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Abstract

In the present paper influence of tensor electric and magnetic polarizabilities on spin evolution
in the resonance deuteron EDM experiment is considered in details.

It is shown that besides EDM the electric and magnetic polarizabilities also contribute to the
vertical spin component P3. Moreover, the electric polarizability contributes to the P3 component
even when the deuteron EDM is supposed to be zero and thereby the electric polarizability can
imitate the EDM contribution. It is shown that unlike the vertical component of the spin P3 the
component P33 of polarization tensor does not contain contribution from the electric polarizability,
whereas contribution from the magnetic polarizability reveals only when the deuteron EDM differs
from zero.

Moreover, it is also shown that when the angle ϑ between the spin direction and the vertical

axis meets the condition sinϑ =
√

2

3
(cosϑ =

√

1

3
), the initial value of P33 appears P33(0) = 0. As

a result, EDM contribution to the measured signal linearly growth in time starting from zero that
is important for measurements.

Therefore, measurement of the P33 component of deuteron tensor polarization seems to be of
particular interest, especially because the nonzero component P33 appearance on its own indicates
the EDM presence (in contrast to the P3 component, which appearance can be aroused by the
tensor electric polarizability, rather than EDM).

1 INTRODUCTION

At present time the possibility to measure the electric dipole moment of a deuteron moving in a storage
ring is actively discussed [1, 2]. According to [1, 2] two types of experiments are discussing now: a).
deuteron energy is chosen to zeroize (g−2) precession (g is the gyromagnetic ratio) b). deuteron beam
velocity is modulated with the frequency Ωf close to the (g − 2) precession frequency Ω, as a result,
this makes possible to observe the EDM signal as growth in time of the vertical spin component [1, 2].

These methods can provide for EDM measurement the sensitivity ∼ 10−29 e · cm. Theoretical
description of the experiment [1, 2] is being done on the base of the Bargman-Myshel-Telegdy equa-
tion. But as it is shown in [3]-[5] the Bargman-Myshel-Telegdy equation can not describes deuteron
spin behavior in such experiments. It turns out that the BMT equation for a deuteron should be
supplemented with several additions, which describe interaction of deuteron electric and magnetic
polarizabilities with the electric field in the storage ring and deuteron birefringence in matter.

Owing to the above in the experiments planned for the deuteron EDM search the contributions
aroused by the tensor electric and magnetic polarizabilities of deuteron as well as the spin-dependent
amplitude of forward scattering by the nuclei of a solid or gas target will be also measured. These con-
tributions could distort the EDM signal and even bring to wrong conclusions about EDM observation.
They are the systematic errors for the EDM search, which should be eliminated.
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At the same time the above effects being measured in the experiments for EDM search could be
even used for more reliable limits assignment for deuteron EDM.

In the present paper influence of tensor electric and magnetic polarizabilities on spin evolution in
the resonance deuteron EDM experiment is considered in details.

It is shown that besides EDM the electric and magnetic polarizabilities also contribute to the
vertical spin component P3. Moreover, the electric polarizability contributes to the P3 component
even when the deuteron EDM is supposed to be zero and thereby the electric polarizability can
imitate the EDM contribution. It is shown that unlike the vertical component of the spin P3 the
component P33 of polarization tensor does not contain contribution from the electric polarizability,
whereas contribution from the magnetic polarizability reveals only when the deuteron EDM differs
from zero.

Moreover, it is also shown that when the angle ϑ between the spin direction and the vertical axis

meets the condition sinϑ =
√

2
3 (cos ϑ =

√

1
3), the initial value of P33 appears P33(0) = 0. As a result,

EDM contribution to the measured signal linearly growth in time starting from zero that is important
for measurements. Therefore, measurement of the P33 component of deuteron tensor polarization
seems to be of particular interest, especially because the nonzero component P33 appearance on its
own indicates the EDM presence (in contrast to the P3 component, which appearance can be aroused
by the tensor electric polarizability, rather than EDM).

