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Abstract

| report on an implementation of an algorithm for the aut@datumerical calculation of
spin- and colour-correlated Born matrix elements in QCDBesghspin- and colour-correlated
matrix elements are needed for NLO calculations in comlinatith the subtraction method.
Both massless and massive quarks are considered. Ther rasnictions on the number of
external particles. As a trivial sub-case, the algoritheoapplies to Born matrix elements
without any correlations. These are sufficient for leadirggo calculations.
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1 Introduction

QCD processes will constitute the bulk of events at the LHI@&SE processes provide informa-
tion on the strong interaction and form quite often impatrta&ckground for searches of new
physics. An accurate description of jet physics is theeefoandatory. Although jet observables
can rather easily be modelled at leading order (LO) in pbéation theory [1-11], this description
suffers several drawbacks. A leading order calculatioreddp strongly on the renormalization
scale and can therefore give only an order-of-magnitutiezate on absolute rates. Secondly, at
leading order a jet is modelled by a single parton. This isrg eaude approximation and over-
simplifies inter- and intra-jet correlations. The situatie improved by including higher-order
corrections in perturbation theory.

At present, there are many next-to-leading order (NLO)udateon for 2— 2 processes at
hadron colliders, but only a few for 2 3 processes. Fully differential numerical programs
exist for example fopp — 3 jets [12-14],pp — V + 2 jets [15],pp — ttH [16,17] andpp —

H -+ 2 jets [18, 19].

It is desirable to have NLO calculations for-2 n processes in hadron-hadron collisions
with n in the range ofn = 3,4,...,6,7. QCD processes likpp — n jets form often impor-
tant backgrounds for the searches of signals of new physicsvever, the complexity of the
calculation increases with the number of final state pasiclTo overcome the computational
limitation, there have been in the past years several paedpdsr the automated computation
of next-to-leading order observables [20-34]. These pabbns focussed mainly on the auto-
mated computation of loop integrals. Equally importantis tomputation of the real emission
contribution. It is well known that in general an NLO obsdx\eawill receive contributions from
the virtual corrections and the real emission part. Takeasgely, each of the two contribu-
tions is divergent due to the presence of infrared singigari Only the sum of the two is finite.
There are several general method available to handle tbidem, like the phase-space slicing
method [35—-37] or the subtraction method [38—43]. In thiggwd will focus on the dipole sub-
traction method [39-43]. The dipole subtraction methodunes the calculation of spin- and
colour-correlated Born matrix elements. In this paper lcdes a method for the automated
calculation of these quantities. While the kinematicak pdéuithe matrix elements is calculated
numerically, colour-correlation matrices are calculagohbolically at the initialisation phase of
the program. The C++ library “GiNaC” [44] allows to mix nunieal and symbolical code in a
single program. The program uses standard techniquespikersmethods [45-49] and colour
decomposition [50-56]. The program computes helicity augés, which are decomposed into
colour factors and partial amplitudes. The partial amgks are computed with the help of
Berends-Giele type recurrence relations [1,57]. It shdachoted that recently interesting new
methods emerged for the computation of partial amplitu88s1].

This paper is organised as follows: In the following sectipresent the general setup for the
dipole subtraction method and review a few basic tools ferdalculation of QCD amplitudes.
Sect. 3 describes the algorithm for the calculation of cetmirrelated Born matrix elements.
The numerical implementation is discussed in sect. 4. Finsgct. 5 contains the conclusions
and an outlook. In an appendix | summarise the colour-ocdEsynman rules and the colour-
correlation operators. Furthermore, | give some techrdetdils on the implementation into a
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C++ program.

2 General setup and basic tools

2.1 Thedipole formalism

The starting point for the calculation of an infrared safeervableO in hadron-hadron collisions
is the following formula:

11 11
o = / dxlf(xl)/ Dot 0e) o 2T 1) 2%+ 1) mm (1)
/d%(pl, P2; P3, ., Pna2) O (PL, s Prs2) | Fns2l (2)

This equation gives the contribution from thgarton final state. The two incoming particles are
labelledp; and p2, while p3 to pn+2 denote the final state particle$(x) gives the probability
of finding a partona with momentum fractiorx inside the parent hadrom A sum over all
possible partona is understood implicitly. B(s) is the flux factor, ¥(2J;+ 1) and 1/(2J,+ 1)
correspond to an averaging over the initial helicities apngndn, are the number of colour
degrees of the initial state particledq, is the phase space measure ffidinal state particles,
including (if appropriate) the identical particle factofe matrix elemenitd, ., »|? is calculated
perturbatively.

At NLO one has the following contributions:

(ONLO — /On+1doR+/Ond0V+/Ond0C- (3)
n+1 n n

Here | used a rather condensed notatibo? denotes the real emission contribution, whose ma-

trix element is given by the square of the Born amplitudeh (it+ 3) partonq;zlég)gﬁ. doV gives
the virtual contribution, whose matrix element is given bg tnterference term of the one-loop

amplitudeﬁlﬂ2 with (n+2) partons with the corresponding Born amplitu@r@z do® denotes

a collinear subtraction term, which subtracts the inisi@te collinear singularities. Taken sepa-
rately, the individual contributions are divergent andyathleir sum is finite. In order to render
the individual contributions finite, such that the phasecspategrations can be performed by
Monte Carlo methods, one adds and subtracts a suitablerchass [39-43]:

(ONLO / (Ons1d0™ ~ Ond™) + / (Ondov +0,daC 40, / doA) o ®
n+1 n 1

The matrix element corresponding to the approximation gthis given as a sum over dipoles:

Z ; Dij k- (5)
pairsi,j k#i,j
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Each dipole contribution has the following form:

1
2p; - pj

Here T; denotes the colour charge operator [39] for pait@mdVj; « is a matrix in the spin
space of the emitter partaij). Explicit formulae for the expressioN; « can be found in the
literature [39—43] and are not repeated here. In the nuagsrogram both the dipole terms for
massless and massive partons are implemented.

