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Abstract

We have reconsidered theoretical upper bounds on the scalar boson masses within
the two-Higgs-doublet model (THDM), employing the well-known technical condition
of tree-level unitarity. Our treatment provides a modest extension and generalization
of some previous results of other authors. We present a rather detailed discussion of
the solution of the relevant inequalities and offer some new analytic formulae as well
as numerical values for the Higgs mass bounds in question. A comparison is made
with the earlier results on the subject that can be found in the literature.

1 Introduction

The two-Higgs-doublet model (THDM) of electroweak interactions is one of the simplest
extensions of the Standard Model (SM). It incorporates two complex scalar doublets in
the Higgs sector, but otherwise its structure is the same as that of the SM. Obviously,
such a theory is rather appealing on purely aesthetic grounds: in view of the familiar
doublet pattern of the elementary fermion spectrum, one can speculate that an analogous
organizational principle might work for the ”scalar Higgs matter” as well. Further, any
Higgs sector built upon doublets only is known to preserve naturally the famous lowest-
order electroweak relation ρ = 1 (where ρ = m2

W/(m2
Z cos2 θW )), which has been tested with

good accuracy. On the phenomenological side, an important aspect of the THDM is that its
Higgs sector may provide an additional source of CP violation; in fact, this was the primary
motivation for introducing such a model in the early literature on spontaneously broken
gauge theories in particle physics [1]. Of course, there is at least one more reason why the
THDM has become popular1 during the last two decades or so: its Higgs sector essentially
coincides with that of the minimal supersymmetric SM (MSSM), but the values of the
relevant parameters are less restricted. The spectrum of physical Higgs particles within

1For useful reviews of the subject see e.g. [2], [3]
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THDM consists of five scalar bosons, three of them being electrically neutral (denoted
usually as h, H and A0) and the other two charged (H±). At present, some partial
information concerning direct experimental lower bounds for the Higgs masses is available,
coming mostly from the LEP data (cf. [4]).

On the other hand, it is also interesting to know what could be possible theoretical
limitations for masses of the so far elusive Higgs particles within such a ”quasi-realistic”
model. For this purpose, some rather general methods have been invented, based mostly
on the requirements of internal consistency of the quantum field theoretical description of
the relevant physical quantities. One particular approach, which is perhaps most straight-
forward in this regard, relies on perturbative unitarity of the S-matrix. In its simplest form
it is implemented at the lowest order, by imposing unitarity constraints on the tree-level
amplitudes of a suitable set of scattering processes. Let us recall that this technique was
originally developed by B.W. Lee, C. Quigg and H. Thacker (LQT), who employed it in
their well-known analysis of perturbative upper bound for the SM Higgs boson mass [5].
The LQT method was subsequently applied also to electroweak models with extended
Higgs sectors; some results can be found under refs. [6], [7], [8]. In particular, authors
of the papers [7], [8] analyzed in this way a restricted version of the THDM with CP -
conserving Higgs sector and obtained slightly differing values of the bounds in question
(due to slightly different implementations of the LQT method). Recently, the issue of
tree-unitarity constraints for THDM Higgs boson masses has been taken up again in the
work [9] (see also [10],[11]), where a rather general model involving CP violation has been
considered; this seems to be another vindication of the persisting interest in the subject.

The purpose of the present paper is to supplement and extend the existing results
concerning the THDM Higgs mass upper bounds. We carry out a rather detailed analysis
of a relevant set of inequalities that follow from the requirement of tree-level unitarity. In
particular, the procedure of explicit solution of these constraints is discussed in considerable
detail and, among other things, some results of the corresponding numerical calculations
within a general THDM are presented. For the model without CP violation we were
able to find a set of analytic expressions as well. Note that in this latter case, most of
the calculational details are contained also in an earlier unpublished work by one of us
(see [12]). Let us also remark that there is no substantial overlap of the material presented
in [9, 10, 11] with our results, so we believe that it makes sense to offer our detailed analysis
as a contribution to the current literature on the particular problem in question.

The plan of our paper is as follows: In Sect. 2 the THDM scalar potential and the scalar
fields are described in some detail, in Sect. 3 we summarize briefly the LQT method and
its implementation within THDM and in Sect. 4 the relevant inequalities expressing the
tree-unitarity constraints are examined. The main analytic results for the mass bounds in
question are contained in sections 5, 6, 7 and Sect. 8 contains numerical results obtained
in the CP -violating case (where we have not been able to find analytical results). The
main results are summarized in Sect. 9.
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2 THDM scalar potential

The most general scalar potential within THDM that is invariant under SU(2)×U(1) can
be written as (cf. [13] or [3])

V (Φ) = λ1

(

Φ†
1Φ1 − v2

1

2

)2

+ λ2

(

Φ†
2Φ2 − v2

2

2

)2

+ λ3

(

Φ†
1Φ1 − v2

1

2
+ Φ†

2Φ2 − v2
2

2

)2

+

λ4

[

(Φ†
1Φ1)(Φ

†
2Φ2)− (Φ†

1Φ2)(Φ
†
2Φ1)

]

+λ5

[

Re(Φ†
1Φ2)− v1v2

2
cos ξ

]2

+λ6

[

Im(Φ†
1Φ2)− v1v2

2
sin ξ

]2

(1)