2 Interactions contributing to the spin motion of a particle in a

storage ring

As it is shown in [3]-[5] considering evolution of the spin of a particle in a storage ring, when measure
EDM, one should take into account several interactions:

1. interactions of the magnetic and electric dipole moments with an electromagnetic field;
2. interaction of the particle with the electric field due to the tensor electric polarizability;
3. interaction of the particle with the magnetic field due to the tensor magnetic polarizability;
4. interaction of the particle with the pseudoelectric nuclear field of matter.
The equation for the particle spin wavefunction considering all these interactions is as follows:

i~
∂Ψ(t)

∂t
=

(

Ĥ0 + V̂EDM + V̂ ~E
+ V̂ ~B

+ V̂ nucl
E

)

Ψ(t) (1)

where Ψ(t) is the particle spin wavefunction,
Ĥ0 is the Hamiltonian describing the spin behavior caused by interaction of the magnetic moment

with the electromagnetic field (equation (1) with the only Ĥ0 summand converts to the Bargman-
Myshel-Telegdy equation),

V̂EDM describes interaction of the particle EDM d with the electric field,

V̂EDM = −d
(

~β × ~B + ~E
)

~S, (2)

~β = ~v
c
, ~v is the particle velocity, c is the speed of light.

V̂ ~E
describes interaction of the particle with the electric field due to the tensor electric polarizability:

V̂ ~E
= −1

2
α̂ik(Eeff )i(Eeff )k, (3)

where α̂ik is the electric polarizability tensor of the particle , ~Eeff = ( ~E + ~β × ~B) is the effective
electric field; the expression (3) can be rewritten as follows:

V̂ ~E
= αSE

2
eff − αTE

2
eff

(

~S~nE

)2
, ~nE =

~E + ~β × ~B

| ~E + ~β × ~B|
(4)
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where αS is the scalar electric polarizability and αT is the tensor electric polarizability of the particle.
A deuteron also has the magnetic polarizability which is described by the magnetic polarizability

tensor β̂ik. Interaction of the particle with the magnetic field due to the tensor magnetic polarizability
is as follows:

V̂ ~B
= −1

2
β̂ik(Beff )i(Beff )k, (5)

where (Beff )i are the components of the effective magnetic field ~Beff = ( ~B − ~β × ~E); V̂ ~B
(5) could

be expressed as:

V̂ ~B
= βSB

2
eff − βTB

2
eff

(

~S~nB

)2
, ~nB =

~B − ~β × ~E

| ~B − ~β × ~E|
. (6)

where βS is the scalar magnetic polarizability and βT is the tensor magnetic polarizability of the
particle.

V̂ nucl
E describes the effective potential energy of particle interaction with the pseudoelectric field

of the target.

3 The equations describing the spin evolution of a particle in a

storage ring

Let us consider particles moving in a storage ring with low pressure of residual gas (10−10 Torr) and
without targets inside the storage ring. In this case we can omit the effects caused by the interaction
V̂ nucl
E .
Let us consider a deuteron moving in a storage ring. According to the above analysis spin behavior

of a deuteron can not be described by the Bargman-Myshel-Telegdy equation. The equations for
particle spin motion in condition when the fields ~E and ~B are orthogonal to the particle velocity ~v
were obtained in [3]-[5]. They can be written as follows:



















































d~P
dt

= e
mc

[

~P ×
{(

a+ 1
γ

)

~B −
(

g
2 − γ

γ+1

)

~β × ~E
}]

+

+ d
~

[

~P ×
(

~E + ~β × ~B
)]

− 2
3

αTE2
eff

~
[~nE × ~n′

E]− 2
3

βTB2
eff

~
[~nB × ~n′

B],

dPik

dt
= − (εjkrPijΩr(d) + εjirPkjΩr(d))−

−3
2

αTE2
eff

~

(

[~nE × ~P ]inE,k + nE, i[~nE × ~P ]k

)

−

−3
2

βTB2
eff

~

(

[~nB × ~P ]inB, k + nB, i[~nB × ~P ]k

)

,

(7)

where m is the mass of the particle, e is its charge, ~P is the spin polarization vector, Pik is the spin
polarization tensor, Pxx + Pyy + Pzz = 0, γ is the Lorentz-factor, ~β = ~v/c, ~v is the particle velocity,

a = (g − 2)/2, g is the gyromagnetic ratio, ~E and ~B are the electric and magnetic fields in the point

of particle location, ~Eeff = ( ~E + ~β × ~B), ~Beff = ( ~B − ~β × ~E), ~nE =
~E+~β× ~B

| ~E+~β× ~B|
, ~nB =

~B−~β× ~E

| ~B−~β× ~E|
,

n′
E, i = PiknE,k, n

′
Bi = PilnBl, Ωr(d) are the components of the vector ~Ω(d) (r = 1, 2, 3 correspond to

x, y, z, respectively).

