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Effective N = 1 description of 5D conformal supergravity∗
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Abstract

We construct an effective N=1 superfield description of five-dimensional conformal supergravity. By the use of this

description, we reinterpret some physical systems such as Scherk-Schwarz supersymmetry breaking from the conformal

supergravity viewpoint. We also show how to introduce a radion fluctuation mode in this framework.

The five-dimensional (5D) supergravity provides an in-
teresting theoretical framework to the physics beyond the
standard model (SM) in both bottom-up and top-down
approach. In the former approach, the localized wavefunc-
tion can be the source of Planck and weak hierarchy [1]
and/or hierarchical structures within SM, the supersym-
metry (SUSY) breaking sector can be hidden in the extra
dimension, AdS/CFT correspondence provides a way to
analyze perturbatively the four-dimensional (4D) strongly
coupled theories which can be the extension of Higgs sector
in SM, and so on. In the latter approach, it is known that
in some case the compactified eleven-dimensional super-
gravity (M-theory) can be described effectively by the 5D
supergravity at certain energy scale [2]. Also because the
5D supergravity is the simplest model with extra dimen-
sion, we have complete off-shell formulations (e.g., Ref. [3])
which allow a systematic study. In this talk we show an
effective N = 1 description of 5D conformal supergravity
that will be useful in any approaches mentioned above.
First we briefly review the hypermultiplet compen-

sator formulation of 5D conformal supergravity based on
Ref. [3]. The 5D superconformal algebra consists of the
Poincaré symmetry P , M , the dilatation symmetry D,
the SU(2) symmetry U , the special conformal boosts K,
N = 2 supersymmetryQ, and the conformal supersymme-
try S. The gauge fields corresponding to these generators
XA = Pm, Mmn, D, U ij , Km, Qi, Si, are respectively
represented by h A

µ = e m
µ , ωmn

µ , bµ, V
ij
µ , f m

µ , ψi
µ, φ

i
µ. We

use µ, ν, . . . as five-dimensional curved indices andm,n, . . .
as the tangent flat indices. The i, j are SU(2)U index and
ψi
µ and φiµ are SU(2) Majorana spinors. The relevant 5D

superconformal multiplets to the following study are

Weyl multiplet: (e m
µ , ψi

µ, V
ij
µ , bµ, v

mn, χi, D),
Vector multiplet: (M , Wµ, Ω

i, Y ij)I ,
Hypermultiplet: (Aα

i, ζ
α, Fα

i),
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where I = 0, 1, 2, . . . , nV and α = 1, 2, . . . , 2(p + q). The
nV + 1 is the number of vector multiplet and the p (q)
stands for the number of compensator (physical) hyper-
multiplet. The superconformal gauge fixing for a reduc-
tion to 5D Poincaré supergravity is given by

D : N =M3
5 ≡ 1,

U : Aa
i ∝ δai, (p = 1)

S : NIΩ
Ii = 0,

K : N−1D̂mN = 0,

(1)

where N = CIJKM
IMJMK is the norm function of 5D

supergravity.

In the following we derive an effective N = 1 su-
perspace description of 5D conformal supergravity by
considering 4D Poincaré invariant background, ds2 =
e2σ(y)ηµνdx

µdxν − dy2, ψi
µ = 0 and so on, and neglecting

the fluctuations of all the 5D gravitational fields including
the graviphoton. The invariant action is written in the
N = 1 superspace as [4, 5] S =

∫

d5x (LV + LH + LN=1)
where

LV =
3

2
CIJK

[
∫

d2θ
{

iΦI
SWJWK

+
1

12
D̄2(V IDα∂yV

J −DαV I∂yV
J)WK

α

}

+h.c.

]

− e2σ
∫

d4θ VTCIJKVI
SVJ

SVK
S ,

LH = −2e2σ
∫

d4θ VTd
β
α Φ̄β

(

e−2igV I tI
)α

γ
Φγ

−e3σ
[
∫

d2θΦαd β
α ρβγ

(

∂y − 2gΦI
StI

)γ

δ
Φδ

+h.c.

]

,

1
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LN=1 =
∑

l=0,π

Λlδ(y − lR)
[

−3

2
e2σ

∫

d4θ Σ̄Σe−K(l)(S,S̄)/3

+

{
∫

d2θ
(

f
(l)

ĪJ̄
W ĪW J̄ + e3σΣ3W (l)(S)

)

+h.c.

}]

.

The N = 1 vector and chiral superfields V I and ΦI
S come

from the 5D vector multiplet and the N = 1 chiral su-
perfields Φα originate from the 5D hypermultiplets. We
can find the relation between the original superconformal
multiplets and these superfields in Ref. [5]. The com-
pensator chiral multiplets are given by Σ = (Φα=2)2/3,
ΣC = (Φα=1)2/3, and we include spurious superfield,

VT = 〈e 4
y 〉 + iθ2eσ〈V (1)

y + iV
(2)
y 〉 − iθ̄2eσ〈V (1)

y − iV
(2)
y 〉.