Note that such a form involves CP violation, which is due to ξ 6= 0 [3]. It also possesses
an approximate discrete Z2 symmetry under Φ2 → −Φ2; this is broken ”softly”, by means
of the quadratic term

v1v2

(

λ5 cos ξRe(Φ
†
1Φ2) + λ6 sin ξ Im(Φ†

1Φ2)
)

= v1v2Re
[

(λ5 cos ξ − iλ6 sin ξ)Φ
†
1Φ2

]

(2)

Let us recall that the main purpose of such an extra partial symmetry within THDM is
to suppress naturally the flavour-changing processes mediated by neutral scalar exchanges
that could otherwise arise within the quark Yukawa sector [14]. Note also that if such a
symmetry were exact, there would be no CP violation in the Higgs sector of the consid-
ered model. For further remarks concerning the role of the Z2 symmetry see e.g. [9] and
references therein. As a quantitative measure of the Z2 violation we introduce a parameter
ν, defined as

ν =

√

λ2
5 cos

2 ξ + λ2
6 sin

2 ξ (3)

(note that our definition of the ν differs slightly from that used in [9].) The minimum of
the potential (1) occurs at

Φ1 =
1√
2

(

0
v1

)

, Φ2 =
1√
2

(

0
v2

)

eiξ (4)

where we have adopted, for convenience, the usual simple choice of phases. Such a min-
imum determines vector boson masses through the Higgs mechanism; in particular, for
the charged W boson one gets m2

W = 1
2
g2(v21 + v22), with g standing for SU(2) coupling

constant. In a standard notation one then writes v1 = v cos β, v2 = v sin β, where v is the
familiar electroweak scale, v = (GF

√
2)−1/2 .

= 246 GeV and β is a free parameter. THDM
involves eight independent scalar fields: three of them can be identified with the would-be
Goldstone bosons w±, z (the labelling is chosen so as to indicate that they are direct coun-
terparts of the massive vector bosons W±, Z within an R-gauge) and the remaining five
correspond to physical Higgs particles — the charged H± and the neutral ones h,H,A0.

We will now describe the above-mentioned Goldstone and Higgs bosons in more detail.
To this end, let us start with a simple representation of the doublets, namely

Φ1 =

(

w−
1

1√
2
(v1 + h1 + iz1)

)

Φ2 =

(

w−
2

1√
2
(eiξv2 + h2 + iz2)

)

(5)
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Of course, the scalar fields introduced in (5) are in general unphysical; the w±
1,2 are taken to

be complex and the remaining ones real, but otherwise arbitrary. Note that an advantage of
such a parametrization is that the form of the quartic interactions is then the same as in CP -
conserving case. The proper Goldstone and Higgs fields are found through a diagonalization
of the quadratic part of the potential (1). When doing it, a convenient starting point is
a slightly modified doublet parametrization

Φ1 =

(

w−
1

1√
2
(v1 + h1 + iz1)

)

Φ2 =

(

w′−
2

1√
2
(v2 + h′

2 + iz′2)

)

eiξ (6)

that is obtained from (5) by means of the unitary transformation h′
2 = h2 cos ξ + z2 sin ξ,

z′2 = z2 cos ξ − h2 sin ξ a w′±
2 = e−iξw±

2 . Next, the scalar fields in (6) are rotated pairwise
as

(

H ′

h′

)

=

(

cos β sin β
− sin β cos β

)(

h1

h′
2

) (

A′

z

)

=

(

cos β sin β
− sin β cos β

)(

z1
z′2

)

(7)

(

ζ
w

)

=

(

cos β sin β
− sin β cos β

)(

w1

w′
2

)

(8)

When the quadratic part of (1) is recast in terms of the new variables, one finds out that
the z, w± are massless Goldstone bosons and the H± represent massive charged scalars.
At this stage, the fields h′, H ′, A′ are still mixed and their mass matrix reads

1

2

(

s2
2β

(λ1+λ2)+c2
2β(c2ξλ5+s2

ξ
λ6) s2β[−2c2

β
λ1+2s2

β
λ2+c2β(c2ξλ5+s2

ξ
λ6)] 1

2
c2βs2ξ(λ6−λ5)

s2β[−2c2
β
λ1+2s2

β
λ2+c2β(c2ξλ5+s2

ξ
λ6)] 4[c4βλ1+s4

β
λ2+λ3+c2

β
s2
β(c2ξλ5+s2

ξ
λ6)] 1

2
s2βs2ξ(λ6−λ5)

1

2
c2βs2ξ(λ6−λ5)

1

2
s2βs2ξ(λ5−λ6) s2

ξ
λ5+c2

ξ
λ6

)

(9)

By diagonalizing it, one gets the true Higgs bosons h,H,A0. The operation of charge
conjugation C means the complex conjugation of these physical fields (i.e. not of those
appearing in the parametrization (5)). However, we can employ the representation (6)
involving fields that are linear combinations of real variables without complex coefficients.
Note that for ξ = 0 (the CP -conserving case) the A is a CP -odd Higgs boson (A′ = A in
such a case) and H , h are CP even. Such a statement is also true when ξ = π/2 and/or
λ5 = λ6; as we shall see later in this section, for these particular values of parameters there
is again no CP violation in the potential (1).

