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Abstract

The quark-antiquark gauge invariant Green function is studied through its dependence

on Wilson loops. The latter are saturated, in the large-Nc limit and for large contours,

by minimal surfaces. A covariant bound state equation is derived which in the center-

of-mass frame and at equal-times takes the form of a Breit–Salpeter type equation. The

large-distance interaction potentials reduce in the static case to a confining linear vector

potential. In general, the interaction potentials involve contributions having the structure

of flux tube like terms.
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The Wilson loop [1] is defined as the trace in color space of the path-ordered phase

factor of the gluon field on a closed contour C:

Φ(C) =
1

Nc

trcPe
−ig

∮

C
dxµAµ(x)

. (1)

Its vacuum expectation value, denoted W (C),

W (C) = 〈Φ(C)〉, (2)

is a functional of the contour C. Loop equations were obtained and studied by Polyakov

[2] and Makeenko and Migdal [3, 4, 5]. The Wilson loop essentially satisfies two types

of equation, which are equivalent to the QCD equations of motion: The Bianchi identity

and the loop equations (or Makeenko–Migdal equations). A third property, factorization,

is obtained in the large-Nc limit [6] for two disjoint contours: W (C1, C2) =W (C1)W (C2).

Further simplification is obtained in the large-Nc limit of the theory. In that limit,

for large contours, i.e., at large distances, nonperturbative asymptotic solutions to the

Wilson loops are represented by the minimal surfaces having as supports the loop contours

[3, 7]. Therefore, if one is interested only in the large-distance properties of the theory,

saturation of the Wilson loop averages by minimal surfaces provides a correct description

of the theory in this regime. In that case, the Wilson loop average can be represented by

the following functional of the contour C:

W (C) = e−iσA(C), (3)

where σ is the string tension and A(C) the minimal area with contour C.

Minimal surfaces also appear as natural solutions to the Wilson loop averages in two-

dimensional gauge theories [8].

To deal with the quarkonium bound state problem, one starts with the two-particle

gauge invariant Green function for quarks q1 and q2 with different flavors and with masses

m1 and m2:

G(x1, x2; x
′

1, x
′

2) ≡ 〈ψ2(x2)U(x2, x1)ψ1(x1)ψ1(x
′

1)U(x
′

1, x
′

2)ψ2(x
′

2)〉A,q1,q2. (4)

Here, U(x2, x1) is the path-ordered phase factor,

U(x2, x1) = Pe
−ig

∫ x2

x1

dzµAµ(z)
, (5)

taken along the straight-line x1x2 (and similarly for U(x′1, x
′

2)). Integrating in the large-Nc

limit with respect to the quark fields, one obtains:

G(x1, x2; x
′

1, x
′

2) = −〈trc U(x2, x1)S1(A; x1, x
′

1)U(x
′

1, x
′

2)S2(A; x
′

2, x2)〉A, (6)
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where S1(A) and S2(A) are the quark and antiquark propagators in the presence of the

external gluon field and trc designates the trace with respect to the color group. The

quark propagator S(A) satisfies the equation

(
iγ.∂x −m− gγ.A(x)

)
S(A; x, x′) = iδ4(x− x′). (7)

At this stage, the Green function G can schematically be represented as in Fig. 1.

x1 x
′

1

x2

x
′

2

U

S2(A)

S1(A)

U

Figure 1: Schematic representation of the two-particle Green function.

In order to make the Wilson loop structure of G apparent, we adopt for the quark

propagator in the external gluon field a representation based on an explicit use of the

phase factor along straight lines [7]. Introducing the gauge covariant composite object

S̃(A; x, x′), made of a free fermion propagator S0(x − x′) (without color group content)

multiplied by the path-ordered phase factor U(x, x′) [Eq. (5)] taken along the straight

segment x′x,

S̃(A; x, x′) ≡ S0(x− x′)U(x, x′), (8)

one shows that the quark propagator S(A; x, x′) in the external gluon field satisfies the

following functional integral equation in terms of S̃:

S(A; x, x′) = S̃(A; x, x′)−
∫
d4x′′S(A; x, x′′)γα

∫ 1

0
dλ (1− λ)

δ

δxα(λ)
S̃(A; x′′, x′), (9)

where the segment x′′x′ has been parametrized with the parameter λ as x(λ) = (1−λ)x′′+
λx′ and where the operator δ/δxα(λ) acts on the factor U of S̃, along the internal part of

the segment x′′x′, with x′ held fixed. That equation is diagrammatically represented in

Fig. 2.

A similar equation in which the roles of x and x′ are interchanged also holds. Those

equations lead to iteration series for S in which the gauge covariance property is main-

tained at each order of the iteration.