The superfield S symbolically represents boundary (in-
duced or own) chiral superfields. From V I and ΦI

S , we can
construct gauge invariant superfields, WI

α = − 1
4D̄

2DαV
I ,

VI
S = V −1

T

(

− ∂yV I − i(ΦI
S − Φ̄I

S)
)

. Note that the gauge
groups are limited to the Abelian group in the above ac-
tion for simplicity.
Next we derive the action after the superconformal

gauge fixing (1). We assume the standard form of N ,

N = (M I=0)3 − 1

2
M I=0

nV −1
∑

x=1

(M I=x)2,

and general hypermultiplet gaugings,
(

TI=0, TI=x

)

ϕ2 =
(

− 3
2k ǫ(y), −rx

)

iσ3ϕ
2,

(

TI=0, TI=x

)

ϕ2v+2 =
(

c ǫ(y), qx
)

iσ3ϕ
2v+2.

Then at the leading order in an expansion in powers of
1/M5, the vector field in V I=0 becomes the graviphoton
that we neglect the fluctuation, and we find V I=0 ≃ 0,
ΦI=0

S ≃ T , VT ≃ T +T̄
2 , Σ ≃ 1 − θ2FΣ and ΣC ≃ −θ2FC

Σ ,

where T = 1 − θ2FT and FT = −2i〈V (1)
y + iV

(2)
y 〉. The

action after the gauge fixing [5] is found to be S =
∫

d5x (LV ′+H′ + LN=1 + LV0+H0 + LSB) where

LV ′+H′ =

{
∫

d2θ
1

4
T WxWx + h.c.

}

+e2σ
∫

d4θ
2

T + T̄

(

∂yV
x − χx + χ̄x

√
2

)2

+e2σ
∫

d4θ
T + T̄

2

(

H̄ve2qxV
x

Hv

+H̄Cve−2qxV
x

HCv
)

+e3σ
{
∫

d2θHCv
(1

2

←→
∂y + c T

+
√
2qxχ

x
)

Hv + h.c.

}

LN=1 =
∑

l=0,π

Λlδ(y − lR)
[

−3

2
e2σ

∫

d4θ (Σ̄e
4
3 rxV

x

Σ e−
1
3K

(l)(S,S̄)

+

{
∫

d2θ
(

f
(l)
x̄ȳ (S)W x̄W ȳ

+e3σΣ3W (l)(S)
)

+ h.c.

}

]

,

LV0+H0 = −2e2σ
∫

d4θ
T + T̄

2

(

Σ̄
3
2 e2rxV

x

Σ
3
2

+(Σ̄C)
3
2 e−2rxV

x

(ΣC)
3
2

)

−2e3σ
{
∫

d2θ (ΣC)
3
2

(1

2

←→
∂y −

3

2
k T

+
√
2rxχ

x
)

Σ
3
2 + h.c.

}

−8e2σ
∫

d4θ
T + T̄

2
, (2)

where Hv =
√
2Φα=2v+2, HCv =

√
2Φα=2v+1, V x =

V I=x/
√
2 and χx = −iΦI=x

S . The last term in the ac-
tion can not be written in terms of the N = 1 superfields
and is given by [5]

LSB = e4σfG

{

(∂y + 3σ̇ + 3k − fG)(Mx)2

+
3

2

(

∂y +
5

2
k +

3

2
σ̇
)

(|h|2 + |hC |2)

−(
√
2qxM

x − c)(|h|2 − |hC |2)
+ e−2σ

4 (χx
Sλ

x + h.c.)
}

,

where fG = σ̇ − 2
3 〈NIY

I(3)〉. For BPS background, fG
vanishes and then LSB = 0. Because fG represents the
deviation of the background geometry from the BPS one,
we conclude that LSB describes the effect of the geometry
mediated SUSY breaking.
Another immediate result from the action (2) is about

the Scherk-Schwarz (SS) SUSY breaking [9]. SS SUSY
breaking is the consequence of the twisted boundary condi-
tion Φ(x, y+2πR) = e−iπ~ω·~σΦ(x, y) where ~ω = (ω1, ω2, ω3)
is the twist vector and the Pauli matrices ~σ = (σ1, σ2, σ3)
acts on the SU(2)R index of the field Φ in the Poincaré
supergravity. In the conformal supergravity point of
view, the SU(2)R symmetry is the diagonal subgroup of
SU(2)U ×SU(2)Σ determined by the U -gauge fixing con-
dition in (1), where SU(2)Σ is the rotation in terms of
a index in the compensator hypermultiplet Aa

i. Then
the above SS twist is physically equivalent to the twisted
U -gauge fixing Aa

i ∝ δai → (eiπ~ω·~σα(y))ai where α(y) is
a gauge fixing parameter which satisfies α(y + 2πR) =

2



α(y) + 2π. The relevant part to this change in the ac-
tion (2) is the y-derivative term of Σ, ΣC and we find
an additional term like ∂yα(y)