~Ω(d) = ~Ω+ ~Ωd,

~Ω = e
mc

{(

a+ 1
γ

)

~B −
(

g
2 − γ

γ+1

)

~β × ~E
}

,

~Ωd = d
~

(

~E + ~β × ~B
)

.
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The equations for particle spin motion (7) can be rewritten as follows:

d~P

dt
= [~P × ~Ω(d)] + ΩT [~nE × ~n′

E ] + Ωµ
T [~nB × ~n′

B],

d ~Pik

dt
= −(ǫjkrPijΩr(d) + ǫjirPkjΩr(d)) + Ω′

T ([~nE × ~P ]inEk + nEi[~nE × ~P ]k) +

+Ω′µ
T ([~nB × ~P ]inBk + nBi[~nB × ~P ]k) (8)

where

ΩT = −2
3

αTE2
eff

~
, Ω′

T = −3
2

αTE2
eff

~
, Ω′

T = −2
3ΩT ,

Ωµ
T = −2

3

βTB2
eff

~
, Ω′µ

T = −3
2

βTB2
eff

~
, Ω′µ

T = −2
3Ω

µ
T .

Suppose that the external electric field in the storage ring ~E = 0 and a particle moves along the
circle orbit.

Let us now consider the equation (8) in the coordinate system that rotates with the frequency
of particle velocity rotation. In such a system spin rotates with respect to the momentum with the
frequency determined by (g − 2).The coordinate system and vectors ~v, ~E, ~B as shown in figure and
denote the axes by x, y, z (or 1, 2, 3, respectively).

X

Y

Z

B

E
eff

X

Y

Z

P

Figure 1:

Therefore, the components of the vectors are:

~P = (P1, P2, P3) ,

~nE = (1, 0, 0) , n′
Ei = PilnEl = Pi1

[~nE × ~n′
E]1 = 0, [~nE × ~n′

E]2 = −P31, [~nE × ~n′
E ]3 = P2,

[ ~P × ~Ω]1 = ΩP2, [ ~P × ~Ω]2 = −ΩP1, [~P × ~Ω]3 = P2,

[~nE × ~P ]1 = 0, [~nE × ~P ]2 = −P3, [~nE × ~P ]3 = P2,

(9)

~Ω = ea
mc

~B = (0, 0,Ω) ,

~nB = (0, 0, 1) , n′
Bi = PilnBl = Pi3

[~nB × ~n′
B ]1 = −P23, [~nB × ~n′

B]2 = −P13, [~nB × ~n′
B]3 = 0,

[~nB × ~P ]1 = −P2, [~nB × ~P ]2 = P1, [~nB × ~P ]3 = 0.

(10)

4



Substituting (9,10) to the system (7) we obtain:

dP1

dt
= ΩP2 − Ωµ

TP23,

dP2

dt
= −ΩP1 + (Ωµ

T − ΩT )P13 + ωdP3,

dP3

dt
= ΩTP12 − ωdP2,

(11)

where ωd =
dE

eff
1

~
.

dP11

dt
= 2ΩP12 + 2ωdP23,

dP22

dt
= −2ΩP12,

dP33

dt
= −2ωdP23,

(12)

dP12

dt
= −Ω (P11 − P22)− Ω′

TP3 + ωdP13,

dP13

dt
= ΩP23 +Ω′

TP2 − Ω′µ
T P2 − ωdP12,

dP23

dt
= −ΩP13 +Ω′µ

T P1 − ωd(P22 − P33).

(13)

Remember that P11 + P22 + P33 = 0 and Pik = Pki.