Use of the above representations for the quark propagators in Eq. (6) leads for the

two-particle Green function to a series expansion where each term contains a Wilson loop
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= +
S̃(A)

S̃(A)
S(A)

S(A)

Figure 2: Diagrammatic representation of the integral equation satisfied by the quark

propagator in the external gluon field. The cross represents the action of the functional

derivative δ/δx(λ).

along a skew-polygon:

G =
∞∑

i,j=1

Gi,j, (10)

where Gi,j represents the contribution of the term of the series having (i − 1) points of

integration between x1 and x′1 (i segments) and (j − 1) points of integration between x2

and x′2 (j segments). We designate by Ci,j the contour associated with the term Gi,j. A

typical configuration for the contour of G4,3 is represented in Fig. 3.

y2

x1
y3

z2

A4,3

x2

z1 x′2

x′1

y1

Figure 3: Contour C4.3 associated with the term G4,3. A4,3 is the minimal surface with

contour C4,3.

Each segment of the quark lines supports a free quark propagator and except for the

first segments (or the last ones, depending on the representation that is used) the Wilson

loop is submitted to one functional derivative on each such segment. One then uses for

the averages of the Wilson loops appearing in the above series the representation with

minimal surfaces [Eq. (3)].

The Green function G satisfies the following equation with respect to the Dirac oper-

ator of particle 1 acting on x1:

(iγ.∂(x1) −m1)G(x1, x2; x
′

1, x
′

2) = −i〈trc U(x2, x1)δ4(x1 − x′1)U(x
′

1, x
′

2)S2(x
′

2, x2)〉A
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−iγα〈trc
∫ 1

0
dσ(1− σ)

δU(x2, x1)

δxα(σ)
S1(x1, x

′

1)U(x
′

1, x
′

2)S2(x
′

2, x2)〉A, (11)

where the segment x1x2 has been parametrized with the parameter σ as x(σ) = (1 −
σ)x1 + σx2; furthermore, the operator δ/δxα does not act on the explicit boundary point

x1 of the segment, this contribution having been cancelled by the contribution of the

gluon field A coming from the quark propagator S1. A similar equation also holds with

the Dirac operator of particle 2 acting on x2. Representation (9) for the quark propagator

can then be used in the above equation and its partner satisfied by the two-particle Green

function G. One obtains two compatible equations for G where the right-hand sides

involve the series of the terms Gi,j of Eq. (10) and their functional derivative along the

segment x1x2. In order to obtain bound state equations, it is necessary to reconstruct

in the right-hand sides the bound state poles contained in G [9]. In x-space, bound

states are reached by taking the large separation time limit between the pair of points

(x1, x2) and (x′1, x
′

2) [10]. To produce a bound state pole, it is necessary that there be a

coherent sum of contributions coming from each Gi,j, since the latter, taken individually,

do not have poles. Each Gi,j involves a corresponding minimal surface Ai,j on the contour

of which act various functional derivatives. Those can be classified according to their

possible irreducibility properties. Reducible contributions are those which are parts of

the definition of the series of G. It does not seem possible to sum all these terms to

reproduce exactly G with some kernel acting on it in the right-hand sides. However, for

large separation time limits one can isolate terms that contribute to the pole terms. One

notices that the derivative along the segment x1x2 acts on areas Ai,j with contour Ci,j

which are different from one term of the series to the other (the number of segments being

different). To have a coherent sum of those contributions it is necessary to expand each

such derivative term around the derivative of the lowest-order contour C1,1, represented

in Fig. 4.

A1,1

x2
x′2

x′1
x1

Figure 4: The lowest-order contour C1,1 and its minimal surface A1,1.

It is that term that can be factorized and can lead through the summation of the
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factored series to the reappearance of the Green function G and to its poles. The re-

maining terms do not lead to pole terms. Similarly, two derivative contributions should

be expanded around the lowest-order contribution coming from the contours C2,1 or C1,2,

and so forth.

In general, the derivative of the areas along x1x2 depends among others on the slope

of the areas in the orthogonal direction to x1x2. One then associates that slope with

the quark momenta. Taking then the large separation time limit and equal times in the

center-of-mass frame, one ends up with a covariant three-dimensional equation, having

the structure of a Breit–Salpeter type equation [11, 12] and where the interaction kernels

or potentials are given by various functional derivatives involving at least one derivative

along the segment x1x2. Keeping for the potentials the terms containing one functional

derivative of the area A1,1 [Fig. 1], the equation takes the form [7]

[
P0 − (h10 + h20)− γ10γ

µ
1A1µ − γ20γ

µ
2A2µ

]
ψ(x) = 0, (12)

where ψ is a 4×4 matrix wave function of the relative coordinate x = x2−x1 considered at

equal times, P0 the center-of-mass total energy and h10 and h20 the quark and antiquark

Dirac hamiltonians; the Dirac matrices of the quark (with index 1) act on ψ from the left,

while the Dirac matrices of the antiquark (with index 2) act on ψ from the right. The

potentials A1 and A2 are defined through the equations

A1µ = σ
∫ 1

0
dσ′(1− σ′)

δA1,1

δxµ(σ′)
, A2µ = σ

∫ 1

0
dσ′ σ′

δA1,1

δxµ(σ′)
, (13)

x(σ′) belonging to the segment x1x2.

