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Abstract

Based on duality, we previously proposed to use rich informations on πp total
cross sections below N(∼ 10 GeV) in addition to high-energy data in order

to discriminate whether these cross sections increase like log ν or log2ν at
high energies. We then arrived at the conclusion that our analysis prefers the
log2ν behaviours. Using the FESR as a constraint for high energy parameters

also for the pp, p̄p scattering, we search for the simultaneous best fit to the
data points of σtot and ρ ratio up to some energy (e.g., ISR, Tevatron) to

determine the high-energy parameters. We then predict σtot and ρ in the
LHC and high-energy cosmic-ray regions. Using the data up to

√
s = 1.8

TeV (Tevatron), we predict σpp
tot and ρpp at the LHC energy (

√
s = 14TeV)

as 106.3 ± 5.1syst ± 2.4statmb and 0.126 ± 0.007syst ± 0.004stat, respectively.

The predicted values of σtot in terms of the same parameters are in good
agreement with the cosmic-ray experimental data up to Plab ∼ 108∼9GeV.

1 Introduction

As you all know, the sum of π−p, π+p total cross sections has a tendency
to increase above 70 GeV. It had not been known before 2002, however,
if this increase behaved like log ν or log2ν consistent with the Froissart-

Martin bound[1]. So, we proposed[2] to use rich informations of πp total
cross sections at low energies in addition to high energy data in order to

∗Invited talk given at “New Trends in High-Energy Physics” held at Yalta, Crimea(Ukraine), September
10-17, 2005.
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discriminate between asymptotic log ν or log2ν behaviours, using a kind of

the finite-energy sum sule (FESR) as constraints. Thus, duality is always
satisfied in this approach.

Such a kind of attempt to investigate high-energy behaviours from those
at low and intermediate energies has been initiated by one of the authors[3].

In the early days of the Regge pole theory, there were controversies if there
are other singularities with the vacuum quantum numbers except for the
Pomeron (P). Under the assumption that no J singularities extend above

α = 0 except for the Pomeron, we were led to the exact sum rule [3] for the
s-wave πN scattering length a(+) of the crossing-even amplitude as

(

1 +
µ

M

)

a(+) = −f 2

M
+
∫ N

0
dk

[

σ
(+)
tot (k)− σ

(+)
tot (∞)

]

− βNα

α
. (1)

The evidence that Eq. (1) was not satisfied empirically led to the P ′ trajectory
with αP ′ ≈ 0.5 and the f meson with spin two was discovered on the P ′

trajectory.

After 40 years, we have attempted[2] to investigate whether the πp total
cross sections increase like log ν or log2ν at high energy based on the sim-

ilar approach. We then arrived at the conclusion that our analysis prefers
the log2ν behaviours consistent with the Froissart-Martin unitarity bound.

Recently, Block and Halzen[4, 5] also reached the same conclusions based on
duality arguments[6, 7].

2 General approach

Let us come to the main topics and begin by explaining how to predict σ
(+)
tot ,

the p̄p, pp total cross sections and ρ(+), the ratio of the real to imaginary part

of the forward scattering amplitude at the LHC and the higher-energy cosmic-
ray regions, using the experimental data for σ

(+)
tot and ρ(+) for 70GeV< Plab <

Plarge as inputs. We first choose Plarge = 2100GeV corresponding to ISR

region(
√
s ≃ 60GeV). Secondly we choose Plarge = 2×106GeV corresponding

to the Tevatron collider (
√
s ≃ 2TeV). Let us search for the simultaneous

best fit of σ
(+)
tot and ρ(+) in terms of high-energy parameters c0, c1, c2 and βP ′

constrained by the FESR. It turns out that the prediction of σ
(+)
tot agrees with

pp experimental data at these cosmic-ray energy regions[8, 9] within errors
in the first case ( ISR ). It has to be noted that the energy range of predicted

σ
(+)
tot , ρ

(+) is several orders of magnitude larger than the energy region of σ
(+)
tot ,

ρ(+) input (see Fig. 1). If we use data up to Tevatron (the second case), the
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situation is much improved, although there are some systematic uncertainties

coming from the data at
√
s = 1.8TeV (see Fig. 2).