For ξ = 0 the Higgs boson masses can be calculated explicitly, and subsequently one can
express the coupling constants λi in terms of masses and a mixing angle defined through

(

h1

h2

)

=

(

cosα − sinα
sinα cosα

)(

h
H

)

(10)

Let us now express the λ1,2,3,4 in terms of the Higgs boson masses in the case ξ = 0 (as we
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have only four distinct masses, we leave the λ5 as a free parameter). One gets

λ4 = 2v−2m2
± λ6 = 2v−2m2

A λ3 = 2v−2sαcβ
sβcβ

(m2
H −m2

h)−
λ5

4

λ1 =
1

2
v−2

[

c2αm
2
H + s2αm

2
h −

sαcβ
tan β

(m2
H −m2

h)

]

− λ5

4

(

1

tan2 β
− 1

)

λ2 =
1

2
v−2

[

s2αm
2
H + c2αm

2
h − sαcβtanβ(m

2
H −m2

h)
]

− λ5

4

(

1

tan2 β
− 1

)

(11)

Note also that the matrix of the quadratic form of the scalar fields is the Hessian of
the potential at its minimum. The condition for the existence of a minimum is that the
Hessian is positive definite, and this in turn means that the Higgs boson masses (squared)
are positive.

Finally, let us discuss briefly the particular cases ξ = 0, ξ = π/2 and λ5 = λ6. The case
ξ = 0 represents a model without CP violation within the scalar sector, as it is described
in [3]. The case ξ = π/2 can be analyzed easily in the parametrization (6); using this, the
potential can be viewed as the case ξ = 0 with the change of notation

Φ′
1 = Φ1 Φ′

2 = iΦ2 λ5 ↔ λ6 (12)

Thus, the two cases are equivalent. When λ6 = λ5, the ξ-dependent part of the potential
can be recast as

λ5

(

Re(Φ†
1Φ2)−

v1v2
2

cos ξ
)2

+ λ6

(

Im(Φ†
1Φ2)−

v1v2
2

sin ξ
)2

= λ6

∣

∣

∣
Φ†

1Φ2 −
v1v2
2

eiξ
∣

∣

∣

2

(13)

The remaining terms do not depend on the relative phase between Φ1 and Φ2, so that the
phase factor eiξ can be transformed away and one thus again has a CP -conserving case. A
particular consequence of such an analysis is that for ν = 0 there can be no CP violation.

3 LQT method

For finding the upper bounds on the Higgs boson masses we will employ the well-known
LQT method invented three decades ago [5]. This method relies on imposing the condition
of perturbative (in particular, tree-level) unitarity on an appropriate set of physical scat-
tering processes. Within a renormalizable theory, the scattering amplitudes are ”asymp-
totically flat”, i.e. they do not exhibit any power-like growth in the high-energy limit.
However, the dominant couplings are typically proportional to the scalar boson masses
and one can thus obtain useful technical constraints on their values. In the pioneering
paper [5] the method was applied to the minimal SM, and several groups of authors em-
ployed it subsequently within models involving an extended Higgs sector, in particular the
THDM (cf. [6], [7], [8]). The results of various authors differ slightly, so it perhaps makes
sense to reconsider the corresponding calculation and present, for the sake of clarity, some
additional technical details of the whole procedure.
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In the spirit of the LQT approach, our analysis is based on the condition of tree-level
S-matrix unitarity within the subspace of two-particle states. Instead of the unitarity
condition used in the original paper [5], we can adopt an improved constraint for the
s-wave partial amplitude M0, namely

|ReM0| ≤
1

2
(14)

(cf. [15]). Note that the tree-level matrix elements in question are real, and in the high-
energy limit their leading contributions do not involve any angular dependence. Thus, the
M0 generally coincides with the full tree-level (asymptotic) matrix element M, up to a con-
ventional normalization factor of 16π appearing in the standard partial-wave expansion.
The effective unitarity constraint (14) then becomes

|M| ≤ 8π (15)

For an optimal implementation of the unitarity constraints we will consider the eigenvalues
of the matrix Mij = Mi→j where the indices i and j label symbolically all possible two-
particle states. Having in mind our primary goal, we take into account only binary processes
whose matrix elements involve the Higgs boson masses in the leading order, in particular
in the O(E0) terms. Invoking arguments analogous to those used in the original paper [5],
one can show that the relevant contributions descend from the interactions of Higgs scalars
and longitudinal vector bosons. Using the equivalence theorem for longitudinal vector
bosons and Goldstone bosons (see e.g. [5], [16]) one finds out, in accordance with the LQT
treatment, that the only relevant contributions come from the amplitudes involving Higgs
bosons and unphysical Goldstone bosons (that occur in an R-gauge formulation of the
theory). It means that we will examine the above-mentioned matrix Mij , including all
two-particle states made of the scalars (both physical and unphysical) w±, z, H±, A0, H, h.
It is not difficult to see that the leading terms in the individual amplitudes are determined
by the direct (contact) quartic scalar interactions, while the triple vertices enter second
order Feynman graphs and their contributions are suppressed by the propagator effects in
the high energy expansion.

As noted above, we will be mainly concerned with the eigenvalues of the two-particle
scattering matrix. It means that for our purpose we can consider, equivalently, any unitary
transformation of the matrixMij . In particular, it is more convenient to take, instead of the
Mij , a matrix consisting of the scattering amplitudes between the two-particle states made
of the ”particles” w±

a , za, ha corresponding to the parametrization (5). The eigenvalues of
this matrix can be found in the earlier paper [8].

