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We explore the quark properties at finite temperature near but above the critical temperature
of the chiral phase transition. We investigate the effects of the precursory soft mode of the phase
transition on the quark dispersion relation and the spectral function. It is found that there appear
novel excitation spectra of quasi-quarks and quasi-antiquarks with a three-peak structure, which are
not attributed to the hard-thermal-loop approximation. We show that the new spectra originate
from the mixing between a quark (anti-quark) and an anti-quark hole (quark hole) caused by a
“resonant scattering” of the quasi-fermions with the thermally-excited soft mode which has a small
but finite excitation energy.

I. INTRODUCTION

It has been being revealed that the QCD matter above
the chiral and deconfined phase transition at high tem-
perature (T ) seems unexpectedly rich in physics. The
data from Relativistic Heavy-Ion Collider (RHIC) at
BNL[1], for instance, indicate that the matter produced
in this region shows robust collective flows, which can not
be explained by the perturbative QCD[2]. Analyses of
the elliptic flow at low pT suggest the created QCD mat-
ter has an almost vanishingly small viscosity[3], which
can be naturally understood only when the created mat-
ter near the critical temperature (Tc) is a strongly cou-
pled system. Recent lattice simulations of QCD, though
in the quenched level, also suggested that the lowest char-
monium states seem to survive well above Tc as spectral
peaks [4]; namely, the hadronic charmonium states may
have a longer life than might be originally expected[5].

In short, one may say that the condensed matter

physics of the QCD matter in the high-temperature phase

of the QCD phase transitions is now making a form.
We should like notice here that such a condensed matter
physics was already anticipated some twenty years ago[6];
the existence of hadronic elementary excitations above Tc
was suggested for the first time for the light quark sector,
on the basis of the chiral symmetry and the assumption
that the phase transition is a second order or weak first
order. According to the wisdom obtained in the con-
densed matter physics, if the phase transition is such a
type, then one can expect the existence of specific elemen-
tary excitations which are coupled to the fluctuations of
the order parameter. These excitation modes are known
in condensed matter physics as soft modes associated
with the phase transition. Since the soft modes above
Tc in the chiral transition have the same quantum num-
ber as the sigma meson and the pion, so they may called
the ‘para-sigma(σ) meson’ and the ‘para-pion(π)’[7]; see
also [8] for the instanton liquid approach. In this Letter,
we show that the quark spectra just above Tc of the chi-
ral transition also are quite different from the free quark
spectra and show an interesting behavior, as a critical

phenomenon of the phase transition.

It has been shown very recently [9, 10, 11] that the pre-
cursory diquark fluctuations[12] are developed so greatly
to form a soft mode at high density but at moderate
temperature that the quark spectrum is also significantly
modified by dressing the soft mode; there arises a de-
pression of the quark spectrum around the Fermi surface
leading to the pseudogap in the density of states (DOS)
of quarks.

It is thus highly expected that the precursory soft
modes of the chiral phase transition should also strongly
affect the quark spectrum near Tc. In this Letter, we
investigate how such soft modes composed of the light
quarks affect in turn the quark properties, i.e, the dis-
persion relations and the spectral function[13]. Needless
to say, it is important to know the properties of quarks
(and gluons) for studying, for example, the possible for-
mation of hadronic bound states of quarks, as is done in
[14, 15, 16], too. We shall show that the coupling be-
tween a quark and a hole of the thermally excited anti-
quarks[17] becomes significant through the coupling with
the thermally excited soft modes, which leads to an in-
teresting complications to the quark spectrum. We also
give an intuitive account for the formation of such a spec-
tra and the relation to the plasmino spectrum found at
extremely high temperatures[17, 18, 19].

Here we consider the chiral limit (mu = md = 0) in
the two flavors which leads to the second order phase
transition at low density. This is because we can study
the fluctuation effects to the quark spectrum genuinely
in this case and the finite quark mass effects may make
the mechanism of the quark spectrum more complicated.
The analysis with finite current quark masses is left as a
future work. We shall also confine ourselves to the case
of the vanishing chemical potential in this paper.

http://arxiv.org/abs/hep-ph/0510167v2
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II. SOFT MODES AND QUARK SPECTRAL

FUNCTION

To describe the quark matter near Tc, we employ the
two-flavor Nambu–Jona-Lasinio (NJL) model [20]

L = ψ̄i∂/ψ +GS [(ψ̄ψ)
2 + (ψ̄iγ5~τψ)

2], (1)

as an effective model of low-energy QCD[21] with ~τ being
the flavor SU(2) Pauli matrices. The coupling constant
GS = 5.5 GeV−2 and the three dimensional cutoff Λ =
631 MeV are taken from Ref. [21]. This model gives
the second order transition at Tc = 193.5MeV. In the
following discussions, we limit our attention to the system
at T higher than Tc where chiral symmetry is restored.
Since the basic ingredient for the following discussions

is the existence of the soft modes associated with the
chiral transition at T above but near Tc [6], we first reca-
pitulate the results in [6] with some elaboration needed
for the subsequent discussions.
We denote the quark-antiquark retarded Green func-

tions in the scalar and pseudo-scalar channels as
DR

σ (p, ω) and DR
π (p, ω) with the subscripts σ and π,

because they have the same quantum numbers as the
σ meson and the pion, although they are excitations in
the Wigner phase of the chiral symmetry. The collective
modes in these channels are called ‘para-σ’ and ‘para-
π’, respectively. The DR