In general, the operatofi§ lead to colour correlations, while thg ’s lead to spin correla-
tions. The colour charge operatdrsfor a quark, gluon and antiquark in the final state are

quark: A" (...qi...) (T§) A (.-.qj...) ,
gluon:  4*(..¢%.) <if°ab> a <...gb...> ,

antiquark: A" (...Gi...) (=T{) A(...qj...) - 7)

* ~ - Tk Tij ~ ~
ﬁl,g?r)z (P1 o Biijysoos Pro ) Tz ”Vij,kﬂ,gg)z(pla---,p(ij),---,pk,---)-(G)
ij

Dij x

The corresponding colour charge operators for a quark,ngéunal antiquark in the initial state
are

quark:  A*(..qi...) (=T A(...q...),
gluon:  4*(..¢%.) (ifcab>ﬂl(...gb...>,
antiquark : A" (...qi...) (T$) 4 (...q;...) - (8)

In the amplitude an incoming quark is denoted as an outgaitigwark and vice versa.

The subtraction term can be integrated over the unresolaegparton phase space. Due
to this integration, all spin-correlations average out, dmlour correlations still remain. In a
compact notation, the result of this integration is oftertten as

doc+/d0A = 1®do®+K ®do®+P®da®. (9)
1

The notation® indicates that colour correlation still remain. The tdrendo® lives on the phase
space of then-parton configuration and has the appropriate singulatrtycgire to cancel the
infrared divergences coming from the one-loop amplitudeer&foreda” + 1 ® do® is infrared
finite.

The purpose of the paper is to set up a numerical program éocutomated computation of
the terms

/ (On-1do” -~ Ondo) (10)
n+1
and
/On(|®doB+K®doB+P®doB). (11)

n
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This requires the computation of the matrix elements With 3) partons with no spin- or colour-
correlations (implicit indo®) as well as the computation of matrix elements with- 2) partons
with spin- and colour-correlations. The subtraction teimeq. (10) involve spin and colour cor-
relations. The insertion operatdr,K andP induce colour correlations, but no spin correlations.
One is therefore naturally lead to the calculation of coloutered amplitudes in a helicity basis.
Basic techniques for such a task are reviewed in the nexestibas.

2.2 Doubleline notation

In QCD one deals with quarks and gluons. Both types of partany information on the colour
degrees of freedoms and the kinematical degrees of freed@uarks have a colour index
running from 1 toN and corresponding to the fundamental representati®@UgN). The kine-
matical information can be represented for massless qbgritéeyl spinorspa or pg, where the
indicesA or B run from 1 to 2. The corresponding information for gluonsnishie conventional
approach represented by a colour indexunning from 1 toN? — 1 and which corresponds to
the adjoint representation &J(N). The kinematical information is represented by a Lorentz
indexy, running from 0 to 3. It is useful, to treat quarks and gluonghe same footing. To this
aim, | follow the “double-line”-approach [62] and convergjlon index to two quark indices. |
do this for the colour degrees of freedom, as well as for therkiatical parts.

In detail, this is done as follows: In Feynman diagrams osértjuishes edges and vertices.
Edges are propagators as well as polarisation vectors worspior external particles. Vertices
are all interaction vertices. For vector-like couplinge @an write

1 : 1 1 e
VE* = V,gVE, =V, (éciengA) E, = (ﬁVUOXB) (ﬁ‘VBAE\}) , (12)

which allows us to replace a contraction opdsy two contractions ovek andB. One can apply
the same trick to the colour algebra:

VRER — VAgED — v (2TeTh) EP = (VZTve) (VaTPEY). (13)

Again, this equation allows us to replace a contraction aweadjoint indexa by two contractions
over indices andj in the fundamental representation. The Feynman rules f@ @Ghe double
line notation are listed in appendix A.

2.3 Colour decomposition
In this paper | use the normalisation

1 ab

- 14
53 (14)
for the colour matrices. Amplitudes in QCD may be decompas&al group-theoretical fac-

tors (carrying the colour structures) multiplied by kindindunctions called partial amplitudes

TrTaT? =
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[50-54]. These partial amplitudes do not contain any caloiarmation and are gauge-invariant
objects.

