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Abstract

I report on an implementation of an algorithm for the automated numerical calculation of
spin- and colour-correlated Born matrix elements in QCD. These spin- and colour-correlated
matrix elements are needed for NLO calculations in combination with the subtraction method.
Both massless and massive quarks are considered. There are no restrictions on the number of
external particles. As a trivial sub-case, the algorithm also applies to Born matrix elements
without any correlations. These are sufficient for leading order calculations.
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1 Introduction

QCD processes will constitute the bulk of events at the LHC. These processes provide informa-
tion on the strong interaction and form quite often important background for searches of new
physics. An accurate description of jet physics is therefore mandatory. Although jet observables
can rather easily be modelled at leading order (LO) in perturbation theory [1–11], this description
suffers several drawbacks. A leading order calculation depends strongly on the renormalization
scale and can therefore give only an order-of-magnitude-estimate on absolute rates. Secondly, at
leading order a jet is modelled by a single parton. This is a very crude approximation and over-
simplifies inter- and intra-jet correlations. The situation is improved by including higher-order
corrections in perturbation theory.

At present, there are many next-to-leading order (NLO) calculation for 2→ 2 processes at
hadron colliders, but only a few for 2→ 3 processes. Fully differential numerical programs
exist for example forpp→ 3 jets [12–14],pp→ V +2 jets [15],pp→ tt̄H [16, 17] andpp→
H +2 jets [18,19].

It is desirable to have NLO calculations for 2→ n processes in hadron-hadron collisions
with n in the range ofn = 3,4, ...,6,7. QCD processes likepp → n jets form often impor-
tant backgrounds for the searches of signals of new physics.However, the complexity of the
calculation increases with the number of final state particles. To overcome the computational
limitation, there have been in the past years several proposals for the automated computation
of next-to-leading order observables [20–34]. These publications focussed mainly on the auto-
mated computation of loop integrals. Equally important is the computation of the real emission
contribution. It is well known that in general an NLO observable will receive contributions from
the virtual corrections and the real emission part. Taken separately, each of the two contribu-
tions is divergent due to the presence of infrared singularities. Only the sum of the two is finite.
There are several general method available to handle this problem, like the phase-space slicing
method [35–37] or the subtraction method [38–43]. In this paper I will focus on the dipole sub-
traction method [39–43]. The dipole subtraction method requires the calculation of spin- and
colour-correlated Born matrix elements. In this paper I describe a method for the automated
calculation of these quantities. While the kinematical part of the matrix elements is calculated
numerically, colour-correlation matrices are calculatedsymbolically at the initialisation phase of
the program. The C++ library “GiNaC” [44] allows to mix numerical and symbolical code in a
single program. The program uses standard techniques like spinor methods [45–49] and colour
decomposition [50–56]. The program computes helicity amplitudes, which are decomposed into
colour factors and partial amplitudes. The partial amplitudes are computed with the help of
Berends-Giele type recurrence relations [1, 57]. It shouldbe noted that recently interesting new
methods emerged for the computation of partial amplitudes [58–61].

This paper is organised as follows: In the following sectionI present the general setup for the
dipole subtraction method and review a few basic tools for the calculation of QCD amplitudes.
Sect. 3 describes the algorithm for the calculation of colour-correlated Born matrix elements.
The numerical implementation is discussed in sect. 4. Finally, sect. 5 contains the conclusions
and an outlook. In an appendix I summarise the colour-ordered Feynman rules and the colour-
correlation operators. Furthermore, I give some technicaldetails on the implementation into a
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C++ program.

2 General setup and basic tools

2.1 The dipole formalism

The starting point for the calculation of an infrared safe observableO in hadron-hadron collisions
is the following formula:

〈O〉 =

∫

dx1 f (x1)

∫

dx2 f (x2)
1

2K(ŝ)
1

(2J1+1)
1

(2J2+1)
1

n1n2
(1)

∫

dφn(p1, p2; p3, ..., pn+2)O(p1, ..., pn+2) |An+2|2 . (2)

This equation gives the contribution from then-parton final state. The two incoming particles are
labelledp1 and p2, while p3 to pn+2 denote the final state particles.f (x) gives the probability
of finding a partona with momentum fractionx inside the parent hadronh. A sum over all
possible partonsa is understood implicitly. 2K(s) is the flux factor, 1/(2J1+1) and 1/(2J2+1)
correspond to an averaging over the initial helicities andn1 andn2 are the number of colour
degrees of the initial state particles.dφn is the phase space measure forn final state particles,
including (if appropriate) the identical particle factors. The matrix element|An+2|2 is calculated
perturbatively.

At NLO one has the following contributions:

〈O〉NLO =

∫

n+1

On+1dσR+

∫

n

OndσV +

∫

n

OndσC. (3)

Here I used a rather condensed notation.dσR denotes the real emission contribution, whose ma-
trix element is given by the square of the Born amplitudes with (n+3) partons|A(0)

n+3|2. dσV gives
the virtual contribution, whose matrix element is given by the interference term of the one-loop

amplitudeA
(1)
n+2 with (n+2) partons with the corresponding Born amplitudeA

(0)
n+2. dσC denotes

a collinear subtraction term, which subtracts the initial-state collinear singularities. Taken sepa-
rately, the individual contributions are divergent and only their sum is finite. In order to render
the individual contributions finite, such that the phase space integrations can be performed by
Monte Carlo methods, one adds and subtracts a suitable chosen piece [39–43]:

〈O〉NLO =

∫

n+1

(

On+1dσR−OndσA
)

+

∫

n



OndσV +OndσC+On

∫

1

dσA



 . (4)

The matrix element corresponding to the approximation termdσA is given as a sum over dipoles:

∑
pairs i, j

∑
k6=i, j

Di j ,k. (5)
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Each dipole contribution has the following form:

Di j ,k = − 1
2pi · p j

A
(0) ∗
n+2

(
p1, ..., p̃(i j ), ..., p̃k, ...