2.1 FESR(1)

Firstly let us derive the FESR in the spirit of the P ′ sum rule [3]. Let us

consider the crossing-even forward scattering amplitude defined by

F (+)(ν) =
f p̄p(ν) + f pp(ν)

2
with Im F (+)(ν) =

k σ
(+)
tot (ν)

4π
. (2)

We also assume

Im F (+)(ν) = Im R(ν) + Im FP ′(ν)

=
ν

M2

(

c0 + c1log
ν

M
+ c2log

2 ν

M

)

+
βP ′

M

(

ν

M

)αP ′

(3)

at high energies (ν > N). We have defined the functions R(ν) and FP ′(ν) by
replacing µ by M in Eq. (3) of ref.[2]. Here, M is the proton( anti-proton)
mass and ν, k are the incident proton(anti-proton) energy, momentum in the

laboratory system, respectively.
Since the amplitude is crossing-even, we have

R(ν) =
iν

2M2







2c0 + c2π
2 + c1



log
e−iπν

M
+ log

ν

M





+c2



log2
e−iπν

M
+ log2

ν

M











, (4)

FP ′(ν) = −βP ′

M





(e−iπν/M)αP ′ + (ν/M)αP ′

sinπαP ′



 , (5)

and subsequently obtain

Re R(ν) =
πν

2M2

(

c1 + 2c2log
ν

M

)

, (6)

Re FP ′(ν) = −βP ′

M

(

ν

M

)0.5

, (7)

substituting αP ′ = 1
2
in Eq. (5). Let us define

F̃ (+)(ν) = F (+)(ν)− R(ν)− FP ′(ν) ∼ να(0) (α(0) < 0) . (8)

Using the similar technique to ref.[2], we obtain

Re F̃ (+)(M) =
2P

π

∫ ∞

0

νIm F̃ (+)(ν)

k2
dν

3



=
2P

π

∫ M

0

ν

k2
Im F (+)(ν)dν +

1

2π2

∫ N

0
σ
(+)
tot (k)dk

−2P

π

∫ N

0

ν

k2







Im R(ν) +
βP ′

M

(

ν

M

)0.5






dν , (9)

whereN =
√
N2 −M2 ≃ N . Let us call Eq. (9) as the FESR(1). If c1, c2 → 0,

this Eq. (9) reduces to the so-called P ′ FESR in 1962[3].

2.2 FESR(2)

The second FESR corresponding to n = 1 [7] is:

∫ M

0
νIm F (+)(ν)dν +

1

4π

∫ N

0
k2σ

(+)
tot (k)dk

=
∫ N

0
νIm R(ν)dν +

∫ N

0
νIm FP ′(ν)dν . (10)

We call Eq. (10) as the FESR(2) which we use in our analysis.

2.3 The ρ(+) ratio

Let us obtain the ρ(+) ratio, the ratio of the real to imaginary part of F (+)(ν),
from Eqs. (3), (6) and (7) as

ρ(+)(ν) =
Re F (+)(ν)

Im F (+)(ν)
=

Re R(ν) + Re FP ′(ν)

Im R(ν) + Im FP ′(ν)

=
πν
2M2

(

c1 + 2c2log
ν
M

)

− βP ′

M

(

ν
M

)0.5

kσ
(+)
tot (ν)
4π

. (11)

2.4 General procedures

The FESR(1)(Eq. (9)) has some problem. i.e., there are the so-called un-

physical regions coming from boson poles below the p̄p threshold. So, the
contributions from unphysical regions of the first term of the right-hand side
of Eq. (9) have to be calculated. Reliable estimates, however, are difficult.

Therefore, we will not adopt the FESR(1).
On the other hand, contributions from the unphysical regions to the first

term of the left-hand side of FESR(2)(Eq. (10)) can be estimated to be an
order of 0.1% compared with the second term.1 Thus, it can easily be ne-

glected.
1The average of the imaginary part from boson resonances below the p̄p threshold is the smooth extrap-

olation of the t-channel qqq̄q̄ exchange contributions from high energy to ν ≤ M due to FESR duality[6, 7].