The time components of A1 and A2 add up in the wave equation. For their sum, one

has the expression (in the c.m. frame)

A10 + A20 = σr
E1E2

E1 + E2

{( E1

E1 + E2

ǫ(p10) +
E2

E1 + E2

ǫ(p20)
)

×
√
r2

L2


 arcsin

( 1

E2

√
L2

r2

)
+ arcsin

( 1

E1

√
L2

r2

)



+(ǫ(p10)− ǫ(p20))
( E1E2

E1 + E2

)( r2

L2

)(√

1− L2

r2E2
2

−
√

1− L2

r2E2
1

)}
.

(14)

Here, r =
√
x2, Ea =

√
m2

a + p2, a = 1, 2, with ma the quark masses, p the c.m. momen-

tum, p = (p2 − p1)/2, L the c.m. orbital angular momentum, and ǫ(p10) and ǫ(p20) the

energy sign operators of the free quark and the antiquark, respectively:

ǫ(pa0) =
ha0
Ea

, a = 1, 2. (15)
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The space components of A1 and A2 are orthogonal to x. The expression of A1 is (in

the c.m. frame):

A1 = −σr E1E2

E1 + E2

{
r2

2L2

E1E2

E1 + E2
pt

×
√
r2

L2


 arcsin

( 1

E2

√
L2

r2

)
+ arcsin

( 1

E1

√
L2

r2

)



+
1

E2
pt
( E1E2

E1 + E2

)( r2

L2

)(√

1− L2

r2E2
2

−
√

1− L2

r2E2
1

)

−1

2
pt
( r2

L2

)( E1

E1 + E2

√

1− L2

r2E2
2

+
E2

E1 + E2

√

1− L2

r2E2
1

) }
. (16)

Here, pt is the transverse part of p with respect to x:

pt = p− x
1

x2
x.p. (17)

The expression of A2 is obtained from that of A1 by an interchange in the latter of the

indices 1 and 2 and a change of sign of pt.

For sectors of quantum numbers where L2 = 0, the expressions of the potentials

become:

A10 + A20 =
1

2
(ǫ(p10) + ǫ(p20))σr, (18)

A1 = − 1

E1E2

(1
3
(E1 + E2)−

1

2
E1

)
ptσr,

A2 = +
1

E1E2

(1
3
(E1 + E2)−

1

2
E2

)
ptσr. (19)

The potentials are generally momentum dependent operators and necessitate an ap-

propriate ordering of terms.

From the structure of the wave equation (12) and the expressions of the potentials, one

deduces that the interaction is confining and of the vector type. However, compared to the

conventional timelike vector potential, it has additional pieces of terms contributing to the

orbital angular momentum dependent parts. A closer analysis of those terms shows that

they can be interpreted as being originated from the moments of inertia of the segment

x1x2 carrying a constant linear energy density equal to the string tension. The interaction

potentials are therefore provided by the energy-momentum vector of the segment joining

the quark to the antiquark, in similarity with the color flux tube picture of confinement.

An analogous equation had also been proposed by Olsson et al. on the basis of a model

where the quarks are attached at the ends of a straight string or a color flux tube [13, 14].

A similar conclusion had also been reached by Brambilla, Prosperi et al. on the basis of
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the analysis of the relativistic corrections to the nonrelativistic limit of the Wilson loop

[15, 16, 17].

For heavy quarks, one can expand equation (12) around the nonrelativistic limit and

obtain the hamiltonian to order 1/c2 [7].

The relativistic corrections to the interquark potential arising from the Wilson loop

were analyzed and evaluated in the literature by Eichten and Feinberg [18], Gromes [19],

Brambilla, Prosperi et al. [15, 16, 17], Brambilla, Pineda, Soto and Vairo [20].

The Wilson loop approach was also used for the study of quarkonium systems by

Dosch, Simonov et al. with the use of the stochastic vacuum model [21].

In conclusion, the saturation of the Wilson loop averages in the large-Nc limit by

minimal surfaces provides a systematic tool for investigating the large-distance dynamics

of quark-antiquark bound state systems.
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