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Can oscillating scalar fields decay into particles with a large thermal mass?
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We calculate the dissipation rate of a coherently oscillating scalar field in a thermal environment
using nonequilibrium quantum field theory and apply it to the reheating stage after cosmic inflation.
It is shown that the rate is nonvanishing even when particles coupled to the oscillating inflaton field
have a larger thermal mass than it, and therefore the cosmic temperature can be much higher than
inflaton’s mass even in the absence of preheating. Its cosmological implications are also discussed.

PACS numbers: 98.80.Cq,11.10.Wx,05.40.-a RESCEU-15/05

I. INTRODUCTION

In our contemporary understanding, the origin of the primeval fireball whose existence was assumed in the conven-
tional hot big bang cosmology is the reheating processes after inflation—an accelerated cosmic expansion which has
made the universe homogeneous and spatially flat with small density fluctuations that eventually grow to the observed
large-scale structure [l [2]. The universe is reheated through the dissipation of coherent oscillation of the zero-mode of
the inflaton, the scalar field whose potential energy drives inflation. While the initial stage of reheating could be rather
complicated due to an explosive particle production induced by parametric resonance, which is dubbed as preheating
3], the final stage is dominated by perturbative decay. The latter process determines the reheat temperature, Tk,
the temperature at the outset of the radiation domination [4].

Note, however, that in general T is much lower than the highest temperature the universe has ever experienced
after inflation even in the case only perturbative decay operates to reheat the universe |4]. This means that in the
late stage of the reheating processes, the inflaton decays not in a vacuum but in a thermal medium. About this point
an interesting claim has been made in [fl] that if the would-be decay products of the oscillating inflaton acquire a
thermal mass larger than the inflaton mass in the thermal background, it cannot decay into these particles, and that
reheating is suspended for some time, based on the observation that the phase space would be closed for the mass of
the decay product being larger than half the inflaton mass. The decay width of the inflaton ¢ with mass mg into two

massive particles with mass m reads
1/2
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where T'y9 is the decay rate in the case m = 0. So if we simply replace m with a thermal mass m(7T') ~ ¢T and if it
is larger than mg/2, the phase space is closed and inflaton decay is apparently forbidden. Here g is some coupling
constant of the would-be decay product. Then thermal history after inflation would be drastically changed. That is, the
highest temperature in this era cannot exceed ~ my /g if preheating is inoperative, and also the reheat temperature is
bounded from above by my/g and is independent of the decay rate of the inflaton in case the conventional calculation
gives a larger value. The former would change the abundance of supermassive particles and the latter affects the
gravitino abundance [6], because the gravitino-entropy ratio after inflation is proportional to the temperature at the
onset of radiation domination.

Furthermore, this situation is not specific to the reheating stage after inflation but may apply in any epoch when
significant amount of entropy is produced out of the decay of oscillating scalar field with a relatively small mass.
Indeed the above possibility was first pointed out by Linde [d] in the context of Affleck-Dine baryogenesis [8] where
the Affleck-Dine scalar field oscillates with a mass of order of 10272 GeV in a medium with a much higher temperature.
The final magnitude of baryon asymmetry changes if this suspension of decay is operative [1].

The above naive picture, however, may be too simplistic because a thermal mass is different from the intrinsic mass
and because coherent field oscillation is different from a collection of particles. Thus it is very important to analyze
this problem from a more fundamental point of view, for it has a profound implication not only to the cosmology of
the early Universe but also to particle physics in that it strongly affects various species of the particles produced in the
early universe as mentioned above. In this paper, extending our previous work 9], we analyze this problem in terms
of a nonequilibrium quantum field theory at finite temperature [1(0]. Inclusion of thermal masses of the would-be
decay products of the inflaton is achieved by adopting a resummed propagator when we calculate the effective action
for ¢. As a result of resummation the self energy of the decay product acquires not only real part, which appears as
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a high-temperature correction to the mass, but also an imaginary part. The latter plays a crucial role in determining
the dissipation rate of the inflaton. Consequently, we find that the inflaton can dissipate its energy even when its
would-be decay products have a larger thermal mass than the inflaton itself.

II. MODEL AND EQUATION OF MOTION

For clarity we adopt a simpler model than [9], that is, we adopt the following Lagrangian.