Since Im F
(+)
qqq̄q̄(ν) < Im F (+)(ν),

∫M

0
νIm F

(+)
qqq̄q̄(ν)dν <

∫M

0
νIm F (+)(ν)dν =

∫M

0
ν
2 Im f p̄p(ν)dν ≃

4



Therefore, the FESR(2)(Eq. (10)), the formula of σ
(+)
tot (Eqs. (2) and (3))

and the ρ(+) ratio (Eq. (11)) are our starting points. Armed with the FESR(2),

we express high-energy parameters c0, c1, c2, βP ′ in terms of the integral of
total cross sections up to N . Using this FESR(2) as a constraint for βP ′ =

βP ′(c0, c1, c2), the number of independent parameters is three. We then search

for the simultaneous best fit to the data points of σ
(+)
tot (k) and ρ(+)(k) for

70GeV≤ k ≤ Plarge to determine the values of c0, c1, c2 giving the least χ2.
We thus predict the σtot and ρ(+) in LHC energy and high-energy cosmic-ray
regions.

2.5 Data

We use rich data[9] of σp̄p and σpp to evaluate the relevant integrals of cross
sections appearing in FESR(2). We connect the each data point. We then

have

1

4π

∫ N

0
k2σ

(+)
tot (k)dk = 3403± 20 GeV. (12)

for N = 10GeV (which corresponds to
√
s = Ecm = 4.54GeV). (For more

detail about data, see ref.[18].)
It is necessary to pay special attention to treat the data with the maximum

k = 1.7266 × 106GeV(
√
s = 1.8TeV) in this energy range, which comes

from the three experiments E710[13]/E811[14] and CDF[15]. The former
two experiments are mutually consistent and their averaged p̄p cross section

is σp̄p
tot = 72.0 ± 1.7mb, which deviates from the result of CDF experiment

σp̄p
tot = 80.03± 2.24mb.

The two points of ρp̄p are reported in the SPS and Tevatron-collider energy
region, 1 × 105GeV ≤ k ≤ 2 × 106GeV ( at k = 1.5597 × 105GeV(

√
s =

541GeV)[17] and k = 1.7266× 106GeV(
√
s =1.8TeV)[13] ). We regard these

two points as the ρ(+) data. As a result, we obtain 9 points of ρ(+) up to

Tevatron-collider energy region, 70GeV ≤ k ≤ 2× 106GeV.
In the actual analyses, we use Re F (+) instead of ρ(+)(= Re F (+)/Im F (+)).

The data points ofRe F (+)(k) are made by multiplying ρ(+)(k) by Im F (+)(k) =
k
8π(σ

p̄p
tot(k) + σpp

tot(k)).

M
2

4 Im f p̄p|k=0 ≃ 3.2GeV ≪ 1
4π

∫ N

0
k2σ

(+)
tot (k)dk = 3403 ± 20GeV, where we use the experimental value,

k
4πσ

p̄p
tot ≃14.4GeV−1 in k < 0.3GeV. So, resonance contributions to the first term of Eq. (10) is less than

0.1% of the second term.
Besides boson resonances, there may be additional contributions from multi-pion contributions below p̄p

threshold. In the p̄p annihilation, p̄p → ππ could give comparable contributions with ρ-meson, but multi-
pion contributions are suppressed due to the phase volume effects. Therefore, the first term of Eq. (10) will
still be negligible even if the above contributions are included.
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Table 1: The values of χ2 for the fit 1 (fit up to ISR energy) and the fit 2 and fit 3 (fits up
to Tevatron-collider energy). NF and Nσ(Nρ) are the degree of freedom and the number of

σ
(+)
tot (ρ

(+)) data points in the fitted energy region.

χ2/NF χ2
σ/Nσ χ2

ρ/Nρ

fit 1 10.6/15 3.6/12 7.0/7

fit 2 16.5/23 8.1/18 8.4/9
fit 3 15.9/23 9.0/18 6.9/9

2.6 Analysis

As was explained in the general procedure, both σ
(+)
tot and Re F (+) data in

70GeV ≤ k ≤ Plarge are fitted simultaneously through the formula Eq. (3)

and Eq. (11) with the FESR(2)(Eq. (10)) as a constraint. FESR(2) with
Eq. (12) gives us

8.87 = c0 + 2.04c1 + 4.26c2 + 0.367βP ′ , (13)

which is used as a constraint of βP ′ = βP ′(c0, c1, c2), and the fitting is done

by three parameters c0, c1 and c2.
We have done for the following three cases:

fit 1): The fit to the data up to ISR energy region, 70GeV ≤ k ≤ 2100GeV,

which includes 12 points of σ
(+)
tot and 7 points of ρ(+).

fit 2): The fit to the data up to Tevatron-collider energy region, 70GeV≤
k ≤ 2 × 106GeV. For k = 1.7266× 106GeV(

√
s = 1.8TeV), the E710/E811

datum is used. There are 18 points of σ
(+)
tot and 9 points of ρ(+).

fit 3): The same as fit 2, except for the CDF value at
√
s = 1.8TeV, are

used.