)Tk ·Ti j

T2
i j

Vi j ,kA
(0)
n+2

(
p1, ..., p̃(i j ), ..., p̃k, ...

)
.(6)

Here Ti denotes the colour charge operator [39] for partoni andVi j ,k is a matrix in the spin
space of the emitter parton(i j ). Explicit formulae for the expressionsVi j ,k can be found in the
literature [39–43] and are not repeated here. In the numerical program both the dipole terms for
massless and massive partons are implemented.

In general, the operatorsTi lead to colour correlations, while theVi j ,k’s lead to spin correla-
tions. The colour charge operatorsTi for a quark, gluon and antiquark in the final state are

quark : A
∗ (...qi...)

(
Ta

i j

)
A
(
...q j ...

)
,

gluon : A
∗ (...gc...)

(

i f cab
)

A

(

...gb...
)

,

antiquark : A
∗ (...q̄i...)

(
−Ta

ji

)
A
(
...q̄ j ...

)
. (7)

The corresponding colour charge operators for a quark, gluon and antiquark in the initial state
are

quark : A
∗ (...q̄i...)

(
−Ta

ji

)
A
(
...q̄ j ...

)
,

gluon : A
∗ (...gc...)

(

i f cab
)

A

(

...gb...
)

,

antiquark : A
∗ (...qi...)

(
Ta

i j

)
A
(
...q j ...

)
. (8)

In the amplitude an incoming quark is denoted as an outgoing antiquark and vice versa.
The subtraction term can be integrated over the unresolved one-parton phase space. Due

to this integration, all spin-correlations average out, but colour correlations still remain. In a
compact notation, the result of this integration is often written as

dσC+
∫

1

dσA = I⊗dσB+K⊗dσB+P⊗dσB. (9)

The notation⊗ indicates that colour correlation still remain. The termI⊗dσB lives on the phase
space of then-parton configuration and has the appropriate singularity structure to cancel the
infrared divergences coming from the one-loop amplitude. ThereforedσV + I⊗dσB is infrared
finite.

The purpose of the paper is to set up a numerical program for the automated computation of
the terms

∫

n+1

(

On+1dσR−OndσA
)

(10)

and
∫

n

On
(
I⊗dσB+K⊗dσB+P⊗dσB) . (11)
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This requires the computation of the matrix elements with(n+3) partons with no spin- or colour-
correlations (implicit indσR) as well as the computation of matrix elements with(n+2) partons
with spin- and colour-correlations. The subtraction termsin eq. (10) involve spin and colour cor-
relations. The insertion operatorsI, K andP induce colour correlations, but no spin correlations.
One is therefore naturally lead to the calculation of colour-ordered amplitudes in a helicity basis.
Basic techniques for such a task are reviewed in the next subsections.

2.2 Double line notation

In QCD one deals with quarks and gluons. Both types of partonscarry information on the colour
degrees of freedoms and the kinematical degrees of freedom.Quarks have a colour indexi,
running from 1 toN and corresponding to the fundamental representation ofSU(N). The kine-
matical information can be represented for massless quarksby Weyl spinorspA or pḂ, where the
indicesA or Ḃ run from 1 to 2. The corresponding information for gluons is in the conventional
approach represented by a colour indexa, running from 1 toN2−1 and which corresponds to
the adjoint representation ofSU(N). The kinematical information is represented by a Lorentz
indexµ, running from 0 to 3. It is useful, to treat quarks and gluons on the same footing. To this
aim, I follow the “double-line”-approach [62] and convert agluon index to two quark indices. I
do this for the colour degrees of freedom, as well as for the kinematical parts.

In detail, this is done as follows: In Feynman diagrams one distinguishes edges and vertices.
Edges are propagators as well as polarisation vectors or spinors for external particles. Vertices
are all interaction vertices. For vector-like couplings one can write

VµEµ = VµgµνEν =Vµ

(
1
2

σµ
AḂ

σ̄νḂA
)

Eν =

(
1√
2
Vµσµ

AḂ

)(
1√
2

σ̄νḂAEν

)

, (12)

which allows us to replace a contraction overµ by two contractions overA andḂ. One can apply
the same trick to the colour algebra:

VaEa = VaδabEb =Va
(

2Ta
i j T

b
ji

)

Eb =
(√

2Ta
i jV

a
)(√

2Tb
ji E

b
)

. (13)

Again, this equation allows us to replace a contraction overan adjoint indexa by two contractions
over indicesi and j in the fundamental representation. The Feynman rules for QCD in the double
line notation are listed in appendix A.

2.3 Colour decomposition

In this paper I use the normalisation

Tr TaTb =
1
2

δab (14)

for the colour matrices. Amplitudes in QCD may be decomposedinto group-theoretical fac-
tors (carrying the colour structures) multiplied by kinematic functions called partial amplitudes
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[50–54]. These partial amplitudes do not contain any colourinformation and are gauge-invariant
objects.

The colour decomposition is obtained by replacing the structure constantsf abc by

i f abc = 2
[

Tr
(

TaTbTc
)

−Tr
(

TbTaTc
)]

(15)

which follows from
[
Ta,Tb

]
= i f abcTc. The resulting traces and strings of colour matrices can

be further simplified with the help of the Fierz identity :

Ta
i j T

a
kl =

1
2

(

δil δ jk −
1
N

δi j δkl

)

. (16)

In the pure gluonic case tree level amplitudes withn external gluons may be written in the form

An(1,2, ...,n) =

(
g√
2

)n−2

∑
σ∈Sn/Zn

δiσ1 jσ2
δiσ2 jσ3

...δiσn jσ1
An(σ1, ...,σn) , (17)

where the sum is over all non-cyclic permutations of the external gluon legs. The quantities
An(σ1, ...,σn), called the partial amplitudes, contain the kinematic information. They are colour-
ordered, e.g. only diagrams with a particular cyclic ordering of the gluon s contribute. The choice
of the basis for the colour structures is not unique, and several proposals for bases can be found
in the literature [55,56]. Here I use the “colour-flow decomposition” [56]. As a further example
I give the the colour decomposition for a tree amplitude witha pair of quarks:

An+2(q,1,2, ...,n, q̄) =

(
g√
2

)n

∑
Sn

δiq jσ1
δiσ1 jσ2

...δiσn jq̄An+2(q,σ1,σ2, ...,σn, q̄). (18)

where the sum is over all permutations of the gluon legs. In squaring these amplitudes a colour
projector

δīi δ j j̄ −
1
N

δī j̄δ ji (19)

has to applied to each gluon.
While the colour structure of the examples quoted above is rather simple, the colour decom-

position can be become rather involved for amplitudes with many pairs of quarks. A systematic
algorithm for the colour decomposition and the diagrams contributing to a single colour structure
is given in sect. 3.