The colour decomposition is obtained by replacing the sirecconstant$2°¢ by
i1 — 2 |Tr (TATETE) T (TPTRTC) | (15)

which follows from [Ta,Tb] — | fabCTC, The resulting traces and strings of colour matrices can
be further simplified with the help of the Fierz identity :

1 1
ToTE = §<6”esjk—ﬁesij5k|>. (16)

In the pure gluonic case tree level amplitudes witxternal gluons may be written in the form

n—-2
an(1,2,...n) = (i) S Big,ioyBioy y---Diopioy An (OL, -, On) (17)
\/é 0€S/Zy

where the sum is over all non-cyclic permutations of the revetlegluon legs. The quantities
An(01,...,00), called the partial amplitudes, contain the kinematiciinfation. They are colour-
ordered, e.g. only diagrams with a particular cyclic ondgwof the gluon s contribute. The choice
of the basis for the colour structures is not unique, andraépeoposals for bases can be found
in the literature [55,56]. Here | use the “colour-flow decarapion” [56]. As a further example

| give the the colour decomposition for a tree amplitude \aitbair of quarks:

n
-qn+2(q7 17 27'“7n7® = (%) ;6iqj015ioljoz~~~5i0nqun+2(q701,027~~~70n,q>~ (18)

where the sum is over all permutations of the gluon legs. rasgg these amplitudes a colour
projector
1
&0 — Néqéji (19)
has to applied to each gluon.

While the colour structure of the examples quoted aboveleraimple, the colour decom-
position can be become rather involved for amplitudes wigmyrpairs of quarks. A systematic
algorithm for the colour decomposition and the diagramgrdaurting to a single colour structure
is given in sect. 3.

2.4 Spinor techniques

For the calculation of helicity amplitudes [45-49] one cbe® for the spinors corresponding
to external massless quarks two-component Weyl spinor& niatations for Weyl spinors are
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off-shell
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Figure 1: The recurrence relation for the gluon current. Krsbell current withn legs can be
computed recursively from off-shell currents with fewegde

commonly used in the literature. The relation between theket notation and the notation using
dotted and undotted indices is as follows:

[pH)=pe,  (P+|=Pa (20)
=) =p%  (p—[=p" (21)
Spinor products are denoted as follows:
(pd) = (p—la+) = p"da,  [apl = (q+|p—) = gap™ (22)
For the polarisation vectors of the external gluons one uses

+ A=lvulk=) (At IVulk+)
W= oty YT Valer gy )

wherek is the momentum of the gluon amds an arbitrary light-like reference momentum. In
the “double-line” notation this becomes

i A B 1 AB
a0 KoB,  "B(k.q) = kg T (24)

For spinors corresponding to massive quarks the formutam fef. [63] are used.

2Bk, q) =

2.5 Recurrencerelations

Recursive techniques [1,57] build partial amplitudes fomaller building blocks, usually called
colour-ordered off-shell currents. Off-shell currents abjects witm on-shell leg and one addi-
tional leg off-shell. Momentum conservation is satisfigghlould be noted that off-shell currents
are not gauge-invariant objects. Recurrence relatioaserelff-shell currents witi legs to off-
shell currents with fewer legs.



For the pure gluon curredﬁB, the recurrence relation reads
AB [ ~t +.
‘Jn (plv"'7pn’q17"'7qn):

n-1 . .
.zl‘J]CD (pita ey p?:, q17 7q]> 'JrI]E—F] (p}:_]_? ey pﬁ:, qj+17 ---7Qn)
=

xVperens (P pj+1,n)PGHAB( P1n)
n—2 n-1 - N c N N
+ Z Z ‘]] (p]_?'“?pj ,Q1,7QJ> Jk—j <pj+17“'7pk;qj+17“'7qk>
J=1k=]+1
Ik (Picys -+ P Okt 1, On) Vocrensa P (Pun) (25)

This relation is pictorially shown in fig. 1. In this formulthe gi's are the reference momenta
for the external gluong2°PAB(k) is the expression for the gluon propagator ¥gghare (K1, k2)
andVgapereng are the expressions for the three-gluon and four-gluoncesstrespectively. |
further used the notation

j
P = Zpl- (26)

The recursion starts with the current with one external Vegich is given by the polarisation
vector:

B (pHq) = B(p1, ) (27)

Similar recurrence relations can be written down for therkjuand antiquark currents, as
well as the gluon currents in full QCD. The guiding princijseto follow the off-shell leg into
the “blob”, representing the sum of all diagrams, and to sarthe r.h.s of the recurrence relation
over all vertices involving this off-shell leg and off-shelirrents with less external legs.

3 Themethod

In this section | describe in detail the method for the autimeshaomputation of Born matrix
elements in QCD The matrix elements may or may not involve aptd/or colour correlations.

3.1 Hédicity amplitudes and spin correlations

The program computes helicity amplitudes. For a given seitérnal momenta, each helicity
amplitude evaluates to a complex number. If no spin coielatare present, the matrix element
is simply given as the squared modulus of the amplitude sutrower all helicity configurations.
In the dipole formalism, spin correlations are related ®4ghlittingsg — ggandg — qg. In the
original formulation of Catani and Seymour they are writdesn
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where4, denotes the amplitude with the polarisation vector of thétengluon(ij) amputated.
Furthermore, the spin correlation tensor is of the form

vV = WY (29)
and the vectoy* satisfies
V-Bipy = 0. (30)

Within the helicity formalism the spin correlation is evatad as [64]

2
v, = )Eﬂl ( p(ﬁj),...) =y ( p(m,...)) : (31)
where4(...,p=..,...) denotes the helicity amplitude, where the emitter gluon“his respec-
(i)
tively “—" helicity. E is given by
V .
E — ggvu:w_ (32)
v2[pij]

In eq. (32)qis as usual an arbitrary null reference momentum.