Matrix elements for the scattering processes corresponding to the two-particle states

6



(w+
1 w

−
2 , w

+
2 w

−
1 , h1z2, h2z1, z1z2, h1h2) form the submatrix



















w+

1
w−

2
w+

2
w−

1
h1z2 h2z1 z1z2 h1h2

w+

1
w−

2
2λ3 +

λ5

2
+ λ6

2
4
(

λ5

4
− λ6

4

)

i
2
λ4 − i

2
λ6

−i
2
λ4 +

i
2
λ6

−λ4

2
+ λ5

2
−λ4

2
+ λ5

2

w+

2
w−

1
4
(

λ5

4
− λ6

4

)

2λ3 +
λ5

2
+ λ6

2
−i
2
λ4 +

i
2
λ6

i
2
λ4 − i

2
λ6

−λ4

2
+ λ5

2
−λ4

2
+ λ5

2

h1z2
−i
2
λ4 +

i
2
λ6

i
2
λ4 − i

2
λ6 4

(

λ3

2
+ λ6

4

)

λ5

2
− λ6

2
0 0

h2z1
i
2
λ4 − i

2
λ6

−i
2
λ4 +

i
2
λ6

λ5

2
− λ6

2
4
(

λ3

2
+ λ6

4

)

0 0

z1z2
−λ4

2
+ λ5

2
−λ4

2
+ λ5

2
0 0 4

(

λ3

2
+ λ5

4

)

λ5

2
− λ6

2

h1h2
−λ4

2
+ λ5

2
−λ4

2
+ λ5

2
0 0 λ5

2
− λ6

2
4
(

λ3

2
+ λ5

4

)



















(16)
with eigenvalues

e1 = 2λ3 − λ4 −
1

2
λ5 +

5

2
λ6

e2 = 2λ3 + λ4 −
1

2
λ5 +

1

2
λ6

f+ = 2λ3 − λ4 +
5

2
λ5 −

1

2
λ6

f− = 2λ3 + λ4 +
1

2
λ5 −

1

2
λ6

f1 = f2 = 2λ3 +
1

2
λ5 +

1

2
λ6

(17)

Another submatrix is defined by means of the states (w+
1 w

−
1 , w

+
2 w

−
2 ,

z1z1√
2
, z2z2√

2
, h1h1√

2
, h2h2√

2
); it

reads



















w+

1
w−

1
w+

2
w−

2

z1z1
√

2

z2z2
√

2

h1h1
√

2

h2h2
√

2

w+

1
w−

1
4(λ1+λ3) 2λ3+

λ5
2
+

λ6
2

√
2(λ1+λ3)

√
2(λ1+λ3)

√
2(λ3+

λ4
2 )

√
2(λ3+

λ4
2 )

w+

2
w−

2
2λ3+

λ5
2
+

λ6
2

4(λ2+λ3)
√
2(λ3+

λ4
2 )

√
2(λ3+

λ4
2 )

√
2(λ2+λ3)

√
2(λ2+λ3)

z1z1√
2

√
2(λ1+λ3)

√
2(λ3+

λ4
2 ) 3(λ1+λ3) λ1+λ3 λ3+

λ5
2

2(λ3
2
+

λ6
4 )

z2z2√
2

√
2(λ1+λ3)

√
2(λ3+

λ4
2 ) 2(λ1

2
+

λ3
2 ) 3(λ1+λ3) 2(λ3

2
+

λ6
4 ) 2(λ3

2
+

λ5
4 )

h1h1√
2

√
2(λ3+

λ4
2 )

√
2(λ2+λ3) 2(λ3

2
+

λ5
4 ) 2( λ3

2
+

λ6
4 ) 3(λ2+λ3) 2(λ2

2
+

λ3
2 )

h2h2√
2

√
2(λ3+

λ4
2 )

√
2(λ2+λ3) 2(λ3

2
+

λ6
4 ) 2( λ3

2
+

λ5
4 ) 2(λ2

2
+

λ3
2 ) 3(λ2+λ3)



















(18)

and its eigenvalues are

a± = 3(λ1 + λ2 + 2λ3)±
√

9(λ1 − λ2)2 + [4λ3 + λ4 +
1
2
(λ5 + λ5)]2

b± = λ1 + λ2 + 2λ3 ±
√

(λ1 − λ2)2 +
1
4
(−2λ4 + λ5 + λ6)2

c± = λ1 + λ2 + 2λ3 ±
√

(λ1 − λ2)2 +
1
4
(λ5 − λ6)2

(19)

A third submatrix

(

h1z1 h2z2

h1z1 2 (λ2 + λ3)
1
2
(λ5 − λ6)

h2z2
1
2
(λ5 − λ6) 2 (λ1 + λ3)

)

(20)
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has eigenvalues c± (see (19)). Finally, there are submatrices corresponding to charged
states (h1w

+
1 , h2w

+
1 , z1w

+
1 , z2w

+
1 , h1w

+
2 , h2w

+
2 , z1w

+
2 , z2w

+
2 ):









h1w
+

1
h2w

+

1
z1w

+

1
z2w

+

1

h1w
+

1
2 (λ1 + λ3)

−λ4

2
+ λ5

2
0 i

2
λ4 − i

2
λ6

h2w
+

1

−λ4

2
+ λ5

2
2 (λ2 + λ3)

i
2
λ4 − i

2
λ6 0

z1w
+

1
0 −i

2
λ4 +

i
2
λ6 2 (λ1 + λ3)