2.4 Spinor techniques

For the calculation of helicity amplitudes [45–49] one chooses for the spinors corresponding
to external massless quarks two-component Weyl spinors. Two notations for Weyl spinors are
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...

1n

off-shell

=
n−1

∑
j=1

1jj +1n

+
n−2

∑
j=1

n−1

∑
k= j+1

1j
j +1k

k+1n

Figure 1: The recurrence relation for the gluon current. An off-shell current withn legs can be
computed recursively from off-shell currents with fewer legs.

commonly used in the literature. The relation between the bra-ket notation and the notation using
dotted and undotted indices is as follows:

|p+〉= pB, 〈p+ |= pȦ, (20)

|p−〉= pḂ, 〈p−|= pA. (21)

Spinor products are denoted as follows:

〈pq〉= 〈p−|q+〉= pAqA, [qp] = 〈q+ |p−〉= qȦpȦ. (22)

For the polarisation vectors of the external gluons one uses

ε+µ (k,q) =
〈q−|γµ|k−〉√

2〈q−|k+〉
, ε−µ (k,q) =

〈q+ |γµ|k+〉√
2〈k+ |q−〉

, (23)

wherek is the momentum of the gluon andq is an arbitrary light-like reference momentum. In
the “double-line” notation this becomes

εȦB
+ (k,q) =

1
〈qk〉 kȦqB, εȦB

− (k,q) =
1

[kq]
qȦkB. (24)

For spinors corresponding to massive quarks the formulae from ref. [63] are used.

2.5 Recurrence relations

Recursive techniques [1,57] build partial amplitudes fromsmaller building blocks, usually called
colour-ordered off-shell currents. Off-shell currents are objects withn on-shell leg and one addi-
tional leg off-shell. Momentum conservation is satisfied. It should be noted that off-shell currents
are not gauge-invariant objects. Recurrence relations relate off-shell currents withn legs to off-
shell currents with fewer legs.
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For the pure gluon currentJȦB
n , the recurrence relation reads

JȦB
n

(
p±1 , ..., p

±
n ;q1, ...,qn

)
=

n−1

∑
j=1

JĊD
j

(

p±1 , ..., p
±
j ;q1, ...,q j

)

JĖF
n− j

(

p±j+1, ..., p
±
n ;q j+1, ...,qn

)

×VDĊFĖHĠ(p1, j , p j+1,n)P
ĠHȦB(p1,n)

+
n−2

∑
j=1

n−1

∑
k= j+1

JĊD
j

(

p±1 , ..., p
±
j ;q1, ...,q j

)

JĖF
k− j

(

p±j+1, ..., p
±
k ;q j+1, ...,qk

)

×JĠH
n−k

(
p±k+1, ..., p

±
n ;qk+1, ...,qn

)
VDĊFĖHĠJİ P

İJȦB(p1,n) (25)

This relation is pictorially shown in fig. 1. In this formula,theqi ’s are the reference momenta
for the external gluons,PĊDȦB(k) is the expression for the gluon propagator andVBȦDĊFĖ(k1,k2)
andVBȦDĊFĖHĠ are the expressions for the three-gluon and four-gluon vertices, respectively. I
further used the notation

pi, j =
j

∑
l=i

pl . (26)

The recursion starts with the current with one external leg,which is given by the polarisation
vector:

JȦB
1

(
p±1 ;q1

)
= εȦB

± (p1,q1) (27)

Similar recurrence relations can be written down for the quark- and antiquark currents, as
well as the gluon currents in full QCD. The guiding principleis to follow the off-shell leg into
the “blob”, representing the sum of all diagrams, and to sum on the r.h.s of the recurrence relation
over all vertices involving this off-shell leg and off-shell currents with less external legs.

3 The method

In this section I describe in detail the method for the automated computation of Born matrix
elements in QCD The matrix elements may or may not involve spin and/or colour correlations.

3.1 Helicity amplitudes and spin correlations

The program computes helicity amplitudes. For a given set ofexternal momenta, each helicity
amplitude evaluates to a complex number. If no spin correlations are present, the matrix element
is simply given as the squared modulus of the amplitude summed over all helicity configurations.
In the dipole formalism, spin correlations are related to the splittingsg→ gg andg→ qq̄. In the
original formulation of Catani and Seymour they are writtenas

A
∗
µ

(
..., p(i j ), ...

)
Sµν

Aν
(
..., p(i j ), ...

)
, (28)
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whereAµ denotes the amplitude with the polarisation vector of the emitter gluon(i j ) amputated.
Furthermore, the spin correlation tensor is of the form

Sµν = vµvν (29)

and the vectorvµ satisfies

v· p(i j ) = 0. (30)

Within the helicity formalism the spin correlation is evaluated as [64]

A
∗
µSµν

Aν =
∣
∣
∣EA

(

..., p+(i j ), ...
)

+E∗
A

(

..., p−(i j ), ...
)∣
∣
∣

2
, (31)

whereA(..., p±(i j ), ...) denotes the helicity amplitude, where the emitter gluon has“+”, respec-
tively “−” helicity. E is given by

E = εµ
−vµ =

〈q+ |v|p(i j )+〉
√

2
[
p(i j )q

] . (32)

In eq. (32)q is as usual an arbitrary null reference momentum.