3.2 Amplitudes with morethan one quark-antiquark pair

If more than one quark-antiquark pair is present, we haveito gver all quark permutations.
An amplitude withng quark-antiquark pairs can be written as

A (CTI,QL ~~~7CT27CI2, --quq,%q) =
Mg

Z (_1)0 <I_L6IT::Z(D> ';l <CE.7qO'(1)7“'7CT27q0'(2)7~~~7Can7q0'(nq)> . (33)
oeS(ng) I=

Here, (—1)° equals—1 whenever the permutation is odd and equelsif the permutation is

even. In4 each external quark-antiquark paédfj, gy(j)) is connected by a continuous fermion

line. The flavour factof)(%g;’m ensures that this combination is only taken into accoun;, &nd

do(j) have the same flavour.

3.3 Thecolour structure

The amplitudeﬁl is decomposed into colour factors and partial amplitudes:
a = oA (34)
|

Each partial amplitudé; has a fixed cyclic ordering of the external legs. For Born gsape
can take this ordering such that a quark follows immediatslgorresponding antiquark in the
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Figure 2: The cyclic order of a partial amplitude. Withousdmf generality we can assume that
quarks follow immediately antiquarks in the clockwise arde

clockwise orientation. This is shown in fig. 2. That is to ghagt gluon are emitted from a quark
line only to the right when following the fermion line arroW.a gluon would be emitted to the
left, we could draw an equivalent diagram by flipping thegitll current attached to this gluon
to the right of the fermion line.

All possible cyclic orderings are generated as follows: \&&uae that the amplitude hag
external gluons)q external quarks and therefore necessarily afsexternal antiquarks. We first
note, since a quark follows immediately its correspondingigaiark, we can treat an adjacent
(g,q)-pair as an external “pseudo-leg”, which is permutatedttugre The amplitude has there-
fore ng +ng pseudo-legs. Then all possible cyclic orderings are obthlyy summing over all
permutations of the pseudo-legs and factoring out the cydrmutations, e.g. each ordering
corresponds to an element of

S(ng+ng)/Z(ng+nNg). (35)

This is equivalent to fixing the first external pseudo-leg amchming over all permutation of the
remaining(ng +ng — 1) external pseudo-legs. Therefore there are

(ng+ng—1)! (36)

inequivalent cyclic orderings.

For the pure gluon amplituded = 0) each cyclic ordering corresponds to one colour factor
¢i. The situation is different if quarks are presemd ¢ 0). This is related to the fact that the
gluon propagator in aBU(N) gauge theory can be written as a propagator correspondiag to
U (N) gauge theory minus a part which subtracts out the additidiia) piece. The kinematic
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Figure 3: An example for the decomposition into colour aust

parts of theJ (n) and theU (1) pieces are the same:
PHOC(g = BAO0O000, BC  — ) (—e80eAC), (37)
However, they differ by their colour structure:

U(N): 'i

J
u(l): jl}**{

|
K = Oidj,

I 1

K = —N5ij5k|- (38)

Note that each propagation ot 1) gluon is accompanied by a factor 1) /N. It can be shown
that theU (1) gluon couples only to quark lines [56]. Therefore an ampgtwith ng quarks
can contain up tgnq — 1) gluons of typeU (1). EachU (1) gluon separates a Born amplitude
into colour-disconnected pieces. We define a colour clusten part of an amplitude, which
is connected to the rest of the amplitude only bylafl) gluon and which does not contain
by itself anyU (1) gluon. This concept is illustrated in fig. 3, which shows agdén with
three quark-antiquark pairs, obEN) gluon and on&J (1) gluon. This diagram has two colour
clusters, formed by the particldg,2,3,4) and (5,6), and separated by thé(1) gluon. For
an amplitude withng quark-antiquark pairs one can have from Intocolour clusters. From
the cluster decomposition the colour structure can be réfadasily. The example in fig. 3
contributes to the colour structure

1
(_N> (6i21'36i411) (6i6j5) (39)

In general, given a colour cluster assignment, the corredipg colour factor; is constructed
as follows: First of all, the colour factor factorizes int@eoduct of the contributions from the

individual colour clusters.
1 (Neluster—1) Neluster
CG = (_N) X JI:ll Gij- (40)
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ci,j is the colour factor corresponding to clusferFor a cluster consisting only of gluorg,; is
given by

01,02,-0n° G j = 8i1j,8ij5-+- 81 Oins- (41)

An antiquark-quark pair can be treated effectively as alsigéuon. For example the colour
factor associated to a colour cluster consisting of an gaatlquark pair andn— 2) gluons is
given by

01,002,093, --.0n:  Gi.j = Oiyj30izjs--- O 1jnOinjs- (42)

As a further example we quote the colour factor for a clusién two quark-antiquark pairs:

01, 02,93, -+, ks Ok 15+ On 0 Cij = BipjaDiajs-+-Oir_1jiOisniicror-Oin 1jnOinia- (43)

The pattern should be clear. The colour factor associatedinaividual colour cluster is just
a sequence of Kroneckéis, corresponding to the cyclic ordering of the legs belaggo this
colour cluster.

