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QCD string and the Lorentz nature of confinement
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Institute of Theoretical and Experimental Physics, B.Cheremushkinskaya 25, 117218, Moscow, Russia

We address the question of the Lorentz nature of the effective long–range interquark interaction gener-

ated by the QCD string with quarks at the ends. Studying the Dyson–Schwinger equation for a heavy–light

quark–antiquark system, we demonstrate explicitly how a Lorentz–scalar interaction appears in the Diraclike

equation for the light quark, as a consequence of chiral symmetry breaking. We argue that the effective in-

terquark interaction in the Hamiltonian of the QCD string with quarks at the ends stems from this effective

scalar interaction.

PACS: 12.38.Aw, 12.39.Ki, 12.39.Pn

1. INTRODUCTION

Description of the spectrum of mass and other prop-

erties of hadrons is one of the main tasks of QCD, as

the theory of strong interactions, and a variety of non-

perturbative theoretical approaches are developed for

this purpose. In this paper we touch upon two of them,

which we believe to be complementary to one another.

On one hand, the quantum–mechanical approach of the

QCD string with quarks at the ends can be derived,

starting from the fundamental QCD Lagrangian. On

the other hand, a field–theory–inspired approach based

on the Dyson–Schwinger equation for quarkonia can be

developed. The two mentioned approaches allow one to

have reliable predictions for properties of hadrons, al-

though both of them meet certain problems and should

be applied together, side by side. For example, the

approach based on the Dyson–Schwinger equation for

quarkonia is well adjusted for the case of heavy–light

systems, whereas in the light–light case its application

is not straightforward. In the meantime, the QCD string

approach can be readily applied to both heavy–light and

light–light quarkonia, as well as to other hadrons, in-

cluding those with excited gluonic degrees of freedom.

Unfortunately, since the effects of spontaneous breaking

of chiral symmetry (SBCS) are not inherent to the string

model, there is no hope to reproduce the properties of

the lightest states in the mesonic spectrum — the pions

and the kaons — in this approach. This is the problem

for which the method of the Dyson–Schwinger equation

comes to rescue. Indeed, this method appears appro-

priate for studies of chiral symmetry breaking (CSB)

and for all phenomena related to it. In this paper we

make one more step on the way of merging the two

aforementioned methods and study the problem of the

Lorentz nature of confinement generated by the QCD

string. Considering a heavy–light quarkonium, we em-

ploy the Dyson–Schwinger approach to derive an effec-

tive Diraclike bound–state equation for the spectrum

of the system. We argue that it is SBCS, caused by

confinement, which gives rise to the scalar part of the

interquark interaction in this equation and demonstrate

how the confinement–induced scalar interaction reduces,

under certain conditions, to a local potential dynamics

described by the quantum–mechanical Salpeter equa-

tion for the quarkonium. Finally, we extend this con-

clusion of the scalar nature of the effective interquark

interaction to the case of the rotating QCD string with

quarks at the ends.

2. QCD STRING AND THE SPINLESS

SALPETER EQUATION

In this section we remind the reader the main steps

used to derive the Hamiltonian of the QCD string with

quarks at the ends in the Vacuum Correlator Method

(VCM) [1]. We start from the gauge–invariant in–

and out–states of the quarkonium, Ψ
(in,out)
qq̄ (x, y|A) =

Ψ̄q̄(x)P exp
(

ig
∫ x

y
dzµAµ

)

Ψq(y) [2]. Now, writing the

Green’s function of the (flavour–nonsinglet) quark–

antiquark meson,

Gqq̄ = 〈Ψ(out)
qq̄ (x̄, ȳ|A)Ψ(in)†

qq̄ (x, y|A)〉qq̄A, (1)

and performing averaging over the gluonic field, by

means of the minimal area law for the isolated Wilson

loop, we can extract the standard Nambu–Goto effective

action for the string connecting the quarks,

Smin =

∫ T

0

dt

∫ 1

0

dγ

√

(ẇw′)2 − ẇ2w′2,

wµ(t, γ) = γx1µ(t) + (1− γ)x2µ(t), (2)

where we used the straight–line string ansatz for the

minimal surface [2]. Finally, considering the quark–
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antiquark system at rest in the laboratory reference

frame, we synchronise the quark times and put them

equal to the laboratory time, x10 = x20 = t. The re-

sulting centre–of–mass Hamiltonian reads [2]:

H =

2
∑

i=1

[

p2r +m2
i

2µi

+
µi

2

]

+

∫ 1

0

dγ

[

σ2r2

2ν
+
ν

2

]

+
~L2

2r2[µ1(1− ζ)
2
+ µ2ζ2 +

∫ 1

0 dγν(γ − ζ)
2
]
,

ζ =
µ1 +

∫ 1

0
dγνγ

µ1 + µ2 +
∫ 1

0 dγν
, (3)

where, in order to get rid of the square roots in the rel-

ativistic quark kinetic terms and in the string term (2),

we used the auxiliary field method and introduced the

einbeins µ1,2 and ν(γ). The interested reader can find

the details of the einbein field formalism in the original

paper [3] and examples of its application to the QCD

string with quarks at the ends in Refs. [2, 4]. Notice

that extremum conditions for all three einbeins are un-

derstood in order to arrive at the Hamiltonian in the

final form, expressed via physical degrees of freedom

only. The spinless Hamiltonian (3) is to be supplied by

the nonperturbative spin–orbit interaction [5] as well

as by the Coulomb potential and spin–dependent terms

generated by the latter. The resulting model appears

rather successful in studies of quarkonia — for example,

the spectrum of heavy–light D, Ds, B, and Bs mesons

can be reproduced with a good accuracy this way [6].

The last, angular–momentum–dependent, term in the

Hamiltonian (3) contains a strong contribution of the

proper dynamics of the string, described by the inte-

gral term in the denominator. The effect of this dy-

namics over the properties of the system is comprehen-

sively studied in the literature and is known to bring

the Regge trajectories slope to the experimental value

[2, 7], to lower the masses of orbitally excited states [6],

and so on. In the meantime, this contribution does not

affect the Lorentz nature of the interquark interaction

generated by the string. Therefore, for the sake of sim-

plicity, we restrict ourselves with the case of L = 0 in

the Hamiltonian (3) and then we take extrema in all

einbeins explicitly. The resulting Hamiltonian,

H =
√

p2r +m2
1 +

√

p2r +m2
2 + σr, (4)

gives rise to the well–known Salpeter equation for the

spectrum. For the heavy–light system with m1 ≡M →
∞ and m2 ≡ m it reads:

[
√

p2r +m2 + σr]ψ(r) = Eψ(r), (5)

where E describes the excess of the bound–state energy

over the heavy–quark mass. Eq. (5) is usually referred

to as the Salpeter equation with the Lorentz–vector in-

teraction [8], as opposed to the would-be Lorentz–scalar

confinement, as in the equation

[
√

p2r + (m+ σr)2]ψ(r) = Eψ(r). (6)

Therefore, according to general expectations, the Klein

paradox might have operated for such a system, and one

might have expected problems with the collapse of the

mesonic wave functions and uncontrolled production of

light–quark pairs by such an interaction, if confinement

had been present in the effective Dirac equation for the

light quark in the form of a Lorentz time vector. The

aim of the present paper is to argue that this conclu-

sion is misleading in the sense that the form (5) of the

Salpeter equation does not imply that the confining po-

tential σr appears as a Lorentz–vector interaction in

the one–particle Dirac equation for the light quark. On

the contrary, we demonstrate that an effective scalar

interquark interaction appears in this equation as a re-

sult of CSB, nevertheless the resulting Salpeter equa-

tion having the form of Eq. (5), rather than of Eq. (6).

As far as Eq. (6) is concerned, it was demonstrated in

Ref. [8] that its spectrum contradicts the phenomenol-

ogy of heavy–light mesons. Notice also that we are not

aware of any consistent way to derive such an equation

in QCD.