3.2 Amplitudes with more than one quark-antiquark pair

If more than one quark-antiquark pair is present, we have to sum over all quark permutations.
An amplitude withnq quark-antiquark pairs can be written as

A
(
q̄1,q1, ..., q̄2,q2, ..., q̄nq,qnq

)
=

∑
σ∈S(nq)

(−1)σ

(
nq

∏
j=1

δ f lav
q̄ jqσ( j)

)

Â

(

q̄1,qσ(1), ..., q̄2,qσ(2), ..., q̄nq,qσ(nq)

)

. (33)

Here, (−1)σ equals−1 whenever the permutation is odd and equals+1 if the permutation is
even. InÂ each external quark-antiquark pair(q̄ j ,qσ( j)) is connected by a continuous fermion

line. The flavour factorδ f lav
q̄ jqσ( j)

ensures that this combination is only taken into account, ifq̄ j and
qσ( j) have the same flavour.

3.3 The colour structure

The amplitudeÂ is decomposed into colour factors and partial amplitudes:

Â = ∑
i

ciAi (34)

Each partial amplitudeAi has a fixed cyclic ordering of the external legs. For Born graphs we
can take this ordering such that a quark follows immediatelyits corresponding antiquark in the
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...

...

...

1

2

3

kk+1
k+2

k+3

l

l +1
l +2 l +3

n

Figure 2: The cyclic order of a partial amplitude. Without loss of generality we can assume that
quarks follow immediately antiquarks in the clockwise order.

clockwise orientation. This is shown in fig. 2. That is to say,that gluon are emitted from a quark
line only to the right when following the fermion line arrow.If a gluon would be emitted to the
left, we could draw an equivalent diagram by flipping the off-shell current attached to this gluon
to the right of the fermion line.

All possible cyclic orderings are generated as follows: We assume that the amplitude hasng

external gluons,nq external quarks and therefore necessarily alsonq external antiquarks. We first
note, since a quark follows immediately its corresponding antiquark, we can treat an adjacent
(q̄,q)-pair as an external “pseudo-leg”, which is permutated together. The amplitude has there-
fore ng+nq pseudo-legs. Then all possible cyclic orderings are obtained by summing over all
permutations of the pseudo-legs and factoring out the cyclic permutations, e.g. each ordering
corresponds to an element of

S(ng+nq)/Z(ng+nq). (35)

This is equivalent to fixing the first external pseudo-leg andsumming over all permutation of the
remaining(ng+nq−1) external pseudo-legs. Therefore there are

(ng+nq−1)! (36)

inequivalent cyclic orderings.
For the pure gluon amplitude (nq = 0) each cyclic ordering corresponds to one colour factor

ci . The situation is different if quarks are present (nq 6= 0). This is related to the fact that the
gluon propagator in anSU(N) gauge theory can be written as a propagator corresponding toan
U(N) gauge theory minus a part which subtracts out the additionalU(1) piece. The kinematic
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1

2
3

4

5

6

U(N)

U(1)
=⇒

1

2
3

4

5

6

U(N)

U(1)

Figure 3: An example for the decomposition into colour clusters.

parts of theU(n) and theU(1) pieces are the same:

PḂAḊC(k) = ḂA ḊC =
i

k2

(

−εḂḊεAC
)

, (37)

However, they differ by their colour structure:

U(N) :
i
j

l
k = δil δk j,

U(1) :
i
j

l
k = − 1

N
δi j δkl . (38)

Note that each propagation of aU(1) gluon is accompanied by a factor(−1)/N. It can be shown
that theU(1) gluon couples only to quark lines [56]. Therefore an amplitude with nq quarks
can contain up to(nq−1) gluons of typeU(1). EachU(1) gluon separates a Born amplitude
into colour-disconnected pieces. We define a colour clusteras a part of an amplitude, which
is connected to the rest of the amplitude only by anU(1) gluon and which does not contain
by itself anyU(1) gluon. This concept is illustrated in fig. 3, which shows a diagram with
three quark-antiquark pairs, oneU(N) gluon and oneU(1) gluon. This diagram has two colour
clusters, formed by the particles(1,2,3,4) and (5,6), and separated by theU(1) gluon. For
an amplitude withnq quark-antiquark pairs one can have from 1 tonq colour clusters. From
the cluster decomposition the colour structure can be read off easily. The example in fig. 3
contributes to the colour structure

(

− 1
N

)
(
δi2 j3δi4 j1

)(
δi6 j5

)
(39)

In general, given a colour cluster assignment, the corresponding colour factorci is constructed
as follows: First of all, the colour factor factorizes into aproduct of the contributions from the
individual colour clusters.

ci =

(

− 1
N

)(ncluster−1)

×
ncluster

∏
j=1

ci, j . (40)
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ci, j is the colour factor corresponding to clusterj. For a cluster consisting only of gluons,ci, j is
given by

g1,g2, ...,gn : ci, j = δi1 j2δi2 j3...δin−1 jnδin j1. (41)

An antiquark-quark pair can be treated effectively as a single gluon. For example the colour
factor associated to a colour cluster consisting of an quark-antiquark pair and(n−2) gluons is
given by

q̄1,q2,g3, ...,gn : ci, j = δi2 j3δi3 j4...δin−1 jnδin j1. (42)

As a further example we quote the colour factor for a cluster with two quark-antiquark pairs:

q̄1,q2,g3, ..., q̄k,qk+1, ...,gn : ci, j = δi2 j3δi3 j4...δik−1 jkδik+1 jk+2...δin−1 jnδin j1. (43)

The pattern should be clear. The colour factor associated toa individual colour cluster is just
a sequence of Kroneckerδ’s, corresponding to the cyclic ordering of the legs belonging to this
colour cluster.