4 Contribution from the EDM and tensor polarizabilities to

deuteron spin oscillation

Let us consider the system (11-13) more attentively.
Suppose that deuteron has neither EDM no tensor electric polarizability: in this case the system

(11-13) can be expressed:

dP1

dt
= ΩP2,

dP2

dt
= −ΩP1,

dP3

dt
= 0,

(14)

dP11

dt
= 2ΩP12,

dP22

dt
= −2ΩP12,

dP33

dt
= 0,

(15)

dP12

dt
= −Ω (P11 − P22) ,

dP13

dt
= ΩP23,

dP23

dt
= −ΩP13.

(16)
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This is the conventional system of BMT equations that describes particle spin rotation with the
frequency equal to (g − 2) precession frequency Ω = ea

mc
B. The component P3 of vector polarization

in this conditions is equal to constant (dP3

dt
= 0) along with the component P33 of tensor polarization

(dP33

dt
= 0).

Suppose the deuteron EDM differs from zero. Then the above system of equations converts to:

dP1

dt
= ΩP2,

dP2

dt
= −ΩP1 + ωdP3,

dP3

dt
= −ωdP2,

(17)

dP11

dt
= 2ΩP12 + 2ωdP23,

dP22

dt
= −2ΩP12,

dP33

dt
= −2ωdP23,

(18)

dP12

dt
= −Ω (P11 − P22) + ωdP13,

dP13

dt
= ΩP23 − ωdP12,

dP23

dt
= −ΩP13 − ωd(P22 − P33).

(19)

From (17-19) it follows that presence of the nonzero EDM makes the vertical component P3 of vector
polarization oscillating with the frequency of (g − 2) precession Ω.

According to the idea [1] these oscillations can be eliminated if the deuteron velocity is modulated
with the frequency Ω:

v = v0 + δv sin (Ωt+ ϕf ) (20)

here ϕf is the phase of forced oscillations of the velocity.

As Eeff depends on ~β = ~v/c it also appears modulated:

Eeff = E0
eff + δEeff sin (Ωt+ ϕf ) (21)

Therefore ωd =
dEeff

~
is also modulated with the same frequency. This makes the product

ωdP2 ∼ sin2(Ωt + ϕf ). Therefore averaging this value over the period of (g − 2) precession gives
the result time-independent (i.e. dP3

dt
= const) and P3(t) = P3(0) + const · t. For better measurement

conditions it is important to make P3(0) = 0. This is the reason to chose particle spin to be in the
horizontal plane.

All the above reasoning makes dP33

dt
∼ const, too. Therefore, P33 also linearly grows with time

P33(t) = P33(0) + const · t. However, if the spin lays in the horizontal plane P33(0) 6= 0.
It is important to note (see below the section 4.2) that if the spin orientation corresponds to

cos2 ϑ = 1
3 (cos ϑ =

√

1
3 , sinϑ =

√

2
3 ) then the component P33(0) = 0, while P3(0) 6= 0.

Therefore taking ϑ corresponding to cos ϑ =
√

1
3 we can use the component P33 for EDM mea-

surements, too.
Let us consider the contribution from the electric and magnetic tensor polarizabilities. Then

instead the system (17-19) we should consider the system (11-13)

6



dP1

dt
= ΩP2 − Ωµ

TP23,

dP2

dt
= −ΩP1 + (Ωµ

T − ΩT )P13 + ωdP3,

dP3

dt
= ΩTP12 − ωdP2,

(22)

dP11

dt
= 2ΩP12 + 2ωdP23,

dP22

dt
= −2ΩP12,

dP33

dt
= −2ωdP23,

(23)

dP12

dt
= −Ω (P11 − P22)− Ω′

TP3 + ωdP13,

dP13

dt
= ΩP23 +Ω′

TP2 − Ω′µ
T P2 − ωdP12,

dP23

dt
= −ΩP13 +Ω′µ

T P1 − ωd(P22 − P33).

(24)

Some interesting implications follow from (22-24). As it was already mentioned above in the experi-
ments for EDM search it is planned to measure growth of the vertical component of the polarization
vector P3.