L= % (0.0)* — %miﬂﬁz + % (0x)* — %mif — Mox* - 392%‘ : (2)
Here ¢ is an oscillating real scalar field and x is another real scalar field. ¢ can decay into a pair of x particles
through the interaction Max?, if it is energetically allowed. The dimensionful coupling constant M may be written
as M = hmy in some supersymmetric inflation models where h is a Yukawa coupling [11]. In such models ¢ can also
decay into two fermions, which is suppressed by Pauli-blocking at finite temperature. On the contrary, the decay into
two bosons is enhanced due to the induced emission. This is the reason we consider the latter decay process.

We analyze the behavior of the above system under the following assumption which mimic the cosmological situ-
ations we are interested in, such as the late reheating phase after inflation. First we neglect cosmic expansion since
we are interested in the phenomena which occur in a shorter time scale than the expansion time. Second we assume
X is in a thermal state with a specific temperature 7= ! and that it acquires a large thermal mass due to the self
coupling. Note that x can easily be thermalized during the reheating stage since its thermalization rate, ~ ¢*T, can
naturally be much larger than the cosmic expansion rate. Finally the scalar field ¢ is oscillating but we consider the
situation the parametric resonance is already terminated with a field amplitude M|¢| < mi.

Due to its coherent nature, scalar field oscillation behaves nearly classically, but its decay is of course a quantum
process. So we calculate an effective action for ¢ and derive an equation of motion for its expectation value. For
this purpose we should use the in-in or the closed time-path formalisms in which the time contour starting from the
infinite past must run to the infinite future without fixing the final condition and come back to the infinite past again
in calculating the generating functional [12]. This method has been applied to various cosmological problems by a
number of authors [13, [14, [15]. The generating functional in the present model is given by

Z[J,K] = Tr [T_{exp [z /72 /d3:v(J_¢_ + K_X_)} } T+{exp [z /_Zﬁ /de(J+¢+ + K+X+)} } p] = WIIK] (3)

oo

where X denotes a field component X on the plus-branch (—oo to +00) and X_ that on the minus-branch (+o0o
to —o0). The symbol T represents the ordinary time ordering, and T the anti-time ordering. J; and Ky are the
external fields for ¢ and y, respectively. p is the initial density matrix which is assigned according to the assumption
above mentioned.

In terms of the components along the plus and the minus branches, the effective action reads

b = W Ke = 0= [t [0 10, (0)6: () = J-(0)6- (0)] (1)

with ¢ (z) = W [J4, J_]/0J4(z) and ¢_(z) = —0W[J, J_]/8J_(x).
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FIG. 1: One-loop Feynman diagram incorporated in the effective action. Solid line denotes ¢, and broken line .

Here we consider a one-loop correction depicted in Fig. [l which includes the essential effect in our analysis for
illustration. We also note that instead of ¢4 and ¢_ it is more convenient to use ¢. = (¢4 +¢—)/2 and pa = oy —p—
and set o — 0 in the end because ¢4 and ¢_ should be identified with each other eventually. Then the effective



action to this order is given by
Dloes6a] = = [ d'a0a(@)(D+ m2 )6 (o)
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C(z —2') = 4M*Im [Gi(:v — x’)ﬂ , D(z—2') =2M?Re [Gf(iﬂ — 96/)2] , (6)

where Gf (z) is the Feynman propagator at finite temperature. Its Fourier modes read [1€, [17]

. 1 _ .
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The resultant effective action is complex-valued as a manifestation of the dissipative nature of the system. We
cannot obtain any sensible equation of motion by simply differentiating with respect to a field variable because we
are dealing with a real scalar field and its equation of motion should be real-valued. The cure for this problem has
been proposed by Morikawa [13], according which we introduce an auxiliary random Gaussian field, £(z), to rewrite
the effective action as follows.

exp(iT'[pe, dal) = / DEPIE] exp {iTon| b0, 62, €]} (9)

where
Tust[ Ger b, €] = Rel (e, da] + / 0 €(x) b (x) (10)

Here P[¢] is a statistical distribution functional for £(z) which is a Gaussian with its dispersion given by the imaginary
part of the effective action, (£(z)¢(2")) = D(z — ).