−λ4

2
+ λ5

2

z2w
+

1

−i
2
λ4 +

i
2
λ6 0 −λ4

2
+ λ5

2
2 (λ2 + λ3)









(21)









h1w
+

2
h2w

+

2
z1w

+

2
z2w

+

2

h1w
+

2
2
(

λ3 +
λ4

2

) −λ4

2
+ λ5

2
0 i

2
λ4 − i

2
λ6

h2w
+

2

−λ4

2
+ λ5

2
2
(

λ3 +
λ4

2

)

i
2
λ4 − i

2
λ6 0

z1w
+

2
0 −i

2
λ4 +

i
2
λ6 2

(

λ3 +
λ4

2

) −λ4

2
+ λ5

2

z2w
+

2

−i
2
λ4 +

i
2
λ6 0 −λ4

2
+ λ5

2
2
(

λ3 +
λ4

2

)









(22)

Their eigenvalues are the f−, e2, f1, c±, b± shown above and, in addition,

p1 = 2(λ3 + λ4)−
1

2
λ5 −

1

2
λ6 (23)

Unitarity conditions (15) for the eigenvalues listed above give the constraints

|a±|, |b±|, |c±|, |f±|, |e1,2|, |f1|, |p1| ≤ 8π (24)

Note that an independent derivation of these inequalities based on symmetries of the Higgs
potential can be found in the papers [9, 10].

4 Independent inequalities

However, the inequalities (24) are not all independent. Indeed, it is not difficult to observe
some simple relations as

3f1 = p1 + e1 + f+

3e2 = 2p1 + e1

3f− = 2p1 + f+

(25)

and this means that the inequalities |p1|, |f+|, |e1| ≤ 8π imply |f1|, |e2|, |f−| ≤ 8π. Further,
the eigenvalues (19) in the remaining inequalities can be rewritten as

a± = 3λ123 ±
√

(3λ12)2 +
1
4
(f+ + e1 + 2p1)2

b± = λ123 ±
√

(λ12)2 +
1
36
(f+ + e1 − 2p1)2

c± = λ123 ±
√

(λ12)2 +
1
36
(f+ − e1)2

(26)
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where λ123 = λ1 + λ2 + 2λ3 and λ12 = λ1 − λ2. In the case λ123 > 0 the inequalities for
the a−, b−, c− follow from a+, b+, c+ ≤ 8π. For λ123 < 0 the situation is similar, with
interchanges (a, b, c)± → (a, b, c)∓ and λ123 → −λ123.

The authors [7] noticed that among the latter inequalities, the strongest one is a+ < 8π;
Indeed, using (24) and (26) one can show that for λ123 > 0 the remaining ones follow from
it. In the case λ123 < 0 the same statement is true concerning a+ < 8π.

Thus, it is sufficient to solve the inequalities

|a±|, |f+|, |e1|, |p1| ≤ 8π (27)

In fact, the inequality a− < 8π need not be taken into account in subsequent discussion;
it turns out that this is weaker than the remaining ones and does not influence bounds
in question (one can verify a posteriori that our solutions satisfy the constraints a− < 8π
automatically).

5 Upper bounds for MA and M± with ξ = 0

Before starting our calculation, let us recall that the condition ξ = 0 means that the Z2

symmetry-breaking parameter ν becomes ν = λ5 (see (3)). To proceed, we shall first fix
convenient notations. The LQT bound for the SM Higgs mass sets a natural scale for our
estimates, so let us introduce it explicitly:

mLQT =

√

4π
√
2

3GF
=

√

8π

3
v

.
= 712 GeV (28)

(note that in writing eq.(28) we do not stick strictly to the original value [5], using rather
the improved bound [15]). In the subsequent discussion we shall then work with the
dimensionless ratios

M =
m

mLQT

(29)

instead of the true scalar boson masses (denoted here generically as m). Further, an
overall constant factor 16π/3 can be absorbed in a convenient redefinition of the coupling
constants, by writing

λ′
i =

3λi

16π
(30)

Finally, we introduce new variables

X = M2
H +M2

h , Y = M2
H −M2

h , Z =
sin 2α

sin 2β
Y (31)

that will help to streamline a bit the solution of the inequalities in question.
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Using equations (11) and the definitions shown above, the λ′ can be expressed as

λ′
4 = M2

±

λ′
6 = M2

A

λ′
3 =

1

4

sin 2α

sin 2β
Y − 1

4
λ′
5 =

Z

4
− λ′

5

4

λ′
12 =

1

2 sin2 2β
[(X − 2λ′

5) cos 2β − Y cos 2α]

λ′
123 =

1

2 sin2 2β
(X − Y cos 2α cos 2β − 2λ′

5) +
λ′
5

2

(32)

Let us now discuss the possible bounds for the M±,MA. These can be obtained from the
inequalities for |e1|, |f+|, |p1|, which read, in our new notation

∣

∣

∣

∣

Z

2
− λ′

5 −M2
± +

5

2
M2

A

∣

∣

∣

∣

≤ 3

2
∣

∣

∣

∣

Z

2
+ 2λ′

5 −M2
± − 1

2
M2

A

∣

∣

∣

∣

≤ 3

2
∣

∣

∣

∣

Z

2
− λ′

5 + 2M2
± − 1

2
M2

A

∣

∣

∣

∣

≤ 3

2

(33)