According to (22) time dependence of the vertical component of the vector polarization P3 is
described by the equation

dP3

dt
= ΩTP12 − ωdP2 (25)

As it can be seen the time dependence of P3 is determined by both the EDM and tensor polarizability
of deuteron. It is interesting that the derivative of the tensor polarization component P33 does not
contain contributions from tensor electric polarizability and is proportional to the EDM only:

dP33

dt
= −2ωdP23 (26)

Therefore, it is important to measure the component P33, too. According to the above spin orientation
for this case is determined by the condition cos2 ϑ = 1

3 .

4.1 Contribution from the tensor magnetic polarizability to deuteron spin oscil-

lation

Contributions to spin rotation and oscillations from EDM and polarizabilities are small. Therefore,
they, being analyzed, could be considered as perturbations to the full system (22-24) and the role of
each could be studied separately.

The system of equations considering contribution from the tensor magnetic polarizability βT is as
follows:

dP1

dt
= ΩP2 − Ωµ

TP23,

dP2

dt
= −ΩP1 +Ωµ

TP13,

dP13

dt
= ΩP23 − Ω′µ

T P2,

dP23

dt
= −ΩP13 +Ω′µ

T P1

(27)
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Introducing new variables P+ = P1 + iP2 and G+ = P13 + iP23 and recomposing equations (27) to
determine P+ and G+ we obtain:

dP+

dt
= −iΩP+ + iΩµ

TG+,

dG+

dt
= −iΩG+ + iΩ′µ

T P+,

or

idP+

dt
= ΩP+ − Ωµ

TG+,

idG+

dt
= ΩG+ − Ω′µ

T P+,

Let us search P+, G+ ∼ eiωt then (28) transforms as follows:

ωP̃+ = ΩP̃+ − Ωµ
T G̃+,

ωG̃+ = ΩG̃+ − Ω′µ
T P̃+.

The solution of this system can be easily find:

(ω − Ω)2 − Ωµ
TΩ

′µ
T = 0 (28)

that finally gives

ω1,2 = Ω±
√

Ωµ
TΩ

′µ
T (29)

Rewriting the solution

P+(t) = c1e
−iω1t + c2e

−iω2t = |c1|e−i(ω1t−δ1) + |c2|e−i(ω2t−δ2) (30)

Therefore,
P1(t) = |c1| cos(ω1t− δ1) + |c2| cos(ω2t− δ2) (31)

P2(t) = −|c1| sin(ω1t− δ1)− |c2| sin(ω2t− δ2) (32)

According to (31,32)the nonzero deuteron tensor magnetic polarizability makes the spin rotating
with two frequencies ω1 and ω2 instead of Ω and, therefore, experiences beating with the frequency

∆ω = ω1 − ω2 = 2
√

Ωµ
TΩ

′µ
T =

βTB2
eff

~
.

Let us recall now that EDM interaction with the electric field makes the deuteron spin rotating
around the direction of this field and leads to appearance of P3 component proportional to P2(t)

dP3

dt
∼ −ωdP2 (33)

Therefore,

dP3

dt
= ωd (|c1| sin(ω1t− δ1) + |c2| sin(ω2t− δ2)) (34)

According to the idea [1] to measure the EDM the particle velocity (v = v0 + δv sin (Ωf t+ ϕf ))
should be modulated with the frequency Ωf close to the frequency Ω of (g − 2) precession.
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If the magnetic polarizability is equal to zero, then ω1 = ω2 = Ω and spin rotates in the horizontal
plane with the frequency Ω. In this case velocity modulation with the same frequency Ωf = Ω gives

dP3

dt
∼ sin2(Ωt) (35)

and the vertical component P3 linearly grows with time.
However, ω1 6= ω2 and velocity modulation, for example, with the frequency Ω = ω1 provides for

slow spin oscillation with the frequency ω1 − ω2 instead of linear growth.
According to the evaluation [6] the tensor magnetic polarizability βT ∼ 2 · 10−40, therefore the

beating frequency ∆ω ∼ 10−5 in the field B ∼ 104 gauss.
Measurement of the frequency of this beating makes possible to measure the tensor magnetic

polarizability of the deuteron (nuclei).
Thus, due to the presence of tensor magnetic polarizability the the horizontal component of spin

rotates around ~B with two frequencies ω1, ω2 instead of expected rotation with the frequency Ω.
This is the reason for the component P3 caused by the EDM to experience the similar oscillations.