It remains to derive a method, how all possible colour chilsges can be generated. This
is a combinatorial problem. For a fixed cyclic ordering we cgmerate all possible colour
clusterings as follows: We first sum over the number of pdssiblour clusters. Letigyster b€
the number of colour clusters, whargyster ranges from 1 tmg. For a fixedngyster we then sum
over all partitions of ng + ng) iNto Nejyster piecesn?'”Ster, such that

Neluster

S nflSter = ng+4ng. (44)
=

For a partition we take into account the order, such thattan®le(1,1,2), (1,2,1) and(2,1,1)

are distinct partitions of 4nj?'”5tergives the number of external pseudo-legs belonging toerdust
j. Obviously, an adjacent antiquark-quark pair has to betorige same colour cluster, therefore
it is counted as one external pseudo-leg. Finally, we hagetoover all possible starting points

of the colour clusters with respect to the cyclic orderingerédwe observe that the members of
a colour cluster need not be adjacent in the cyclic ordemgexample for a colour assignment

in the cyclic ordering would be

(9,9),9,9,9,(0,9),9,9,9,9,9,9,(q,9),9,9. (45)
clusterl cluster? clusterl clustei3

In this example, cluster 2 is embedded in cluster 1. The suromaver the starting points has
to full-fill the following requirements:

(i) The external pseudo-leg 1 belongs to colour cluster 1.

(i) The colour cluster(j + 1) starts after colour clustgrfor all j > 2. (Colour cluster 1 may
start at the end of the cyclic ordering.)
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(iii) If the assignment of external pseudo-legs to colowstérj has been interrupted by the
starting of a new clustek ( with k > j ), the assignment to clustg¢rcannot be continued
until all members of clustét have been assigned.

Requirement (iii) ensures that we cannot have a sequeneelidster 1, cluster 2, cluster 1,
cluster 2. The assignment of the external pseudo-legs tacolusters is now done as follows:
Let

(m§tart, rngtal’t, s Eﬁjrstter) (46)
be an(ngjyster— 1)-tuple, such that
mlstart < mjstf{t (47)
and
j—1
1< mj$tart <2 J + Z nElus’[er (48)
k=1
Then
n_'j%tart — m]$tart+ ] -1 (49)

defines the starting point of clustgfor j = 2, ..., Ngjuster The starting point:aj$tart together with
the rules (i) and (iii) define uniquely the assignment of tkeemal pseudo-legs to the colour
clusters. Summing over alhgyster— 1)-tuples in eq. (46) subject to the constraints (47) and
(48) generates all possibilities withyster colour clusters, in which colour clust¢rhasn‘]?'USter
external pseudo-legs.

Since each colour cluster couples to the rest of the amplithcbugh &J (1)-gluon, it has
to contain at least one quark-antiquark pair. Therefordigorations, where a colour cluster
does not contain a quark-antiquark pair are vetoed, withrthi@l exception of the pure gluon
amplitude, which consists of one colour cluster and no laatiquark pairs.

With the colour cluster decomposition and a method for theegation of all cluster decom-

position at hand, | now turn back to the computation of the laoge squared. From eq. (33)
and eq. (34) itis clear that we can write any amplitude in trenf

a = YA, (50)

where thec;’s are the colour factors and th#g’s are the partial amplitudes which contain the
kinematical information. In squaring the amplitude we aita

a2 = A (ciPcJT)A]f. (51)
1]
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The colour projector is given as a product with one factorefach external particle:

Ng+2nq

P = P, 52
kD1 (52)

where the individual colour projectors for a quark, antidgend a gluon are:

1
Pq=90j, Pg= 5“_, Py = 5ﬁ5jj_— N5ﬁ5ji. (53)
The only non-trivial piece is given by the colour projector the external gluons, which is a
consequence of the double-line notation. Note that

Mij = <Ci PCD (54)

defines a matrix, which is independent of the four-momentthefparticles. Therefore this
matrix can be calculated at the initialisation phase of tfteg@mam. As each entry is given as a
contraction of Kronecked's, this can be done easily symbolically with the rules

3ijOjk = Ok, & =N. (55)

The program uses the C++ library “GiNaC” for this task. In epgix (C.1) | give a small
example program. The resulting expression is a functioN,cdnd after substitutinyl = 3 the
result can be converted to a double precision number. Natedin-time performance is not an
issue here, since this calculation occurs only at the ligiion phase of the program. To obtain
the amplitude squared, the mathk; is first calculated at the initialisation phase and stored in
memory. Then for each momentum configuration the vectorigdamplitudesh = (A1,A2,...)

is computed. The amplitude squared is then given by

14> = AMAT (56)

The inclusion of colour-correlations is rather straightfard. To include colour-correlation be-
tween particles andb, one replace®,; andR, in eq. (52) by the appropriate colour-correlation
operator. For example, the colour-correlation opera@tp!T g for a quark-antiquark pair reads

i1 iy
1 1
) = - <5Ej_26j2i1 — Néﬂiléjzrz) . (57)
J2 J2
A complete list of all relevant colour-correlation operatoan be found in the appendix (B). The
corresponding matriced;j depend now oa andb, but are still independent of the four-momenta

of the particles. Therefore they can be computed at thalis#ition phase of the program. For a
matrix element witm = ng +- 2nq external particles, there are

1
én(n -1) (58)

possibilities of choosing the colour-correlated partaasmdb. Therefore the initialisation phase
of the program computes and storga — 1) /2 different colour matriceb;;. For realistic values
of n, sayn < 9, the CPU time and memory requirements for this task areratiodest.