It remains to derive a method, how all possible colour clusterings can be generated. This
is a combinatorial problem. For a fixed cyclic ordering we cangenerate all possible colour
clusterings as follows: We first sum over the number of possible colour clusters. Letncluster be
the number of colour clusters, wherencluster ranges from 1 tonq. For a fixedncluster we then sum
over all partitions of(ng+nq) into ncluster piecesncluster

j , such that

ncluster

∑
j=1

ncluster
j = ng+nq. (44)

For a partition we take into account the order, such that for example(1,1,2), (1,2,1) and(2,1,1)
are distinct partitions of 4.ncluster

j gives the number of external pseudo-legs belonging to cluster
j. Obviously, an adjacent antiquark-quark pair has to belongto the same colour cluster, therefore
it is counted as one external pseudo-leg. Finally, we have tosum over all possible starting points
of the colour clusters with respect to the cyclic ordering. Here we observe that the members of
a colour cluster need not be adjacent in the cyclic ordering.An example for a colour assignment
in the cyclic ordering would be

(q̄,q) ,g,g
︸ ︷︷ ︸

cluster1

,g,(q̄,q) ,g
︸ ︷︷ ︸

cluster2

,g,g,g,g
︸ ︷︷ ︸

cluster1

,g,(q̄,q) ,g,g
︸ ︷︷ ︸

cluster3

. (45)

In this example, cluster 2 is embedded in cluster 1. The summation over the starting points has
to full-fill the following requirements:

(i) The external pseudo-leg 1 belongs to colour cluster 1.

(ii) The colour cluster( j +1) starts after colour clusterj for all j > 2. (Colour cluster 1 may
start at the end of the cyclic ordering.)
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(iii) If the assignment of external pseudo-legs to colour cluster j has been interrupted by the
starting of a new clusterk ( with k > j ), the assignment to clusterj cannot be continued
until all members of clusterk have been assigned.

Requirement (iii) ensures that we cannot have a sequence like cluster 1, cluster 2, cluster 1,
cluster 2. The assignment of the external pseudo-legs to colour clusters is now done as follows:
Let

(
mstart

2 ,mstart
3 , ...,mstart

ncluster

)
(46)

be an(ncluster−1)-tuple, such that

mstart
j ≤ mstart

j+1 (47)

and

1≤ mstart
j ≤ 2− j +

j−1

∑
k=1

ncluster
k (48)

Then

nstart
j = mstart

j + j −1 (49)

defines the starting point of clusterj for j = 2, ...,ncluster. The starting pointsnstart
j together with

the rules (i) and (iii) define uniquely the assignment of the external pseudo-legs to the colour
clusters. Summing over all(ncluster− 1)-tuples in eq. (46) subject to the constraints (47) and
(48) generates all possibilities withncluster colour clusters, in which colour clusterj hasncluster

j
external pseudo-legs.

Since each colour cluster couples to the rest of the amplitude through aU(1)-gluon, it has
to contain at least one quark-antiquark pair. Therefore configurations, where a colour cluster
does not contain a quark-antiquark pair are vetoed, with thetrivial exception of the pure gluon
amplitude, which consists of one colour cluster and no quark-antiquark pairs.

With the colour cluster decomposition and a method for the generation of all cluster decom-
position at hand, I now turn back to the computation of the amplitude squared. From eq. (33)
and eq. (34) it is clear that we can write any amplitude in the form

A = ∑
i

ciAi, (50)

where theci ’s are the colour factors and theAi ’s are the partial amplitudes which contain the
kinematical information. In squaring the amplitude we obtain

|A |2 = ∑
i, j

Ai

(

ciPc†
j

)

A∗
j . (51)
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The colour projector is given as a product with one factor foreach external particle:

P =
ng+2nq

∏
k=1

Pk, (52)

where the individual colour projectors for a quark, antiquark and a gluon are:

Pq = δīi , Pq̄ = δ j j̄ , Pg = δīi δ j j̄ −
1
N

δī j̄δ ji . (53)

The only non-trivial piece is given by the colour projector for the external gluons, which is a
consequence of the double-line notation. Note that

Mi j =
(

ciPc†
j

)

(54)

defines a matrix, which is independent of the four-momenta ofthe particles. Therefore this
matrix can be calculated at the initialisation phase of the program. As each entry is given as a
contraction of Kroneckerδ’s, this can be done easily symbolically with the rules

δi j δ jk = δik, δii = N. (55)

The program uses the C++ library “GiNaC” for this task. In appendix (C.1) I give a small
example program. The resulting expression is a function ofN, and after substitutingN = 3 the
result can be converted to a double precision number. Note that run-time performance is not an
issue here, since this calculation occurs only at the initialisation phase of the program. To obtain
the amplitude squared, the matrixMi j is first calculated at the initialisation phase and stored in
memory. Then for each momentum configuration the vector of partial amplitudes~A= (A1,A2, ...)
is computed. The amplitude squared is then given by

|A |2 = ~A M ~A†. (56)

The inclusion of colour-correlations is rather straightforward. To include colour-correlation be-
tween particlesa andb, one replacesPa andPb in eq. (52) by the appropriate colour-correlation
operator. For example, the colour-correlation operatorTq ·Tq̄ for a quark-antiquark pair reads

ī1

j̄2

i1

j2

= −1
2

(

δī1 j̄2δ j2i1 −
1
N

δī1i1δ j2 j̄2

)

. (57)

A complete list of all relevant colour-correlation operators can be found in the appendix (B). The
corresponding matricesMi j depend now ona andb, but are still independent of the four-momenta
of the particles. Therefore they can be computed at the initialisation phase of the program. For a
matrix element withn= ng+2nq external particles, there are

1
2

n(n−1) (58)

possibilities of choosing the colour-correlated partonsa andb. Therefore the initialisation phase
of the program computes and storesn(n−1)/2 different colour matricesMi j . For realistic values
of n, sayn< 9, the CPU time and memory requirements for this task are rather modest.
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3.4 The partial amplitudes

