(−Ω14 + Ω23)

Ω12 + Ω34 + Ω14 + Ω23 − 3
2Nc

(Ω12 + Ω34 + Ω14 + Ω23) 0 Nc

4
(−Ω14 + Ω23)

+Nc

4
(Ω14 + Ω23)

0 0 − 1
2Nc

(Ω12 + Ω34 + Ω14 + Ω23)
1
4
(−Ω12 + Ω34)

−Ω14 + Ω23 (Nc

4
− 1

Nc

)(−Ω14 + Ω23) −Ω12 + Ω34 − 1
2Nc

(Ω12 + Ω34 + Ω14 + Ω23)

+Nc

4
(Ω14 + Ω23)





























+











Nc

4
(Ω1k − Ω2k − Ω3k + Ω4k) 0 Nc

4
(Ω1k + Ω2k − Ω3k − Ω4k)

1
4
(Ω1k + Ω2k + Ω3k + Ω4k)

0 Nc

4
(Ω1k − Ω2k − Ω3k + Ω4k) 0 Nc

4
(Ω1k + Ω2k + Ω3k + Ω4k)

Nc

4
(Ω1k + Ω2k − Ω3k − Ω4k) 0 Nc

4
(Ω1k − Ω2k − Ω3k + Ω4k)

1
4
(−Ω1k + Ω2k − Ω3k + Ω4k)

Ω1k + Ω2k + Ω3k + Ω4k (Nc

4
− 1

Nc

)(Ω1k + Ω2k + Ω3k + Ω4k) −Ω1k + Ω2k − Ω3k + Ω4k
Nc

4
(Ω1k − Ω2k − Ω3k + Ω4k)











+











(Nc

4
− 1

2Nc

)(Ω13 + Ω24) 0 Nc

4
(−Ω13 + Ω24) 0

0 − 1
2Nc

(Ω13 + Ω24) 0 0
Nc

4
(−Ω13 + Ω24) 0 (Nc

4
− 1

2Nc

)(Ω13 + Ω24) 0

0 0 0 − 1
2Nc

(Ω13 + Ω24)











. (A.1)

Ωij corresponds to the case in which the virtual gluon couples quarks i and j. Ωik

accounts for the coupling of quark i and the gluon k. These functions are given by

Ωij =
1

2
δiδj

[
∫

Ω

dy′
dφ′

2π
ωij −

1
2
(1− δiδj)iπ

]

(A.2)

and

Ωik =
1

2
δiδkδg

[
∫

Ω

dy′
dφ′

2π
ω′
ik −

1
2
(1− δiδk)iπ

]

(A.3)

where we have introduced the shorthands

ωij =
1
2
k′2
⊥ pi ·pj

pi ·k′ k′ ·pj
, ω′

ik =
1
2
k′2
⊥ pi ·k

pi ·k′ k′ ·k
. (A.4)

We have δiδj = −1 if i and j are both incoming or both outgoing and +1 otherwise.

δg depends on the topology of the triple-gluon vertex: in our convention in which the

indices of ifabc are labeled in an anticlockwise direction around the vertex, if, with

the vertex rotated so that the momentum of the eikonal gluon is flowing horizontally

from left to right, the soft gluon is above it, then δg = +1, and if below, δg = −1.

It is worth pointing out that in the general case, the elements of Λ, Eq. (A.1)

obey the following equality:

Λij/Sjj = Λji/Sii (no sum), (A.5)
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implying that in an orthonormal basis in which S is equal to the identity matrix, Λ is

a symmetric matrix. This property is therefore valid independently of the observable

to which Λ contributes. It was pointed out in Ref. [10] that this property is true

of all anomalous dimension matrices that have been calculated to date, although no

explanation of this fact was offered.

Carrying out the integrations in (A.3, A.4) over the region Ω:

0 < φ′ < 2π (A.6)

−Y/2 < y′ < Y/2, (A.7)

we obtain

Ω12 = −
1

2
(Y − iπ), (A.8)

Ω34 = −
1

2
(Y − iπ)−

1

4
ρ(2|y3|)−

1

4
ρ(2|y4|), (A.9)

Ω14 =
1

2
Y +

1

4
ρ(2|y4|), (A.10)

Ω23 =
1

2
Y +

1

4
ρ(2|y3|), (A.11)

Ω13 =
1

4
ρ(2|y3|), (A.12)

Ω24 =
1

4
ρ(2|y4|), (A.13)

Ω1k =
1

4
(1− sy)Y +

1

4
ρ(2|y|), (A.14)

Ω2k = −
1

4
(1 + sy)Y −

1

4
ρ(2|y|), (A.15)

Ω3k = −
1

2

[

1

2
(1− sy)Y +

1

2
ρ(2|y3|) +

1

2
ρ(2|y|)

−
1

2
(1 + sy)λ(|y3|+ |y|, φ)− iπ

]

, (A.16)

Ω4k =
1

2

[

1

2
(1 + sy)Y +

1

2
ρ(2|y4|) +

1

2
ρ(2|y|)

−
1

2
(1− sy)λ(|y4|+ |y|, ϕ− φ)− iπ

]

. (A.17)

where we have defined

sy = sgn(y), (A.18)

ρ(y) ≡ log
sinh(y/2 + Y/2)

sinh(y/2− Y/2)
− Y, (A.19)

λ(y, φ) ≡
1

2
log

cosh(y + Y )− cos(φ)

cosh(y − Y )− cos(φ)
− Y. (A.20)

It is useful to note that

λ(y, 0) = ρ(y). (A.21)
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