3. HEAVY–LIGHT QUARKONIUM IN THE

DYSON–SCHWINGER APPROACH

We start in this chapter with the necessary details of

the Dyson–Schwinger approach to heavy–light quarko-

nium suggested in Ref. [9]. Since the trajectory of the

infinitely heavy particle is straight–line, then it is conve-

nient to fix the so-called modified Fock–Schwinger gauge

[10] for the background gluonic field (we work in Eu-

clidean space),

~x ~A(x4, ~x) = 0, A4(x4,~0) = 0, (7)

and thus to reduce the role of the static antiquark to

providing the overall gauge invariance of the qq̄ Green’s

function which, in the gauge (7), coincides with the

Green’s function of the light quark. Then the Dyson–

Schwinger equation can be derived for the latter [9],

(−i∂̂x − im)S(x, y) +

∫

d4zγ4S(x, z)γ4K(x, z)S(z, y)

= δ(4)(x− y), (8)
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where only the structure γ4 × γ4 is kept for the sake of

simplicity, whereas the interaction with the full struc-

ture γµ × γν can be studied as well (see Refs. [9, 11]).

The quark kernel K(x, y) is related to the profile func-

tion D(τ, λ),

K(x, y) = K(x4 − y4, ~x, ~y)

= (~x~y)

∫ 1

0

dα

∫ 1

0

dβD(x4 − y4, |α~x− β~y|), (9)

which, in turn, parametrises the bilocal correlator of the

gluonic–field tensors, 〈F (x)F (y)〉 ∝ D(x − y) [1]. The

profile D decreases in all directions of the Euclidean

space–time with the correlation length Tg, for which lat-

tice simulations give as small value as Tg ≃ 0.2÷ 0.3fm

[12] and, therefore, the limit Tg → 0 — known as the

string limit of QCD — is adequate. In this limit, the

profile function D(τ, λ) can be approximated by the

delta–functional form, D(τ, λ) = 2σδ(τ)δ(λ), which is

consistent with the definition of the string tension [1],

σ = 2

∫ ∞

0

dτ

∫ ∞

0

dλD(τ, λ). (10)

Then, with the help of Eq. (9), the kernel is found in

the following form:

K(~x, ~y) ≡ 1

2

∫ ∞

−∞
K(x4 − y4, ~x, ~y)e

iω(x4−y4)d(x4 − y4)

=
1

2
(~x~y)

∫ 1

0

dα

∫ 1

0

dβ

∫ ∞

−∞
dτD(τ, |α~x − β~y|)

≈ 1

2
σ(|~x|+ |~y| − |~x− ~y|), (11)

where, in the last, approximate, equality, the require-

ment of strict collinearity of the vectors ~x and ~y is re-

laxed, which is admissible at large distances, |~x|, |~y| ≫
|~x− ~y|.

The ultimate form of Eq. (11) allows one to establish

a link to potential quark models for QCD [13] as well as

to generalise the shape of the confining interquark in-

teraction from linear confinement σr to a generic form

V (r). Now we can rewrite the Dyson–Schwinger Eq. (8),

in Minkowski space, in the form:

(~α~p+ βm)Ψ(~x) +

∫

d3zΛ(~x, ~z)K(~x, ~z)Ψ(~z) = EΨ(~x),

(12)

where the quantity Λ(~x, ~z), introduced in Ref. [9], is

defined as

Λ(~x, ~z) ≡ 2i

∫

dω

2π
S(ω, ~x, ~z)β

=

∞
∑

n=−∞
Ψn(~x)sign(n)Ψ

†
n(~z). (13)

It is clear that the Lorentz nature of confinement in

Eq. (12) depends entirely on the matrix structure of

Λ(~x, ~z). To proceed we stick to the formalism of the chi-

ral angle ϕp — the standard approach used in potential

quark models [13]. In this formalism, the positive– and

negative–energy solutions to the bound–state Eq. (12)

can be parametrised in the form [15]:

Ψn>0(~p) = Tp

(

ψ(~p)

0

)

, Ψn<0(~p) = Tp

(

0

ψ(~p)

)

,

Tp = exp

[

−1

2
(~γ~̂p)

(π

2
− ϕp

)

]

. (14)

The wave function ψ(~p) obeys a Schrödingerlike eigen-

value equation which follows from Eq. (12) after the

exact Foldy–Wouthuysen transformation generated by

the Foldy operator T †
p (see Eq. (18) below). The chiral

angle ϕp is the solution to the mass–gap equation,

p sinϕp −m cosϕp

=
σ

p2

∫ ∞

0

dk

2π

[

4p2k2

(p2 − k2)2
sin[ϕk − ϕp]