It remains to discuss how the partial amplitudesAi, entering eq. (50) and eq. (51) are com-
puted. This is done with the help of off-shell currents and recurrence relations. Compared to the
introductory discussion of the pure gluonic off-shell current in section 2.5 there are additional
complications: First of all, a rather trivial extension is given by the fact, that in full QCD we have
to allow for the possibility of multiple quark-antiquark pairs. Secondly, and more important is
the fact that the recurrence relations have to respect the decomposition of a partial amplitude into
colour clusters. The algorithm is summarised as follows:

(i) We consider coupled recurrence relations for the off-shell currents corresponding to an
U(N)-gluon, anU(1)-gluon, quarks and antiquarks. Note that theU(N)-gluon and the
U(1)-gluon are treated separately, as the latter couples only toquarks. It is also convenient
to distinguish the off-shell currents for the quarks and antiquarks, depending on whether
the quarks are massive or massless. In the latter case specialised (and faster) routines can
be used, since only helicity conserving interactions enter.

(ii) All recurrence relation express an off-shell current of typeA as a sum over off-shell currents
with fewer legs, which are combined through the basic three-or four-valent vertices of the
theory. The recurrence relations takes into account all possible interaction vertices, which
containA. Note that the off-shell currents, which enter the r.h.s. ofthe recurrence relation
need not be of typeA. For the example, the recurrence relation for anU(N)-gluon involves
the quark-antiquark-gluon vertex and therefore the off-shell currents for a quark and an
antiquark. In general, the recurrence relations yield a coupled system of equations.

(iii) The off-shell parton for the quark-current, the antiquark-current and theU(N)-gluon-
current belongs to a specific colour clustera. The recurrence relation splits the off-shell
current withn external legs into off-shell currents with less external legs. This splitting has
to respect the following selection rules:

- For theU(N)-current, the off-shell current attached through the three- and four-gluon
vertex have to contain at least one parton belonging to colour clustera. In the off-shell
quark- and antiquark-current, which are attached through the gluon-quark-antiquark
vertex to theU(N)-gluon current, the off-shell quark- and antiquark-lines have to
belong to colour clustera.

- For the off-shell quark current, the sub-current attachedthrough anU(N)-gluon must
contain at least one parton belonging to colour clustera. On the other hand, the sub-
current attached through anU(1)-gluon may not contain any parton of colour cluster
a. Similar considerations apply to the antiquark current.

- Finally, the off-shellU(1)-current is rather simple and the recurrence relation involves
an quark- and an antiquark-current, whose off-shell legs necessarily belong to the
same colour cluster.

(iv) As a further selection rule we have to veto configuration, where the off-shell current is
divided into sub-currents between legj and ( j + 1), in the case where these two legs
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belong to the same colour clusterb, which is different from the colour clustera of the
off-shell leg. That is to say, that the recurrence relation where the off-shell leg belong to
clustera, cannot split legs which belong to a different colour cluster b.

3.5 The pure gluon amplitude

In principle, the pure gluon amplitude can be treated with the methods discussed above. However
the pure gluon amplitude is a rather special case, which leads to many additional simplifications.
Since it is known that pure gluonic processes will contribute significantly to the cross section at
the LHC, it is desirable to treat these processes separatelywith optimised routines, taking into
account the additional simplifications. The simplifications are:

- There is only one colour cluster and the colour decomposition is simply given by the(ng−1)!
inequivalent cyclic orderings, as in eq.(17).

- U(1)-gluons can be ignored and the recurrence relation for the partial amplitudes is given by
eq. (25).

- In calculating the colour matrixMi j , the colour projectorsPg in eq. (53) may be replaced by

Pg → δīi δ j j̄ . (59)

3.6 QCD amplitudes with one electro-weak boson

The methods discussed above require only minor modifications to include amplitudes with QCD
partons and one electro-weak boson. As these are relevant toelectron-positron annihilation,
electron-proton collisions orZ-production at the LHC / Tevatron, these amplitudes have been
implemented as well. The amplitudes are computed by considering a recurrence relation, which
couples the electro-weak current to an off-shell quark current and an off-shell antiquark current.

4 Numerical implementation

The algorithms discussed above have been implemented into acomputer program. This numer-
ical program can compute Born matrix elements in QCD with spin- and colour-correlations. To
test the program I have first considered the case, where spin-and colour correlations are absent.
In this case one can compare the results with the ones from theprogram Madgraph. I quote here
the results of this comparison for processes with up to sevenexternal particles. The labelling of
the momenta is

p1p2 → p3, p4, ..., pn. (60)

p1 andp2 are the incoming momenta,p3 to pn are the outgoing momenta. For 2→ 2 processes
I took the following set of momenta (in units of GeV):

p1 = (45.0,0.0,0.0,−45.0),
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p2 = (45.0,0.0,0.0,45.0),

p3 = (45.0,−20.8997,−29.6778,26.5976),

p4 = (45.0,20.8997,29.6778,−26.5976). (61)

The same initial state momentap1 and p2 are used for all other processes. The final state
momenta for the 2→ 3 processes were chosen as

p3 = (41.8145,−9.20663,−26.7503,30.7914),

p4 = (17.3829,12.8067,10.7712,−4.70487),

p5 = (30.8026,−3.6001,15.9791,−26.0865). (62)

For 2→ 4 processes I used

p3 = (29.9152,−18.1846,−8.69254,22.1061),

p4 = (9.82719,4.07529,8.79524,−1.61538),

p5 = (22.171,−9.26417,14.187,−14.2988),

p6 = (28.0866,23.3735,−14.2898,−6.19197). (63)

Finally, for 2→ 5 processes I used

p3 = (20.165,−13.0392,0.0298292,15.3819),

p4 = (9.60811,2.4114,9.15728,−1.6264),

p5 = (20.5589,−7.64505,15.4771,−11.166),

p6 = (18.087,17.056,−3.25968,−5.06046),

p7 = (21.581,1.21688,−21.4045,2.47093). (64)

The strong coupling constant was taken to beαs= 0.118. For this comparison, all quark masses
have been set to zero. The flavour labels serve only to distinguish identical quarks from non-
identical quarks. Table 1 shows the comparison of our program with Madgraph for the computa-
tion of the matrix elements corresponding to the indicated processes. The results do not contain
any averaging over the colour degrees of freedom for the initial-state particles, nor do they con-
tain symmetry factors for the final-state particles. As can be seen from the table, the agreement
is satisfactory.