The relations (33) are linear with respect to the M2
±,M

2
A and one can thus view the domain

defined by these inequalities as a hexagon in the plane (M2
±,M

2
A). Then it is clear that

the highest possible value of a mass variable in question will correspond to a vertex (or
a whole hexagon side). By examining all possible cases one finds easily that for M2

±, such
a ”critical” vertex satisfies the condition −f+ = p1 = 8π; in view of (33) this means that
it corresponds to the values

(M2
±,M

2
A) = (1 + λ′

5, 1 + Z + 2λ′
5) (34)

Such a maximum value of the M2
± is indeed formally admissible (in the sense that by

reaching it one does not leave the parametric space of the considered model). To see this,
one can substitute in eq. (34) M2

A = λ′
5,M

2
H = 1 + λ′

5,M
2
h = 0, α = π − β. Thus, the

bound becomes
M2

± ≤ 1 + λ′
5 (35)

Similarly, for M2
A the extremal solution corresponds to a hexagon vertex defined by e1 =

−f+ = 8π and its coordinates in the (M2
±,M

2
A) plane are then

(M2
±,M

2
A) = (1 +

Z

2
+

3

2
λ′
5, 1 + λ′

5) (36)

The parameter values that saturate this maximum are analogous and one has to take
M2

± = λ′
5/2,M

2
H = 1+ λ′

5,M
2
h = 0, α = π− β. In this way, the bound for M2

A becomes the
same as that for the M2

± , namely

M2
A ≤ 1 + λ′

5 (37)
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6 Upper bounds for Mh,MH with ξ = 0

Let us now proceed to discuss the upper bounds for MH and Mh. If we considered the
relevant constraints without any further specification of the scalar bosons h and H , we
would get the same result for both particles, since their interchange corresponds just to
the replacement α → −α (cf. eq. (10)). Thus, let us add the condition Mh ≤ MH

(i.e. Y > 0). In such a case, we will solve just the inequality a+ < 8π (which puts the most
stringent bounds on the variables X, Y ) and in the obtained solution we will constrain the
MA,M± so as to satisfy the rest of the inequalities.

The basic constraint a+ < 8π is quadratic with respect to the X, Y and reads (cf. the
expression (19))

(X − Y cos 2α cos 2β)− λ′
5(2− sin2 2β)+

√

[

(X − 2λ′
5) cos 2β − Y cos 2α

]2
+

(

2

3

)2

sin4 2β
(

Y
sin 2α

sin 2β
− λ′

5

2
+M2

± +
M2

A

2

)2

≤ sin2 2β

(38)

To work it out, we will employ the following trick: As a first step, we will consider a simpler
inequality, which is obtained from (34) by discarding the second term under the square
root; in other words, we will first assume that

Y
sin 2α

sin 2β
− λ′

5

2
+M2

± +
M2

A

2
= 0 (39)

Of course, the ”reduced” constraint

X − Y cos 2α cos 2β − λ′
5(2− sin2 2β) + |X cos 2β − Y cos 2α− 2λ′

5 cos 2β| ≤ sin2 2β (40)

is in general weaker than the original one. Nevertheless, in a next step we will be able to
show that the obtained mass bound does get saturated for appropriate values of the other
parameters (such that the condition (39) is met) - i.e. that in this way we indeed get the
desired minimum upper mass bound corresponding to the original constraint (38). Thus,
let us examine the inequality (40). Obviously, we have to distinguish two possible cases:

1. (X − 2λ′
5) cos 2β ≥ Y cos 2α.

Then one has

X(1 + cos 2β)− Y (1 + cos 2β) cos 2α− λ′
5(1 + cos 2β) ≤ sin2 2β (41)

Making use of our assumption, we can get from (41) a simple constraint that does
not involve Y , namely

X ≤ 1 + λ′
5 (42)

(to arrive at the last relation, we had to divide by the factor 1 − cos 2β; when it
vanishes, we can use directly the original inequality (38) and get the same result).
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2. (X − 2λ′
5) cos 2β ≤ Y cos 2α.

In a similar way as in the preceding case, the inequality (40) implies the same bound
(42).

Thus, having constrained X = M2
H +M2

h according to (42), we can obviously also write

M2
H ≤ 1 + λ′

5 (43)

Now, it is not difficult to see that for M2
h = 0,M2

± = λ′
5 +

1
2
,M2

A = 1 + λ′
5, α = π − β,

eq. (39) is satisfied with M2
H = 1 + λ′

5 and means that (43) represents the mass upper
bound pertinent to the original unitarity constraint (38).

The bound for the Mh is obtained from (42) by using there our subsidiary condition
Mh ≤ MH ; one thus has

M2
h ≤ 1

2
(1 + λ′

5) (44)

The upper limit in (44) gets saturated (i.e. M2
h = 1

2
(1 + λ′

5)) for MH = Mh, M
2
A = 0,

M2
± = λ′

5/2, α = 3π/4, β = π/4. It is worth noticing that here we have fixed a particular
value of the angle β , while all previous constraints were independent of β (i.e. for any β
we were then able to find an appropriate value of α). A more detailed analysis shows that,
in general, the upper bound for the Mh indeed depends explicitly on the β. To derive the
corresponding formula, we consider the boundary value Mh = MH (i.e. Y = 0) and use
also eq. (39). The inequality (38) then becomes

M2
h − λ′

5

(

1− sin2 2β

2

)

+ |M2
h cos 2β − λ′

5 cos 2β| ≤
sin2 2β

2
(45)

To work it out, we will assume that M2
h ≥ λ′

5 (taking into account (44) this means λ′
5 ≤ 1;

in fact, one can do even without such a restriction, but for our perturbative treatment only
sufficiently small values of the λ′

5 are of real interest). The inequality (45) then becomes

M2
h ≤ (1− λ′

5)

2

(1 + cos 2β)(1− cos 2β)

1 + | cos 2β| + λ′
5 (46)

Obviously, the maximum bound (44) is recovered from the last expression for β = π/4.
Let us also remark that the choice α = π − β comes, as in all previous cases, from the
requirement Z = −Y .