(

2pk

(p+ k)2

+ ln

∣

∣

∣

∣

p− k

p+ k

∣

∣

∣

∣

)

cosϕk sinϕp

]

, (15)

quoted here without derivation for the linearly rising po-

tential. The interested reader can find the details of this

formalism in Ref. [13]. Notice that the chiral angle also

plays the role of the Foldy angle, and this is a general

feature of such models. For the purpose of the present

research it is sufficient to bear in mind that the chiral

angle is a continuous smooth function which starts from
π
2 at the origin, with the slope inversely proportional to

the scale of the CSB generated by this solution. In the

large–momentum limit, ϕp approaches zero. It is an

easy task now to compute the function Λ [15]:

Λ(~p, ~q) = (2π)3δ(3)(~p− ~q)Up,

Up = T 2
pβ = β sinϕp + (~α~̂p) cosϕp, (16)

and to rewrite Eq. (12) in the form:

EpUpΨ(~p) +
1

2

∫

d3k

(2π)3
V (~p− ~k)

× (Up + Uk)Ψ(~k) = EΨ(~p), (17)

where Ep stands for the quark dispersive law and, for

the linearly rising potential, V (~p) = − 8πσ
p4 . Alterna-

tively this equation can be arrived at as the one–particle

limit of the Bethe–Salpeter equation for the quark–

antiquark meson in the framework of the potential quark

models [13]. The Foldy–Wouthuysen transformation of
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Eq. (17), performed with the help of the Foldy operator

T †
p , leads one to the Schrödingerlike equation [15],

Epψ(~p) +

∫

d3k

(2π)3
V (~p− ~k) [CpCk

+ (~σ~̂p)(~σ~̂k)SpSk

]

ψ(~k) = Eψ(~p), (18)

where Cp = cos 1
2 (

π
2 −ϕp) and Sp = sin 1

2 (
π
2 −ϕp); ~σ are

Pauli matrices, and ~̂p and ~̂k are the unity vectors for ~p

and ~k, respectively.

With Eq. (17) in hands we are in the position to

comment on the Lorentz nature of confinement. CSB

means an existence of the quark Green’s function hav-

ing the effective mass operator with the matrix γ0 to an

even power or, in the language of the chiral angle, the

existence of a nontrivial solution to the mass–gap equa-

tion (15). This is trivially achieved for heavy quarks,

when the chiral symmetry is broken explicitly, since the

quark mass term provides the required behaviour of the

quark Green’s function and, in the meantime, saturates

the chiral angle. For light (massless) quarks, such solu-

tions for the quark Green’s function and for the chiral

angle are to appear selfconsistently in order to provide

SBCS. In either case the chiral angle is different from

zero for 0 6 p . Λχ, with the CSB scale Λχ given by the

quark mass, for heavy quarks, and by the nonperturba-

tive scale
√
σ, for light quarks. The full structure of the

matrix Λ and its influence on highly excited states in the

spectrum is studied in detail in Ref. [15]. For the pur-

pose of the present qulitative research it is sufficient to

stick either to very heavy quarks or to extremely strong

confinement (the so-called pointlike limit of
√
σ → ∞,

which can also be called the “heavy”–string limit). In

this case, the chiral angle is ϕp = π
2 for all p’s, so that

Up ≈ β and, therefore,

Λ(~x, ~z) ≈ βδ(3)(~x − ~z). (19)

Thus, using Eqs. (11), (12), and (19) altogether, we ar-

rive at the effective Dirac equation for the light quark

with a purely scalar confinement,

[~α~p+ β(m+ V (r))]Ψ(~x) = EΨ(~x). (20)