2.7 Results of the fit

The results are shown in Fig. 1(Fig. 2) for the fit 1(fit 2 and fit 3). The
χ2/d.o.f are given in Table 1. The reduced χ2 and the respective χ2-values

devided by the number of data points for σ
(+)
tot and ρ(+) are less than or equal

to unity. The fits are successful in all cases. There are some systematic differ-
ences between fit 2 and fit 3, which come from the experimental uncertainty

of the data at
√
s = 1.8TeV mentioned above.

The best-fit values of the parameters are given in Table 2. Here the errors

of one standard deviation are also given.
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Figure 1: Predictions for σ(+) and ρ(+) in terms of the fit 1. The fit is done for the data
up to the ISR energy, in the region 70GeV≤ k ≤ 2100GeV (11.5GeV ≤ √

s ≤ 62.7GeV)

which is shown by the arrow in each figure. Total cross section σ
(+)
tot in (a) all energy region,

versus log10Plab/GeV, (b) low energy region (up to ISR energy), versus Plab/GeV and (c)
high energy (Tevatron-collider, LHC and cosmic-ray energy) region, versus center of mass
energy Ecm in TeV unit. (d) gives the ρ(+)(= Re F (+)/Im F (+)) in high energy region,
versus Ecm in terms of TeV. The thin dot-dashed lines represent the one standard deviation.
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Figure 2: Predictions for σ(+) and ρ(+) in terms of the fit 2(shown by green lines) and fit
3(shown by blue lines). The fit is done for the data up to Tevatron-collider energy, in the
region 70GeV≤ k ≤ 2 × 106GeV(11.5GeV ≤ √

s ≤ 1.8TeV) which is shown by the arrow.
For k = 1.7266× 106GeV(

√
s = Ecm = 1.8TeV), the averaged datum of E710[13]/E811[14],

σp̄p
tot = 72.0 ± 1.7mb, is used in fit 2, while the σp̄p

tot = 80.03 ± 2.24mb of CDF[15] is used in
fit 3. For each figure, see the caption in Fig.1.
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Table 2: The best-fit values of parameters in the fit 1, fit 2 and fit 3.

c2 c1 c0 βP ′

fit 1 0.0411± 0.0199 −0.074∓ 0.287 5.92± 1.07 7.96∓ 1.55
fit 2 0.0412± 0.0041 −0.076∓ 0.069 5.93± 0.28 7.95∓ 0.44

fit 3 0.0484± 0.0043 −0.181∓ 0.071 6.33± 0.29 7.37∓ 0.45

Table 3: The predictions of σ
(+)
tot and ρ(+) at LHC energy

√
s = Ecm =

14TeV(Plab=1.04×108GeV), and at a very high energy Plab = 5 ·1020eV (
√
s=Ecm=967TeV.)

in cosmic-ray region.

σ
(+)
tot (

√
s=14TeV) ρ(+)(√s=14TeV) σ

(+)
tot (Plab=5 · 1020eV) ρ(+)(Plab=5 · 1020eV)

fit 1 103.8± 14.3mb 0.122
+0.018
−0.024 188± 43mb 0.099

+0.011
−0.017

fit 2 103.8± 2.3mb 0.122± 0.004 189± 8mb 0.100± 0.003
fit 3 108.9± 2.4mb 0.129± 0.004 204± 8mb 0.104± 0.003

3 Predictions for σ(+) and ρ(+) at LHC and Cosmic-ray

Energy Region

By using the values of parameters in Table 2, we can predict the σ
(+)
tot and ρ(+)

in higher energy region, as are shown, respectively in (c) and (d) of Fig. 1
and 2. The thin dot-dashed lines represent the one standard deviation.