While the mathematical equivalence between the above decomposition and the original expression (f) can easily be
confirmed by performing the path integral with respect to (), we keep it as it is to obtain a real-valued equation of
motion through

6let[ Pc, P, €] _
— 0. (11)
From (), it reads
(@rm2)ouo)+ [t [dC—aone) = ¢(o). (12)

Hereafter we omit the suffix ¢. The solution to the above equation of motion can be readily found through Fourier
transform,

b (t) = / Bro(x, e ™, d(w) = / dt, (t)e™?, (13)

etc. We find () is transformed as

[—W2 + k2 + mi + Sk(w)} ék(w) - in‘k(Z;k(w) = gk(w)v (14)

where we have defined




with
Cho(w) = /dtdng(:v)ei“’tfi’“'m, (16)

which is pure imaginary. Since S, (w) is divergent, we subtract the divergence at w = 0 to renormalize mass m, [13].
We can show that the renormalized part Spren(w) = Si(w) — S, (0) is of order of M?/(47?). From now on we refer to
myg as the renormalized mass, and assume that M < mg. Then one can neglect S, (w) in ([[@) to yield the solution

Du(t) = |du(ts) cos My(t —t;) + “b}“\yi) sian(t_ti)] e~ 2D (M) (t=t:)
k
I _1f .
+E/t. dt'e 2 MO gin M (t — £)E(), M7 =m3 + k. (17)

Here we have also assumed T (M) < My, which is justified whenever perturbation theory applies. From the above
solution we can read off that T'y (M) gives the dissipation rate of the field oscillation. In particular, the dissipation
rate of the zero-mode condensate is given by
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for mg > 2m,. Here the last approximate equality applies at high temperature 7' > mg, and we have used

. 3
Colmg) = —imM? /(;ZFZ)’B (04 20,) [50m — 2u0,) — Bms + 2], 1y = (i), (19)

for k = 0 mode. Here the delta functions appear as a result of time-integral of the form

/ cos(mg F 2wp)dt = 2md(my F 2wp), (20)
0

which arises in turn because the spatial Fourier mode of the Feynman propagator at finite temperature can be
expressed as ().

III. INCLUSION OF THE THERMAL MASS OF THE DECAY PRODUCTS

So far, although we have taken into account the fact that the decay product x is thermally populated, we have not
considered effects of the thermal environment on x itself which induces a thermal mass to x particles. If we simply
replaced the intrinsic mass m, with the thermal mass m, (T) in (I§) and ([[d), we would find the dissipation rate
would vanish for m, (T) > m,/2 as was claimed in [0, [d]. Here we carefully examine how to incorporate the thermal
mass of x in our analysis in order to see the validity of such a simplistic argument. To this end, we should not rely
on the formula [I¥) but go back to the more fundamental equation [Id) to reconsider how this equation was derived.

First we note that x’s mass in wj, of ([[) is that appears in the denominator of the Feynman propagator (§) and
the delta function emerges due to the infinitesimally small imaginary part ie. The effect of the thermal environment
on x, which gives rise to finite-temperature correction to its mass, can be incorporated to the calculation of the
dissipation rate of ¢ if we apply resummation and use a resummed propagator of x instead of the finite-temperature
bare Feynman propagator [B) to calculate the effective action. With the help of the Matsubara formalism [1&], the
denominator of the propagator acquires a self energy whose real part yields a finite-temperature correction to the
mass as desired. This resummation procedure, however, generates appreciable magnitude of the imaginary part to the
self energy at the same time, so that the delta function seen in ([[d) will no longer be present as we see below. Thus
we expect that the use of a resummed propagator changes the result qualitatively, and that the simple observation
that a large thermal mass would close the phase space of the decay rate of the inflaton ([[¥) would not apply.

We write real and imaginary parts of x’s self energy, 3(p), as Xr(p) and X;(p), respectively. Then the spectral
function reads

. 1 1
s(p,w) = 1 - : - ; )
ol ) [(w+ze)2—p2—mf<—2R—121 (w —ie)? = p? —m3 — Tg +1i%;
1 1
. ~ 7 21
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where
w}/)2 = p*t mi + Xgr(p) + I‘ip(w) ~p? 4+ mi +2r(0), Typlw)= _Eéip)' (22)
The full dressed propagator is then given by
Guanp.t) = [ 52 A[1+ nu(@)]6(0) + na()0(-0)} pu(p)e ™
= 23};) {[1 +npw), —iTyp)] e @Ml g (! + irx,,)ew;lt\frmw} , (23)

which should be compared with the bare propagator (@) [17]. Then since the propagator has a complex phase now,
the simple cosine integral in our previous calculation, which gave rise to the delta function in (), is replaced by

o 2r
/ dt et cos(mg — 2wl )t = ud (24)

0 (me — 2‘*";;)2 + (21—‘><17)27

namely, the Breit-Wigner function, when we calculate ([Id)) in terms of the dressed propagator (Z3)).