This coincides with the findings of Ref. [9], where a sum-

mation of quasiclassical eigenvalues of Eq. (20), with

V (r) = σr, was performed explicitly and the relation

(19) was derived for light quarks. Notice that for mass-

less quarks and had SBCS not have happened, the chi-

ral angle would have been identically zero, and the term

proportional to the matrix β in Up, as it follows from

Eq. (16), would have vanished. We see therefore that

the effective scalar interquark interaction arises due to

CSB, both explicit or spontaneous. In the same limit of

ϕp = π
2 , one has Cp = 1 and Sp = 0, so that the inter-

action part of Eq. (18) reduces to the potential V (r), in

coordinate space. As for the kinetic term in Eq. (18),

for heavy quarks, it can be well approximated by the

free–quark energy,
√

~p2 +m2. For light quarks such a

substitution is more arguable, though it is known to

work rather well for heavy–light as well as for excited

light–light mesons, when the nontrivial low–momentum

behaviour of the dressed–quark dispersive law Ep does

not play a considerable role (notice that this approxi-

mation fails completely for the lowest light–light quark–

antiquark state — for the chiral pion. The latter can-

not be described by the Salpeter Hamiltonian and one

is to consider the full Dyson–Schwinger equation — see

Refs. [13, 14] for two complementary approaches to the

problem of the pion). Thus, starting from Eq. (18), we

arrive at the Salpeter equation,

[
√

~p2 +m2 + V (r)]ψ(~x) = Eψ(~x), (21)

which, for L = 0 and V (r) = σr, coincides with Eq. (5).

It is clear from Eq. (18) that the interaction term is

always added to the entire kinetic energy of the quark,

so that the resulting Salpeter equation in the form of

Eq. (5), rather than in the form of Eq. (6), should not

come as a surprise. Moreover, for massless quarks and

no CSB, ϕp = 0 everywhere, so that Cp = Sp = 1√
2
and

the interaction in Eq. (18) acquires a rather complex

structure which does not reduce to a plain potential and

supports parity doublers. Indeed, in the resulting equa-

tion, eigenstates with opposite parity, given by ψ(~p) and

(~σ~̂p)ψ(~p), come in pairs degenerate in mass [15] — the

feature inherent to vectorial interaction. In any case,

the interaction given by the matrix (16) does not con-

tain Lorentz time–vector part, which could have been

dangerous from the point of view of the Klein paradox.

4. CONCLUSIONS

In this paper, we, using the Dyson–Schwinger ap-

proach to heavy–light quarkonia, derive the effective

one–particle equation for the light quark in the field of

the static antiquark, Eq. (12). In the heavy–quark limit

of m → ∞ or in the “heavy”–string limit of
√
σ → ∞,

the chiral angle is ϕp = π
2 and this equation reduces

to the Dirac equation with purely scalar confinement.

In the meantime, if the exact Foldy–Wouthuysen trans-

formation is performed over the bound–state Eq. (12),

the Schrödingerlike Eq. (18) arises with the interaction

having a rather complex structure. In the same limit-
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ing case of ϕp = π
2 , this interaction can be considerably

simplified, reducing to a local potential. The spinless

Salpeter Eq. (5) is derived this way, with the interac-

tion term added to the entire quark kinetic energy. We

notice also that, without CSB, explicit or spontaneous,

the chiral angle would vanish identically giving rise to a

nonpotential dynamics (as it follows from Eq. (18) with

ϕp = 0) which has nothing to do with the dynamics

described by the Salpeter Eq. (5) and the like. As the

approach of the QCD string with quarks at the ends is

the generalisation of the simple potential Salpeter equa-

tion to the case of the interquark interaction incorporat-

ing the proper dynamics of the string, then we conclude

that the effective interquark interaction generated by

the QCD string has scalar nature, that is, it appears en-

tirely due to CSB. The detailed analysis of the Lorentz

nature of confinement in quarkonia with the actual form

of the chiral angle — solution to the mass–gap equation

— lies beyond the scope of the present paper but we

emphasize that, in order to have an accurate and self-

consistent approach, one is to consider and solve the

full Dyson–Schwinger Eq. (8). Notice that, although

the fundamental colour interaction in QCD mediated

by gluons is manifestly vectorial, this does not auto-

matically give rise to the Salpeter Eq. (5). Indeed, the

effective interquark interaction, which appears after in-

tegrating out gluonic degrees of freedom and which can

be described naturally, for example, with the help of the

Diraclike Eq. (12), appears dynamically and thus no a

priori conclusion can be made concerning its Lorentz

nature. We argue, therefore, that one should be careful

using the notions of “vector” and “scalar” confinement,

always giving an explicit reference to the corresponding

Diraclike equation or Hamiltonian.
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