To check spin- and colour-correlations I have compared the program with existing NLO codes
for e+e− → 4 jets [64] andpp→ tt̄g [65].

Table 2 gives an indication for the CPU time needed to evaluate matrix elements of increasing
complexity. It gives the CPU time needed for the computationof the matrix elements, summed
over all colours and spins, corresponding to the following cases: The amplitudeA(g1, ...,gn)with
n gluons, the amplitudeA(q̄,q,g3, ...,gn) with an q̄,q-pair and(n−2) gluons and the amplitude
A(q̄,q, q̄′,q′,g5, ...,gn) with two distinctq̄,q-pairs and(n−4) gluons.

5 Conclusions and outlook

In this paper I discussed an algorithm for the automated computation of spin- and colour-correlated
Born matrix elements in QCD. These matrix elements are needed for NLO calculations in com-

17



Process this work Madgraph
gg→ gg 56203.4 56203.2
gd̄ → d̄g 8436.64 8436.62
ūd̄ → d̄ū 1374.01 1374.01
d̄d̄ → d̄d̄ 1287.74 1287.74
gg→ ggg 21269.2 21269.3
gd̄ → d̄gg 3222.01 3222.02
ūd̄ → d̄ūg 56.459 56.4591
d̄d̄ → d̄d̄g 53.2424 53.2425
gg→ gggg 1354.24 1354.22
gd̄ → d̄ggg 138.691 138.689
ūd̄ → d̄ūgg 0.975563 0.975546
d̄d̄ → d̄d̄gg 0.902231 0.902215
ūd̄ → d̄ūs̄s 0.0116469 0.0116467
ūd̄ → d̄ūūu 0.0524928 0.0524927
d̄d̄ → d̄d̄d̄d 0.0583822 0.0583821
ūd̄ → d̄ūs̄gs 0.000453678 0.000453671
ūd̄ → d̄ūūgu 0.00202449 0.00202446

Table 1: Comparison of our program with Madgraph for variousmatrix elements with up to
seven external particles.

n 4 5 6 7 8
time for |A(g1, ...,gn)|2 0.0006 0.009 0.18 4 127
time for |A(q̄,q,g3, ...,gn)|2 0.0004 0.003 0.05 0.6 14
time for |A(q̄,q, q̄′,q′,g5, ...,gn)|2 0.0002 0.002 0.02 0.4 8

Table 2: CPU time in seconds for the computation of some matrix elements summed over all
helicities and colours on a standard PC (Pentium IV with 2 GHz). The examples consists of the
n gluon amplitudes, the amplitudes with an ¯q,q-pair and(n−2) gluons and the amplitudes with
two distinctq̄,q-pairs and(n−4) gluons.
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bination with the subtraction method. I implemented the algorithm into a computer program.
The program handles QCD amplitudes with massless and/or massive quarks. In addition, I have
implemented the extension to QCD amplitudes with one additional electro-weak boson.

The methods presented here are part of a larger project for the automated computation of
observables at next-to-leading order for LHC physics. The remaining missing piece is the auto-
mated computation of the interference term of the one-loop amplitude with the Born amplitude.
In a previous publication, we already reported on the automated computation of the one-loop
integrals entering the one-loop amplitude [31]. Work on theautomated computation of the inter-
ference term is in progress.
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A Feynman rules

In this appendix I summarise the colour-ordered Feynman rules. I extract from each formula the
coupling constant and split the remainder into a colour partand a kinematical part.

A.1 Propagators, polarisation vectors and polarisation sums

Gluon propagator

In Feynman gauge, the gluon propagator is given by−igµνδab/k2. Contraction of the kinematical
part−igµν/k2 with (1/2)σ̄µḂAσ̄νḊC yields:

PḂAḊC(k) = ḂA ḊC =
i

k2

(

−εḂḊεAC
)

(65)

The colour factorδab is contracted within the double-line notation with
√

2Ta
i j

√
2Tb

kl:

√
2Ta

i j δab
√

2Tb
kl = δil δk j −

1
N

δi j δkl (66)

The colour structure is split into two pieces. The first pieceδil δk j corresponds to the propagation
of aU(N) gluon, whereas the second piece−δi j δkl/N subtracts out the additionalU(1) gluon.
Schematically we have

i
j

l
k = δil δk j,

i
j

l
k = − 1

N
δi j δkl. (67)

Note that each propagation of aU(1) gluon is accompanied by a factor(−1)/N.
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Quark propagator

The kinematical piece of the quark propagator reads:

i
p/−m

(68)

The colour factor is simply

i j
= δi j . (69)

Gluon polarisation vectors and colour projector

The gluon polarisation vectors are given by

εȦB
+ (k,q) =

1
〈qk〉 kȦqB, εȦB

− (k,q) =
1

[kq]
qȦkB. (70)

k is the momentum of the gluon andq is an arbitrary light-like reference momentum. The depen-
dence onq drops out in gauge-invariant quantities.