Since (24)) is finite even for my < 2w, we find the dissipation rate of ¢ is nonvanishing even when my < 2m, (7).

To the first order in I'y,,, the zero mode dissipation rate in such a regime is given by

Fo(my) = M2/ Bp 1 [ 2My(l+2n)) 2T (1 + 207
NS oy | @m)B w2 \AT2, + (mg — 20)%  AT2, + (my, + 2, )2

+260,nl (n), + 1) (25)

2my mg — 2w1’7 me + 2w1’7
A2, +m3 ATZ, + (mg — 2wy,)? 4AD2, + (mg +2wp)? | [
where nj, = np(w,,). All the terms in the second line vanish in the limit Ty, — 0, while those in the first line reduce
to delta functions in the same limit and the previous result with the undressed propagator is recovered except for the
replacement w, — w,.

As mentioned above, the above result remain finite even if mg is smaller than 2w1’7. In particular, if thermal mass
of x is much larger than the inflaton mass, w;, > mg, we obtain

: M e e - mi) N R
Fo(m¢) = 16ﬂ2[n (T)dwz/)w—gl(l‘i‘2n;)rxp+w/m (T)dwz/)w—p

ny, (1, + 1)Typ. (26)

In the present simple model, y thermalizes only through self interaction g?x*/4, then 'y, (wy,) is given by I'yp(w)) =
3¢*T?/(1287wy) [19]. We find the second term yields the dominant contribution in @8) for my < my(T) ~ ¢gT'/2.
As a result we obtain

~ M2T 3¢2
Lo(mq) ~ 27rmi 2472

(27)

Here the former factor is identical to the dissipation rate to massless particles at high temperature 7' > mg, and
the latter factor represents the suppression due to the large thermal mass of the decay product. One may wonder
the suppression factor might be proportional to g* just as ['yp(wy,). However, the result of integration of the second
term in (EG) yields m?(T') in the denominator, which partially cancels g* to g%. Although the numerical value of the
suppression factor in (271 is specific to the present model, it is a generic feature that the suppression is proportional
to some combination of coupling constants which is related to thermalization processes of the decay product, because
it arises from I'y,/wy,.

IV. DISCUSSION

The resultant reheat temperature in the present model is given by

1/2 4 12 2 _ 2 _
90 M*M¢g 39 11 .2 ( 9+ 1/2 M me 2
Tq ~ —1.0x% 10 ( ) ( ) GeV, 28
R <7r29*) 27m? 2477 9 %00 105GeV ) \105GeV ¢ (28)




where g, is the effective number of relativistic degree of freedom and Mg is the reduced Planck scale. Again it is
suppressed by the same factor, 3g2/(2472), compared with the case the scalar field decays into massless particles
in the high-temperature medium, see eq. (157) of [9]. The above result has been obtained under the assumption of
mg K gTr and M < mg. The former condition reads

NEY 2/3
m¢<<1.0><1()gg(g) ( M ) GeV. (29)

200 106GeV

The above reheat temperature [8) should also be compared with Tr ~ mg/g which would apply in the case large
thermal mass could forbid inflaton decay completely.

Our result has important implications to the abundances of supermassive dark matter particles and gravitinos as
well as baryon asymmetry. First, in case a large thermal mass forbids inflaton decay completely, the temperature
after preheating cannot be higher than ~ mgy/g. Then the abundance of supermassive particles with mass mx is
exponentially suppressed as o (mx/mg)2e™2"x/™s for mx > my and g = 1 [d]. Our result shows that such a
suppression is absent and an appreciable amount of supermassive particles could be created after inflation. Second,
the gravitino abundance is suppressed by a factor of 3g?/(2472) in the present model compared with the conventional
reheating scenario, because its abundance is proportional to the reheat temperature. Hence we can relax constraint
imposed by the gravitino decay to this extent.

In summary, we have calculated the dissipation rate of an oscillating scalar field in a thermal bath such as the
inflaton in the late reheating stage, and shown that it is nonvanishing even if the would-be decay products have a
thermal mass larger than the mass of the oscillating field. This yields several important implications that has not
been taken into account so far, as discussed above.
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