14



3.4 Thepartial amplitudes

It remains to discuss how the partial amplitudgs entering eq. (50) and eq. (51) are com-
puted. This is done with the help of off-shell currents ardireence relations. Compared to the
introductory discussion of the pure gluonic off-shell @ntrin section 2.5 there are additional
complications: First of all, a rather trivial extension ig&n by the fact, that in full QCD we have
to allow for the possibility of multiple quark-antiquarkipa Secondly, and more important is
the fact that the recurrence relations have to respect twngaosition of a partial amplitude into
colour clusters. The algorithm is summarised as follows:

(i) We consider coupled recurrence relations for the o#fishurrents corresponding to an
U (N)-gluon, anU(1)-gluon, quarks and antiquarks. Note that théN)-gluon and the
U (1)-gluon are treated separately, as the latter couples onjyddks. It is also convenient
to distinguish the off-shell currents for the quarks andouarks, depending on whether
the quarks are massive or massless. In the latter case Isgmgti@nd faster) routines can
be used, since only helicity conserving interactions enter

(i) All recurrence relation express an off-shell currefitype A as a sum over off-shell currents
with fewer legs, which are combined through the basic thoeésur-valent vertices of the
theory. The recurrence relations takes into account aBiptesinteraction vertices, which
containA. Note that the off-shell currents, which enter the r.h.ghefrecurrence relation
need not be of typA. For the example, the recurrence relation folJdiN)-gluon involves
the quark-antiquark-gluon vertex and therefore the offisturrents for a quark and an
antiquark. In general, the recurrence relations yield gplalisystem of equations.

(iii) The off-shell parton for the quark-current, the antagk-current and th& (N)-gluon-
current belongs to a specific colour clusterThe recurrence relation splits the off-shell
current withn external legs into off-shell currents with less externgsleThis splitting has
to respect the following selection rules:

- For theU (N)-current, the off-shell current attached through the thesel four-gluon
vertex have to contain at least one parton belonging to calastera. In the off-shell
guark- and antiquark-current, which are attached throbghgtuon-quark-antiquark
vertex to theU (N)-gluon current, the off-shell quark- and antiquark-linesé to
belong to colour clustea.

- For the off-shell quark current, the sub-current attactiedugh anJ (N)-gluon must
contain at least one parton belonging to colour cluatédn the other hand, the sub-
current attached through &h(1)-gluon may not contain any parton of colour cluster
a. Similar considerations apply to the antiquark current.

- Finally, the off-shellJ (1)-current is rather simple and the recurrence relation iresl
an quark- and an antiquark-current, whose off-shell leges®arily belong to the
same colour cluster.

(iv) As a further selection rule we have to veto configuratiotnere the off-shell current is
divided into sub-currents between lggand (j + 1), in the case where these two legs
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belong to the same colour cluster which is different from the colour cluster of the
off-shell leg. That is to say, that the recurrence relatidrere the off-shell leg belong to
clustera, cannot split legs which belong to a different colour cluste

3.5 Thepuregluon amplitude

In principle, the pure gluon amplitude can be treated wighrttethods discussed above. However
the pure gluon amplitude is a rather special case, whictsleachany additional simplifications.
Since it is known that pure gluonic processes will contesignificantly to the cross section at
the LHC, it is desirable to treat these processes sepanaitiyoptimised routines, taking into
account the additional simplifications. The simplificasare:

- There is only one colour cluster and the colour decompwsisi simply given by théng — 1)!
inequivalent cyclic orderings, as in eq.(17).

- U(1)-gluons can be ignored and the recurrence relation for theapamplitudes is given by
eg. (25).

- In calculating the colour matrild;j, the colour projectorBy in eq. (53) may be replaced by

Po — 0o (59)

3.6 QCD amplitudes with one electro-weak boson

The methods discussed above require only minor modificettmimclude amplitudes with QCD
partons and one electro-weak boson. As these are relevaidtron-positron annihilation,
electron-proton collisions aZ-production at the LHC / Tevatron, these amplitudes have bee
implemented as well. The amplitudes are computed by consgla recurrence relation, which
couples the electro-weak current to an off-shell quarkentrand an off-shell antiquark current.

4 Numerical implementation

The algorithms discussed above have been implemented ocdmputer program. This numer-

ical program can compute Born matrix elements in QCD witimspnd colour-correlations. To

test the program | have first considered the case, where @piheolour correlations are absent.
In this case one can compare the results with the ones froprdgegam Madgraph. | quote here
the results of this comparison for processes with up to sextarnal particles. The labelling of

the momenta is

p1P2 — P3, P4; -, Pn- (60)

p1 andp, are the incoming momentag to p, are the outgoing momenta. For2 2 processes
| took the following set of momenta (in units of GeV):

p. = (450,0.0,0.0,—450),
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P2 = (45.0,0.0,0.0,45.0),
ps = (45.0,—20.8997 —29.6778265976),
ps = (450,20.8997,29.6778 —26.5976). (61)
The same initial state momenfa and p, are used for all other processes. The final state
momenta for the 2» 3 processes were chosen as
p3 = (41.8145-9.20663—26.750330.7914),
ps = (17.382912.8067,10.7712 —4.70487),
ps = (30.8026 —3.6001,159791 —26.0865). (62)

For 2— 4 processes | used

ps = (299152181846 —8.6925422.1061),
ps = (9.827194.075298.79524 —1.61538,
ps = (22171-9.2641714.187,—14.2988),

ps = (280866233735—14.2898 —6.19197. (63)

Finally, for 2— 5 processes | used

ps = (20.165—13.03920.029829215.3819),

ps = (9.608112.41149.15728—1.6264),

ps = (205589 —7.64505154771—11166),

ps = (18.087,17.056 —3.25968 —5.06046),

p; = (215811.21688—21.40452.47093. (64)

The strong coupling constant was taken tage- 0.118. For this comparison, all quark masses
have been set to zero. The flavour labels serve only to digghgdentical quarks from non-
identical quarks. Table 1 shows the comparison of our pragwith Madgraph for the computa-
tion of the matrix elements corresponding to the indicatet@sses. The results do not contain
any averaging over the colour degrees of freedom for thialtstate particles, nor do they con-
tain symmetry factors for the final-state particles. As carséen from the table, the agreement
is satisfactory.