{∫

d2θΣ3W0 + h.c.
}

, where
W0 = ω1+iω2. Here we can choose α(y) in two distinctive
ways. For α(y) = y/R, the additional term is the bulk con-
stant superpotential, while α(y) = 1

2π
∑

n(sgn(y−nπR)−
sgn(−nπR)) results in the constant superpotential at the
boundaries because ∂yα(y) = π

∑

n δ(y − nπR). Then
in the superconformal framework, we find directly that
the SS SUSY breaking is equivalent to the constant su-
perptential. Note that the compensator must have vanish-
ing gauge charges k, rx = 0 for the case with the twisted
U -gauge fixing, otherwise the corresponding gauge field
acquires a nonvanishing mass without the Higgs mecha-
nism. Namely the SS twist basically conflicts with AdS5
geometry [7].

We finally consider how to include the radion fluctuation
mode in the previous N = 1 superspace action. We start
from the metric ds2 = e2F (b(x),y)ηµνdx

µν −G2(b(x), y)dy2

with the radion fluctuation mode b(x) by assuming a
BPS radion stabilization mechanism (e.g., Ref. [8]) with
a small backreaction. The background geometry of our
system is AdS, and the function F and G should satisfy
F (〈b〉, y) = σ(y) = −ky and G(〈b〉, y) = 1. Because b(x) is
a modulus field, we also require ∂yF = −kG. The embed-
ding of b(x) into the N = 1 superspace action is done by
the replacement σ(y)→ F (b(x), y) and 〈e 4

y 〉 → G(b(x), y)
in the previous results. This yields a kinetic term for
b(x) after the superconformal gauge fixing which is com-
pared to the corresponding one in the original supergrav-
ity action. The matching condition of these two as well
as the above AdS and modulus conditions determines the
b(x)-dependence of F and G as F = 1

2 ln(e
2σ(y) + b(x)),

G = (1 + e−2σ(y)b(x))−1. The radion field itself should
correspond to the proper length of the extra dimension,

i.e., r(x) = 1
π

∫ πR

0
dy G. Then the relation between r(x)

and b(x) is given by b(x) = e−kπR sinhπk(R−r(x))
sinhπkr(x) .

By promoting the radion field r(x) to the superfield
T (x), we obtain the N = 1 superspace action with the
dynamical radion superfield:

LV ′+H′ =

{
∫

d2θ
1

4
G(T )WxWx + h.c.

}

+e2σ
∫

d4θ G−2
R (T )

(

∂yV
x − χx + χ̄x

√
2

)2

+e2σ
∫

d4θ G
3/2
R (T )

(

H̄ve2qxV
x

Hv

+H̄Cve−2qxV
x

HCv
)

+e3σ
{
∫

d2θHCv
(1

2

←→
∂y + cG(T )

+
√
2qxχ

x
)

Hv + h.c.

}

,

LN=1 =
∑

l=0,π

Λlδ(y − lR)
[

−3

2
e2σ

∫

d4θ G−1
R (T )e−

1
3K

(l)(S,S̄)

+

{
∫

d2θ
(

f
(l)
x̄ȳ (S)W x̄W ȳ

+e3σG− 3
2 (T )W (l)(S)

)

+ h.c.

}]

,

LV0+H0 = −3e2σ
∫

d4θ lnGR(T ),

where GR(T ) = G(T )+G(T̄ )
2 . Based on this action, we

can calculate the radion mass for the radion stabilization
mechanism proposed by Ref. [8]. We introduce a superpo-
tential W (l)(S) = JlS at the orbifold fixed points y = lR

(l = 0, π) where S = G
3
4 (T )H and H is a stabilizer hy-

permultiplet. We can easily obtain the 4D effective action
in superspace for the zero mode h(0) of bulk hypermul-
tiplet H and the radion T , and then find a BPS vacuum
〈h(0)〉 = 0 and J0−Jπe−( 3

2k+c)πR = 0 where 〈T 〉 = R. The
radion mass on this BPS vacuum is derived up to O(|Jπ |2)
as m2

rad = k2|Jπ|
2

6

(

1− 2c
k

) (

3
2 − c

k

)2
e−2kπR 1−e−2kπR

1−e−(k−2c)πR
.

We find that the radion mass is finite even in k→ 0 limit,
namely the stabilization mechanism can work in the flat
spacetime.

In summary, we have derived an effective N = 1 de-
scription of 5D conformal supergravity, and analyzed some
SUSY breaking configurations such as geometry-mediated
or Scherk-Schwarz breaking in this framework. We have
also shown how to include dynamical radion mode in the
N = 1 superspace action. This result will be useful for
the phenomenological studies of 5D supergravity as well
as the theoretical understanding [9]. An application to the
5D supergravity with parity odd couplings such as bound-
ary FI terms [10] and the Green-Schwarz mechanism [11]
would be fruitful.
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