Therefore, particle velocity modulation with the frequency Ω provides for eliminating oscillation with
Ω frequency, but P3 oscillations with the frequency ∆ω rest (similarly P33). Study of these oscillations
is necessary because they can distort the EDM measurements.

4.2 Contribution from the tensor electric polarizability to deuteron spin oscilla-

tion

Let us consider now contribution caused by the tensor electric polarizability. From the system (12) it
follows

d(P11−P22)
dt

= 4ΩP12,

d2P12

dt2
= −Ωd(P11−P22)

dt
− Ω′

T
dP3

dt
= −(4Ω2 +ΩTΩ

′
T )P12.

(36)

Thus we have the equation
d2P12

dt2
+ ω2

12P12 = 0 (37)

where ω12 =
√

4Ω2 +ΩTΩ′
T ≈ 2Ω, because ΩTΩ

′
T ≪ Ω2.

The solution for this equation can be found in the form:

P12 = c1 cosω12t+ c2 sinω12t (38)

Let us find coefficients c1 and c2: when t = 0 the equation (38) gives c1 = P12(0). The coefficient
c2 can be found from

d(P12)

dt
(t → 0) = ω12c2, (39)

therefore

c2 =
1

ω12

d(P12)

dt
(t → 0), (40)

From the equation (13)

dP12

dt
(t → 0) = −Ω (P11(t → 0)− P22(t → 0)) , (41)

that

c2 = −P11 − P22

2
, (42)
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and

P12 = P12(0) cos ω12t−
P11 − P22

2
sinω12t (43)

As a result we can write the following equation for the vertical component of the spin P3:

dP3

dt
= ΩTP12(t) = ΩT [P12(0) cos 2Ωt−

P11(0)− P22(0)

2
sin 2Ωt] (44)

As it can be seen the vertical component of the spin oscillates with the frequency 2Ω.
But it should be reminded that according to the equations (7) interaction of the EDM with an

electric field causes oscillations of the vertical component of the spin with the frequency Ω. According
to the idea [1] these oscillations can be eliminated if the deuteron velocity is modulated with the
frequency Ωf that should be taken as close to the frequency Ω as possible:

v = v0 + δv sin (Ωf t+ ϕf ) (45)

As a result Eeff depends on ~β = ~v/c it also appears modulated:

Eeff = E0
eff + δEeff sin (Ωf t+ ϕf ). (46)

The equation describing contribution from the tensor electric polarizability and EDM to P3 looks
like (11)

dP3

dt
= ΩTP12 − ωdP2. (47)

As P2 oscillates with the frequency Ω, then the product ωdP2 contains the non-oscillating terms and
contribution to P3 caused by EDM linearly grows with time, if Ωf = Ω. If Ωf 6= Ω contribution to P3

caused by EDM slowly oscillates with the frequency Ωf − Ω.
It is important that modulation of the velocity v = v0 + δv sin (Ωf t+ ϕf ) results in oscillation of

E2
eff also oscillates with time and appears proportional to sin2 (Ωf t+ ϕf ). As a result the contribution

to P3 caused by the tensor electric polarizability can be expressed as:

dP3

dt
∼ ∆ΩT sin2 (Ωf t+ ϕf )[P12(0) cos 2Ωt−

P11(0)− P22(0)

2
sin 2Ωt] (48)

i.e.
dP3

dt
∼ −1

2
∆ΩT cos (2Ωf t+ 2ϕf )[P12(0) cos 2Ωt−

P11(0) − P22(0)

2
sin 2Ωt] (49)

According to (49) for a partially polarized deuteron beam the derivative dP3

dt
depends on the

deuteron polarization components P12 and P11(0)−P22

2
For simplicity let us consider a deuteron beam in pure polarization state. In this case the com-

ponents P12 and P11(0)−P22

2 can be written using the explicit expression for the spin wavefunctions.
Suppose ~n(ϑ,ϕ) is the unit vector directed along the deuteron spin (ϑ and ϕ are the polar and azimuth
angles (see Fig.1)). So the spin wavefunction that describes the deuteron spin state with the magnetic
quantum number m = 1 can be expressed as follows (in the Cartesian basis):