As is seen in (c) and (d) of Fig. 1, the fit 1 leads to the prediction of σ
(+)
tot

and ρ(+) with somewhat large errors in the Tevatron-collider energy region,

although the best-fit curves are consistent with the present experimental
data in this region. Furthermore, the predicted values of σ

(+)
tot agree with pp

experimental data at the cosmic-ray energy regions[8, 23] within errors (see
(a),(c) of Fig. 1). The best-fit curve gives χ2/(number of data) to be 13.0/16,
and the prediction is successful. As was mentioned before, it has to be noted

that the energy range of predicted σ
(+)
tot is several orders of magnitude larger

than the energy region of the σ
(+)
tot , ρ

(+) input. If we use data up to Tevatron-

collider energy region as in the fit 2 and fit 3, the situation is much improved
(see (a),(c) of Fig. 2), although there is systematic uncertainty depending on

the treatment of the data at
√
s = 1.8TeV.

The best-fit curve gives χ2/(number of data) from cosmic-ray data, 1.3/7(1.0/7)
for fit 2(fit 3).

We can predict the values of σ
(+)
tot and ρ(+) at LHC energy,

√
s=Ecm=14TeV

and at very high energy of cosmic-ray region. The relevant energies are very

high, and the σ
(+)
tot and ρ(+) can be regarded to be equal to the σpp

tot and ρpp.
The results are shown in Table 3.
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The prediction by the fit 1 in which data up to the ISR energy are used as

input has somewhat large(fairly large) errors at LHC energy(at high energy of
cosmic ray). By including the data up to the Tevatron collider, the prediction

of fit 2(using E710/E811 datum) is smaller than that of fit 3(using CDF
datum). We regard the difference between the results of fit 2 and fit 3 as the

systematic uncertainties of our predictions. As a result, we predict

σpp
tot = 106.3± 5.1syst ± 2.4stat mb, ρpp = 0.126± 0.007syst ± 0.004stat (14)

at LHC energy(
√
s = Ecm = 14TeV). We obtain fairly large systematic errors

coming from the experimental unceratinty at
√
s = 1.8 TeV.

4 Comparison with Other Groups

The predicted central value of σpp
tot is in good agreement with Block and

Halzen[5] σpp
tot = 107.4 ± 1.2 mb, ρpp = 0.132 ± 0.001. In contrary to our

results( see Fig. 2(a), (c)), however, their values are not affected so much
about CDF, E710/E811 discrepancy. In our case, the measurements at LHC

energy will discriminate which solution is better at Tevatron. Our prediction

has also to be compared with Cudell et al.[19] σpp
tot = 111.5 ± 1.2syst

+4.1
−2.1stat

mb, ρpp = 0.1361 ± 0.0015syst
+0.0058
−0.0025stat, who’s fitting techniques favour the

CDF point at
√
s = 1.8 TeV, which leads to large value for σpp

tot. There are
also predictions by Bourrely et al. [25] σpp

tot = 103.6mb, ρpptot = 0.122, based

on the impact-picture phenomenology.
Finally we emphasize that the LHC measurements would also clarify which

is the best solution among the three high-energy σpp
tot from p-air cross sections2

[21, 22, 23].
Acknowledgements One of the authors (K.I.) would like to thank Prof.
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this work, and also to Prof. L. Jenkovszky and the Organizing Committee
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2The extraction of the pp total cross section is based on the determination of the proton-air production
cross section from analysis of extensive air shower. Detailed review [20] on the subtleties involved are
found in refs.[21, 22, 23]. The highest predictions for σ

pp
tot comes from the results by Gaisser et al.[21] and

Nikolaev[22]. In the other extreme, the lowest values come from the results by Block et al.[23]. At the
moment, the predicted values of σpp

tot (see Fig.2) are in good agreement with ref.[23] since they are consistent
with the Akeno results.
We would like to mention that it had already been pointed out by Bourrely, Soffer and Wu [24] that the

Froissart bound is not merely an upper bound but is actually saturated, i.e., the σ
pp
tot increases as log

2 s for
s → ∞. There are also the phenomenological predictions for higher energies in ref.[25]. We were informed
by S.F.Tuan about these works.
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