To check spin- and colour-correlations | have comparedrtbgram with existing NLO codes
for ete~ — 4 jets [64] andpp — ttg [65].

Table 2 gives an indication for the CPU time needed to evalnattrix elements of increasing
complexity. It gives the CPU time needed for the computatibthe matrix elements, summed
over all colours and spins, corresponding to the followiaggs: The amplitud@(gs, ..., gn) with
n gluons, the amplitudel(q,q,gs, -..,gn) With ang, g-pair and(n— 2) gluons and the amplitude
4(9,9,9,9,0s,...,dn) With two distinctq, g-pairs and n — 4) gluons.

5 Conclusionsand outlook

In this paper | discussed an algorithm for the automated coatipn of spin- and colour-correlated
Born matrix elements in QCD. These matrix elements are reiateNLO calculations in com-
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Process this work Madgraph
99— g9 56203.4 56203.2
gd — dg 8436.64 8436.62
ud — du’ 1374.01 1374.01
dd — dd 1287.74 1287.74
g9 — 999 21269.2 21269.3

gd — dgg 3222.01 3222.02
ud — dug 56.459 56.4591
dd — ddg 53.2424 53.2425
g9 — 9999 1354.24 1354.22
gd — dggg 138.691 138.689
ud — dugg 0.975563 0.975546
dd — ddgg 0.902231 0.902215
ud — duss 0.0116469 0.0116467
ud — duuu 0.0524928  0.0524927
dd — dddd 0.0583822 0.0583821
ud — dusgs | 0.000453678 0.000453671
ud — duugu | 0.00202449 0.00202446

Table 1: Comparison of our program with Madgraph for variouatrix elements with up to

seven external particles.

n 4 5 6 7 8
time for [4(gy, ..., gn)|* 0.0006 0.009 0.18 4 127
time for [4(q,9,93,...,0n)|? 0.0004 0.003 0.05 0.6 14
time for |4(q,9,9,9,9s,...,0n)|? | 0.0002 0.002 0.02 04 B

Table 2: CPU time in seconds for the computation of some mateéments summed over all
helicities and colours on a standard PC (Pentium IV with 2 IsHhe examples consists of the
n gluon amplitudes, the amplitudes with g/g-pair and(n— 2) gluons and the amplitudes with
two distinctq, g-pairs andn— 4) gluons.
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bination with the subtraction method. | implemented theoatgm into a computer program.
The program handles QCD amplitudes with massless and/a@iveaguarks. In addition, | have
implemented the extension to QCD amplitudes with one aultilielectro-weak boson.

The methods presented here are part of a larger project doautomated computation of
observables at next-to-leading order for LHC physics. Emeaining missing piece is the auto-
mated computation of the interference term of the one-loopléude with the Born amplitude.
In a previous publication, we already reported on the autechaomputation of the one-loop
integrals entering the one-loop amplitude [31]. Work ondbeomated computation of the inter-
ference term is in progress.
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A Feynmanrules

In this appendix | summarise the colour-ordered Feynmagsrulextract from each formula the
coupling constant and split the remainder into a colour gadta kinematical part.

A.1 Propagators, polarisation vectorsand polarisation sums
Gluon propagator

In Feynman gauge, the gluon propagator is giverigV5*/k?. Contraction of the kinematical
part—igh /k? with (1/2)a*2AgVPC yields:

PEAC() — BA00000, BC  — 7 (—gPPehC) (65)
The colour factod® is contracted within the double-line notation witfeT,2/2T,5:

1
VT2 8 V2Th = it Oj — iy 01 O (66)

The colour structure is splitinto two pieces. The first pi&gé; corresponds to the propagation
of aU(N) gluon, whereas the second pie€g;jdy /N subtracts out the additional(1) gluon.
Schematically we have

I
i« = &,
i I 1
j}ff{k = —Nﬁijﬁm. (67)

Note that each propagation ofbg1) gluon is accompanied by a factor1)/N.

19



Quark propagator

The kinematical piece of the quark propagator reads:

68
T (68)
The colour factor is simply
] _ 5 (69)
Gluon polarisation vectorsand colour projector
The gluon polarisation vectors are given by
AB 1 AB AB 1 AsB
8+ (k,Q):—k ) & (k,Q):—q K= (70)

(ak) [kq

kis the momentum of the gluon aids an arbitrary light-like reference momentum. The depen-
dence org drops out in gauge-invariant quantities.