χ1(ϑ,ϕ) =





ax
ay
az



 = − 1√
2





cos ϑ cosϕ− i sinϕ
cos ϑ sinϕ+ i cosϕ

− sinϑ



 (50)

Polarization vector can be written as

~P = 〈Ŝ〉 = χ+
1 Ŝχ1 = i[~a× ~a∗] (51)
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and components of polarization tensor

〈Pik〉 = χ+
1 Q̂ikχ1 = −3

2
{aia∗k + aka

∗
i −

2

3
}, (52)

where Q̂ik is the spin tensor of rank two. Therefore,

P12 =
3

4
sin 2ϕ sin2 ϑ, (53)

P11 − P22

2
=

3

4
cos 2ϕ sin2 ϑ, (54)

P33 = −3

2

(

sin2 ϑ− 2

3

)

. (55)

Using (49,53,54) one can obtain:

dP3

dt
∼ −3

8
∆ΩT sin2 ϑ cos(2Ωf t+ 2ϕf )× [sin 2ϕ cos 2Ωt− cos 2ϕ sin 2Ωt] (56)

From (56) it follows that dP3

dt
slowly oscillates with the frequency (Ωf − Ω)

In the ideal case, when Ωf = Ω (as it is proposed in [1] for EDM measurement) (56) converts to

dP3

dt
= −3

8
∆ΩT sin2 ϑ cos(2Ωt+ 2ϕf ) sin(2Ωt− 2ϕ) (57)

In the general case, when the phases ϕf and ϕ are arbitrary, (57) contains terms that do not depend
on time and, therefore, P3 linearly grows with time like the signal from the EDM does.

It is interesting that making ϕf = −ϕ gives

dP3

dt
∼ cos(2Ωt− 2ϕ) sin(2Ωt− 2ϕ) =

1

2
sin(4Ωt− 4ϕ) (58)

that makes this contribution to P3 quickly oscillating and depressed. But even in this ideal case it rests
the contribution caused by the tensor magnetic polarizability (5), in real situation Ω 6= Ωf , though.

Measurement of these contribution provides to measure the tensor electric polarizability.
According to the evaluations [6] αT ∼ 10−40 cm3 , therefore for the field Eeff = B ∼ 104 gauss

the frequency ΩT ∼ 10−5 sec−1. When considering modulation we should estimate ∆ΩT ∼ ΩT (
δ
v0
)
2
,

then suppose ( δ
v0
)
2 ∼ 10−2 − 10−3 we obtain ∆ΩT ∼ 10−7 − 10−8 sec−1, that exceeds the magnitude

of ωd for the deuteron EDM d = 10−29 e · cm.

5 Conclusion

In the present paper influence of tensor electric and magnetic polarizabilities on spin evolution in the
resonance deuteron EDM experiment is considered in details.

It is shown that besides EDM the electric and magnetic polarizabilities also contribute to the
vertical spin component P3. Moreover, the electric polarizability contributes to the P3 component
even when the deuteron EDM is supposed to be zero and thereby the electric polarizability can
imitate the EDM contribution. It is shown that unlike the vertical component of the spin P3 the
component P33 of polarization tensor does not contain contribution from the electric polarizability,
whereas contribution from the magnetic polarizability reveals only when the deuteron EDM differs
from zero.

Moreover, it is also shown that when the angle ϑ between the spin direction and the vertical axis

meets the condition sinϑ =
√

2
3 (cos ϑ =

√

1
3), the initial value of P33 appears P33(0) = 0. As a result,
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EDM contribution to the measured signal linearly growth in time starting from zero that is important
for measurements.

Therefore, measurement of the P33 component of deuteron tensor polarization seems to be of
particular interest, especially because the nonzero component P33 appearance on its own indicates
the EDM presence (in contrast to the P3 component, which appearance can be aroused by the tensor
electric polarizability, rather than EDM).
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