Colour factor: In the conventional approach we sum for the squared matrix element for each
gluon over all eight colour degrees of freedom. In the double-line notation a factor

√
2Ta

i j is
moved at each end into the colour projector. Therefore, the colour projector reads

√
2Ta

i j

√
2Ta

kl = δil δk j −
1
N

δi j δkl . (71)

A.2 Vertices

Quark-gluon vertex

The kinematical part of the quark-gluon vertex is given by

CḊ

A Ḃ

=−i
√

2εCAεḊḂ,

CḊ

Ȧ B =−i
√

2δ B
C δ Ȧ

Ḋ . (72)

The colour factor is given by

lk

i j
=

1√
2

δil δk j. (73)

Here I neglected terms proportional toδkl, which vanish when contracted into the gluon propa-
gator.
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Three gluon vertex

The kinematical part of the three-gluon vertex is given by

k1,AḂ

k2,CḊk3,EḞ

=
i√
2
[εCEεḊḞ (k3−k2)AḂ+ εEAεḞḂ(k1−k3)CḊ+ εACεḂḊ (k2−k1)EḞ ] .

(74)

The colour factor reads:

i1 j1

j2i2j3i3

=
1√
2

δi1 j2δi2 j3δi3 j1. (75)

Four gluon vertex

The kinematical part of the four-gluon vertex is given by

AḂ

CḊEḞ

GḢ

= 2i [2εAEεḂḞεCGεḊḢ − εACεḂḊεEGεḞḢ − εAGεḂḢεCEεḊḞ ] . (76)

The colour factor reads:

i1 j1

j2i2j3i3

i4 j4

=
1
2

δi1 j2δi2 j3δi3 j4δi4 j1. (77)

B Colour correlations

In this appendix I list all colour-correlation operatorsTa ·Tb between two partons in the double
line notation.

A
∗ (...a, ...,b, ...)(Ta ·Tb)A (...a, ...,b, ...). (78)

Their action between amplitudes is defined in eq. (7) and eq. (8). As we write all amplitudes in
the colour-flow decomposition, we would like to know the action of these operators in this basis.
In the following I denote the colour indices of the amplitudeA

∗ with barred indices, the colour
indices of the amplitudeA with un-barred indices.

21



Quark-quark ( Tq ·Tq )

ī1

ī2

i1

i2

=
1
2

(

δī1i2δī2i1 −
1
N

δī1i1δī2i2

)

(79)

Quark-antiquark ( Tq ·Tq̄ )

ī1

j̄2

i1

j2

= −1
2

(

δī1 j̄2δ j2i1 −
1
N

δī1i1δ j2 j̄2

)

(80)

Antiquark-antiquark ( Tq̄ ·Tq̄ )

j̄1

j̄2

j1

j2

=
1
2

(

δ j1 j̄2δ j2 j̄1 −
1
N

δ j1 j̄1δ j2 j̄2

)

(81)

Quark-gluon ( Tq ·Tg )

ī1

ī2, j̄2

i1

i2, j2

=
1
2

(
δī1i2δī2i1δ j2 j̄2 −δī1 j̄2δ j2i1δī2i2

)
(82)

Antiquark-gluon ( Tq̄ ·Tg )

j̄1

ī2, j̄2

j1

i2, j2

=
1
2

(
δ j1 j̄2δ j2 j̄1δī2i2 −δ j1i2δī2 j̄1δ j2 j̄2

)
(83)

Gluon-gluon ( Tg ·Tg )

ī1, j̄1

ī2, j̄2

i1, j1

i2, j2

=
1
2

(
δī1i1δī2i2δ j1 j̄2δ j2 j̄1 −δī1i1δ j2 j̄2δ j1i2δī2 j̄1

−δ j1 j̄1δī2i2δī1 j̄2δ j2i1 +δ j1 j̄1δ j2 j̄2δī1i2δī2i1

)
(84)
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C Details on the implementation

In this appendix I provide some details on the implementation of the algorithm into a C++ pro-
gram. I will discuss in a small example how the colour algebrais performed. I will also give
some hints on the implementation of loops over multi-indices like permutation, partitions, etc..

C.1 Colour algebra

Below I show a small program, which defines the colour structures

c1 = δi1 j2δi2 j1, c†
1 = δ j2i1δ j1i2, (85)

and contracts them:

c11 = c1c†
1. (86)

The result is obviouslyc11 = N2, which equals 9 forN = 3.

#include <iostream>

#include ‘‘ginac/ginac.h’’

int main()

{

using namespace GiNaC;

// number of colours

int Nc = 3;

// define colour indices

ex i1 = idx( symbol("i1"), Nc );

ex i2 = idx( symbol("i2"), Nc );

ex j1 = idx( symbol("j1"), Nc );

ex j2 = idx( symbol("j2"), Nc );

// define colour structures

ex c1 = delta_tensor(i1,j2)*delta_tensor(i2,j1);

ex c1_conj = delta_tensor(j2,i1)*delta_tensor(j1,i2);

// square it and contract indices

ex c11 = c1_conj * c1;

c11 = c11.simplify_indexed();

// convert the result to a ‘‘double’’ variable
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double c_double = real(ex_to<numeric>( c11 )).to_double();

std::cout << ‘‘result = ‘‘ << c_double << std::endl;

return 0;

}

C.2 Summing over multi-indices

The algorithms involves the summation over multi-indices.A rather simple example for a multi-
index would be ak-tuple(i0, i1, ..., ik−1) where each entry can take values from 0 toN−1. Other
examples are the sum over permutations ofk elements as in eq. (35) or the multi-index in eq.
(46). To make the code readable it is desirable to write the loop as

{

int N = 7;

int k = 3;

multi_index i_multi(N,k);

for( i_multi.init(); !i_multi.overflow(); i_multi++)

{

// can use i_multi[0], i_multi[1], etc. here

}

}

and to hide the details on how the multi-index is increased into a separate class. A possible
header file for the classmulti_index could look as follows:

class multi_index {

public :

multi_index(size_t N, size_t k);

// functions

multi_index & init(void); // initialization

bool overflow(void) const; // returns overflow flag

multi_index & operator++ (int); // postfix increment

size_t operator[](size_t i) const; // subscripting

// member variables :

protected :

size_t N;

std::vector<size_t> v;
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bool flag_overflow;

};

This class contains a methodinit to initialise the multi-index to the first value, an operator++

which increases the multi-index to the next value and methodoverflow, which returns true if all
values have been run through.
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