7 Upper bound for the lightest scalar for ξ = 0

One can notice that any Higgs mass upper limit discussed so far gets saturated only
when at least one of the other scalar masses vanishes. Thus, another meaningful question
arising in this connection is what can be an upper bound for the lightest Higgs boson
(within a considered set of the five scalars h,H,A0, H±). Let us first take h to be the
lightest scalar state; it means that in our analysis we will include the additional assumption
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Y

X

M2
H

M2
h

ϕ

Q

P

Figure 1: The region of admissible values of M2
h if h is assumed to be the lightest scalar

Mh ≤ MH ,MA,M±. The procedure we are going to employ is a modest generalization of
the earlier calculation [7]. Squaring the inequality (38) one gets

(X −X0)
2 −

(

1− 5

9
sin2 2α

)

(Y − Y0)
2 ≥ R2 (47)

where X0, Y0 and R depend on λ′
5, α, β,M

2
± + M2

A/2. This inequality defines the domain
bounded by the hyperbola shown in Fig. 1, but the original constraint (38) corresponds
just to its left-hand part. In order to find the solution, one should realize that the slope of
the asymptote with respect to the X-axis must be greater than the slope of the straight
lines X = ±Y (this follows from the fact that the coefficient 1− 5

9
sin2 2α, multiplying the

Y 2 in (47), is less than one). Because of that, the maximum value of the Mh corresponds
to Y = 0 and a+ = 8π, and we are thus led to the equation

X − λ′
5(2− sin2 2β) +

√

cos2 2β(X − 2λ′
5)

2 +
4

9
sin4 2β

(

M2
± +

M2
A

2
− λ′

5

2

)

= sin2 2β (48)

It is clear that for smaller M±,MA one has a bigger value of the Mh, so the needed
upper estimate is obtained for M± = MA = Mh (note also that from Y = 0 one has
X = 2M2

h). In this way one gets an equation for maximum Mh:

2M2
h − λ′

5(2− sin2 2β) +

√

4(M2
h − λ′

5)
2 cos2 2β + sin4 2β(M2

h − 1

3
λ′
5)

2 = sin2 2β (49)

From eq. (49) one can calculate the M2
h as a function of sin2 2β. It can be shown that for

λ′
5 < 3/5 this function is increasing, i.e. the maximum is reached for β = π/4 and its value
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Figure 2: Dependence of lightest boson mass on β

becomes

M2
h =

1

3
+

4

9
λ′
5 (50)

We do not display the explicit dependence of the maximum Mh on the β, but it is clear that
the solution of eq. (49) is straightforward. Finally, we should also examine the cases where
the lightest Higgs boson mass is either MA or M± . However, from the above discussion it
is clear that both these extremes occur when Mh = MA = M±.

Similarly, from eq. (48) one can derive a constraint for the mass of the lightest neutral
scalar boson (which we denote Mn). In this case we substitute there X = 2M2

n, M
2
A = M2

n,
M2

± = 0 and obtain thus the equation

2M2
n − λ′

5(2− sin2 2β) +

√

4(M2
n − λ′

5)
2 cos2 2β + sin4 2β

(

M2
n

3
− 1

3
λ′
5

)2

= sin2 2β (51)

From eq. (51) one then obtains the M2
n as a function of sin2 2β, which is increasing for

λ′
5 < 1. Its maximum reached at β = π/4 becomes

M2
n =

3

7
+

4

7
λ′
5 (52)

8 Numerical solution for ξ 6= 0

In the general case with ξ 6= 0 (i.e. with CP violation in the scalar sector) we have not
been able to solve the inequalities (27) analytically, so we had to resort to an appropriate
numerical procedure. The main result we have obtained in this way is that for small values
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of the parameter ν (see eq. (3)), in particular for ν ′ ∈ 〈0, 0.3〉 , the upper mass bounds in
question are the same as for ξ = 0. The interval has been chosen such that the variations
in the upper estimates be at the level of 50−100%, the validity of our theoretical estimates
is guaranteed up to ν ′ < 3/5 (see the remark below eq. (49)).

Our numerical procedure consists in solving the inequalities (27) on the space of pa-
rameters λ′

1,2,3,4,5,6 and ξ restricted by the condition (3), where one also adds constraints
for the existence of a minimum of the potential (1): λ′

4 > 0 (i.e. m2
± > 0, see (11)) and the

requirement of positive definiteness of the matrix (9) (i.e. m2
A,H,h > 0). On this parametric

subspace we have looked for the maximum values of the following quantities:

1. Mass of the charged Higgs boson m± (see Fig. 3)

2. Mass of the lightest Higgs boson (see Fig. 4)

3. Mass of the lightest neutral Higgs , i.e. the lightest one among the A,H, h (see Fig. 5)

4. Mass of the heaviest neutral Higgs, i.e. the heaviest among the A,H, h (see Fig. 6).

Let us remark that in this case we have not distinguished between A and h,H , which are
superpositions of the CP -odd and CP -even states.