Colour factor: In the conventional approach we sum for theasgd matrix element for each
gluon over all eight colour degrees of freedom. In the dodibke notation a 1‘actor\ﬁ'l'i‘]le is
moved at each end into the colour projector. Therefore, dh@uc projector reads

1
VT2 V2TE = i Bj — ;i O (71)

A.2 Vertices
Quark-gluon vertex
The kinematical part of the quark-gluon vertex is given by

CcD CcD

H&, = —iV2ecagpg, L_EHB :—i\fzacBeSDA. (72)
B

A

The colour factor is given by

1
i | = 55” Oj- (73)

Here | neglected terms proportionaldg@, which vanish when contracted into the gluon propa-
gator.
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Three gluon vertex

The kinematical part of the three-gluon vertex is given by

Tkl,AB

i
= 7 [ece€pE (k3 —K2) ag +EEAEER (K1 — K3)cp +EacEpp (k2 —K1)gg] -
A
koo (74)

The colour factor reads:

-
ks,EF'

1)1
1
/\ = 726i1126i2136i311' (75)

j3is j2i2
Four gluon vertex
The kinematical part of the four-gluon vertex is given by
GH AB
= 2i[2epE€arEcaEpy — EACERDEEGEE — EAGERr ECEERE] - (76)
EF CD
The colour factor reads:
i4]a i1]1 1
= §6i1126i2136i31'45i41'1' (77)

jaiz J2i2

B Colour correlations

In this appendix | list all colour-correlation operatdrg- T between two partons in the double
line notation.

A (2, ) (Ta-To) A(y b, ). (78)

Their action between amplitudes is defined in eq. (7) and&q.As we write all amplitudes in
the colour-flow decomposition, we would like to know the antof these operators in this basis.
In the following | denote the colour indices of the amplitu@déwith barred indices, the colour
indices of the amplitudgl with un-barred indices.
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Quark-quark (Tq-Tq)

11 i1
:E ) <6EI26EI1
i2 i2

Quark-antiquark (Tq-Tg)

i1 i1
:E B (6E12612I
J2 2

Antiquark-antiquark (Tg-Tg)

i1 i1
:E = <611126121_1
j2 j2

Quark-gluon (Tq-Tg)

o (5@255' Oj,, —
i2, j2 i27 j2
Antiquark-gluon (Tg-Tg)

i1 1

(666

o j1j2"j2j1 %22
i2,j2 |27JZ

Gluon-gluon (Tg4-Tg)

il,j]_ i17j1

1, _
L = 2(6I1l16|2l26111261211
i27j2 i2’j2 6 6 6

j1j1-i2i2i1]2

22

5El 65!2)

6&'16121_2)

1
Najlj_laij_Z)

& 612' 6@'2)

i1j2

6]1'26 i9; )

i2j17)2])2

6|1| 61212611'26|21'_1

~8iyi +0i, 81,757, 8,

j1i17]2j2 102 201 )

(79)

(80)

(81)

(82)

(83)

(84)



C Detailson theimplementation

In this appendix | provide some details on the implementatibthe algorithm into a C++ pro-
gram. | will discuss in a small example how the colour algabrperformed. | will also give
some hints on the implementation of loops over multi-indiltee permutation, partitions, etc..

C.1 Colour algebra

Below | show a small program, which defines the colour stmgstu
C1 =80 CF = BiyiOiyiy, (85)
and contracts them:
C11 = cch. (86)
The result is obviouslg1 = N2, which equals 9 foN = 3.

#include <iostream>
#include ‘‘ginac/ginac.h’’

int main()

{

using namespace GiNaC;

// number of colours
int Nc = 3;

// define colour indices
ex 11 = idx( symbol ("il"), Nc );

ex i2 = idx( symbol ("i2"), Nc );
ex jl = idx( symbol ("j1"), Nc );
ex j2 = idx( symbol ("j2"), Nc );

// define colour structures
ex cl = delta_tensor(il, j2)*delta_tensor(i2, jl);
ex cl_conj = delta_tensor(j2,il)*delta_tensor(jl,i2);

// square it and contract indices
ex cll = cl_conj * cl;

cll = cll.simplify_indexed();

// convert the result to a ‘‘double’’ variable
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double c_double = real (ex_to<numeric>( cll )).to_double();

std::cout << ‘‘result = ‘' << c_double << std::endl;

return 0;

}

C.2 Summing over multi-indices

The algorithms involves the summation over multi-indio&sather simple example for a multi-
index would be &-tuple(ip,i1,...,ik_1) Where each entry can take values from Qite 1. Other
examples are the sum over permutation& efements as in eq. (35) or the multi-index in eq.
(46). To make the code readable it is desirable to write tbp bs

{
int N
int k

1;
3;

multi_index i_multi(N,k);

for( i_multi.init(); !i_multi.overflow(); i_multi++)

{

// can use i_multi[0], i_multi[l], etc. here

}
}

and to hide the details on how the multi-index is increase¢d aseparate class. A possible
header file for the classulti_index could look as follows:

class multi_index {

public :
multi_index(size_t N, size_t k);

// functions

multi_index & init (void); // initialization
bool overflow(void) const; // returns overflow flag
multi_index & operator++ (int); // postfix increment

size_t operator[] (size_t i) const; // subscripting

// member variables :
protected :
size_t N;

std::vector<size_t> v;

24



bool flag_overflow;
i

This class contains a methadit to initialise the multi-index to the first value, an operater
which increases the multi-index to the next value and metived £ 1ow, which returns true if all
values have been run through.
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