In our plots we display, apart from the dependence of masses in question on the ν, also
the values of the parameter ξ in the case λ5 = λ6 and λ5 6= λ6 respectively, in order to be
able to distinguish the extreme cases without CP violation (ξ = kπ/2 or λ5 = λ6, see the
discussion in Section 2). From Figs. 3, 4, 5, 6 it can be seen that all examined mass upper
bounds are reached just in the aforementioned extreme cases. In view of this, we can make
use of our previous analytic expressions, except for the case 3, which we have not solved
analytically.

Our results have been simulated by means of the computer programMatlab 6.0, package
optim, with the help of the function fmincon. The numerical errors are mostly due to an
insufficiently smooth condition for the positive definiteness of the matrix (9).

9 Conclusions

In the present paper we have reconsidered upper bounds for the scalar boson masses within
THDM, by using the well-known technical constraint of tree-level unitarity. Our analysis
should extend and generalize the results of some previous treatments, in particular those
obtained in the papers [8] and [7]. Although we basically employ the traditional methods,
we have tried to present some details of the calculations not shown in the earlier papers —
we have done so not only for the reader’s convenience, but also to provide a better insight
into the origin of the numerical results displayed here. As we have already noted in the
Introduction, some new relevant papers on the subject have appeared quite recently (see
[9, 10, 11]). In these works, the structure of the unitarity constraints is discussed in detail
within a rather general THDM, but there is no substantial overlap with our results, since
our main point is rather a detailed explicit solution of the inequalities in question.
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So, let us now summarize briefly our main results. We have found upper limits for
Higgs boson masses in dependence on the parameter ν that embodies an information
about possible flavour-changing neutral scalar-mediated interactions. The upper bounds
are seen to grow with increasing ν (see Tab.1). On the other hand, this parameter cannot
take on large values (to avoid a conflict with current phenomenology), and thus it makes
no real sense to consider the mass estimates for an arbitrary ν ; in the present paper we
restrict ourselves to ν ≤ 0.4 (cf. the condition used when deriving the relation (50)). In
the case with no CP violation in the scalar sector (ξ = 0), the relevant results are obtained
from the inequalities (35), (37), (43), (44), and the bound for the lightest scalar is shown
in eq.(50) (where one should also pass from λ′

5 to λ5 according to (30)). In Section 8 we
have then verified that in the CP -violating case these values remain the same. The results
are shown in Tab. 1, where we have singled out the case ν = 0 that corresponds to the
absence of flavour-changing scalar currents. Let us remark that in the CP -violating case
we do not distinguish between the H and A, and in the CP -conserving case the bounds
for H and A are the same.

Further, we have calculated an explicit dependence of the upper limit for the Mh on
the angle β in the case with ξ = 0. The analytic expression reads

M2
h ≤ sin2 2β

1 + | cos 2β|

(

1

2
− 3

32π
λ5

)

+ λ5
3

16π
(53)

(cf. (46) with the λ5 retrieved). The dependence of the relevant bound for a lightest scalar
boson can be obtained from eq. (49) and the results for some particular values of the λ5

are depicted in Fig.2.
For ν = 0 and ξ = 0, our results can be compared directly with those published in [7].

We get somewhat stronger bounds formA andm± since, in addition to the set of constraints
utilized in [7], we have employed also the inequality p1 < 8π, which stems from charged
processes (cf. the end of Section 4) not considered in [7]. On the other hand, our estimates
for mH , mh and the lightest scalar coincide with the results [7], since the above-mentioned
extra inequality is not used here. It is also noteworthy that the upper limits for mh and
mH coincide with the SM LQT bound if they are estimated separately and, depending
on the number of the simultaneously estimated Higgs scalars, the coefficient 1/2 appears
when we take two of them and 1/3 when all of them are considered.

In the case ξ = 0 and λ5 6= 0 comparison with [8] is possible. Here we can compare
only the corresponding numerical values, which turn out to be approximately equal when
λ5 = 0. However, for λ5 = 0 our results obviously differ from those of [8]: in particular, the
bounds for mA, m± displayed in [8] appear to decrease with increasing λ5. The authors [8]
state that they used some fixed values of the angle β; for the purpose of a better comparison
we have therefore calculated the β-dependence of the upper bound for mh, with the result
shown in (53). As it turns out, the mA and m± do not depend on β in this case.

Finally, let us mention that in the CP -violating case we have not been able to get
analytic results; we have only shown, numerically, that the maximum values of the masses
in question are obtained for ξ = 0, i.e. the upper mass bounds are the same as in the case
with no CP violation in the scalar sector.
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H A H± h lightest boson

Our results

m/mLQT

√

1 + ν
3

16π

√

1

2
+ ν

3

32π

√

1

3
+ ν

1

12π

m[GeV] 712 GeV 503 GeV 411 GeV

Results [7]

m/mLQT 1
√
3

√

3

2

1√
2

1√
3

m[GeV] 712 GeV 1233 GeV 872 GeV 503 GeV 411 GeV

Results [8]

m[GeV] 638 GeV 691 GeV 695 GeV 435 GeV —

Table 1: Comparison with other works
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