σ (p, ω) and DR
π (p, ω) are ob-

tained in the imaginary-time formalism: The correspond-
ing imaginary-time propagators in the random phase ap-
proximation(RPA) read

Dσ(p, νn) = Dπ(p, νn) = −
2GS

1 + 2GSQ(p, νn)
, (2)

where νn = 2πnT is the Matsubara frequency for bosons
and Q(p, νn) is the one-loop quark-antiquark polariza-
tion function,

Q(p, νn) = T
∑

m

∫

d3q

(2π)3
Tr[G0(q, ωm)G0(p+q, νn+ωm)],

(3)
where G0(p, ωn) = [iωnγ0 − p · γ]−1 is the free quark
propagator with ωn = (2n + 1)πT being the Matsubara
frequency for fermions; the trace is taken over color, fla-
vor and Dirac indices.
With the standard analytic continuation, we

have the retarded Green functions, DR
σ,π(p, ω) =

Dσ,π(p, νn)|iνn=ω+iη. The spectral functions in the
scalar and the pseudo-scalar channels are given by

ρσ,π(p, ω) = −
1

π
ImDR

σ,π(p, ω), (4)

respectively.
For later convenience, we show in Fig. 1 the spectral

function ρσ,π(p, ω) of the ‘para-σ(π)’ mode as a function
of the energy ω and momentum p for some reduced tem-
peratures ε ≡ (T − Tc)/Tc. Although not shown here,

the spectral function ρσ,π(p, ω) has a strength for neg-
ative energies also and satisfies the symmetry property;
ρσ,π(p,−ω) = −ρσ,π(p, ω): One can see that there ap-
pears a pronounced peak in ρσ,π(p, ω) in the time-like
region. The peak position can be expressed approxi-
mately as ω ≃ ±

√

m∗
σ(T )

2 + |p|2 ≡ ±ωs(p;T ) with a
T -dependent ‘mass’ m∗

σ(T ), and as T approaches Tc the
width of the peaks and m∗

σ(T ) become smaller, which
means that there exist the soft modes for the chiral tran-
sition, as was first shown in [6].
Some remarks are in order here: (1) The present soft

modes are a propagating mode with a finite frequency
or ‘mass’ m∗

σ(T ) even at p = 0, in contrast to those
in the (color-)superconductivity where the soft mode is
almost diffusive with a large strength around ω = 0[10].
This difference will be found to cause a quite different
behavior for the dressed quark spectra. (2) The fact that
the spectral function ρσ,π has sharp peaks around ω =
±ωs(p;T ) at T close to Tc means that the soft modes may
be well described as elementary scalar and pseudo-scalar
fields with the mass m∗

σ(T ) in this T region. (3) The
‘para-σ(π)’ mode has a strength mostly in the time-like
region, although there is a tiny strength also in the space-
like region.
The existence of the collective modes composed of

quark and anti-quark in turn modifies the quark prop-
erties. Thus the problem becomes a self-consistent one
where the collective modes should be constructed with
the dressed quarks and anti-quarks. However, we take
in this exploring work the non-selfconsistent approach
where the collective modes are constructed by the un-
dressed quarks and anti-quarks; namely, the quark self-
energy ΣR(p, ω) is evaluated in the RPA as follows, in
the imaginary time formalism,

Σ̃(p, ωn) = −T
∑

m

∫

d3q

(2π)3
D(p−q, ωn−ωm)G0(q, ωm),

(5)
where D(p, νn) = Dσ(p, νn) + 3Dπ(p, νn). Fig. 2 is the
diagrammatic expression for the quark Green function.
After the summation of the Matsubara frequency and
the analytic continuation, iωn → ω + iη, we obtain the
quark self-energy in the real time,

ΣR(p, ω)

= 2

∫

d4q

(2π)4
Λ+(q)γ

0 ImD
R(p− q, q0)

q0 − ω + |q| − iη

× [(1 + n)(1− f) + nf ]

+2

∫

d4q

(2π)4
Λ−(q)γ

0 ImD
R(p− q, q0)

q0 − ω − |q| − iη

× [(1 + n)f + n(1− f)] (6)

with DR(p, ω) = D(p, iνn)|iνn→ω+iη, the projection op-
erators Λ±(q) = (1 ± γ0γ · q/|q|)/2, and the Bose and
Fermi distribution functions n = (exp(q0/T )− 1)−1 and
f = (exp(|q|/T ) + 1)−1.
Using the projection operators Λ±, the retarded quark
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ε = 0.1 ε = 0.2 ε = 0.5

FIG. 1: The spectral function of the ‘para-σ(π)’ mode ρσ,π as a function of the energy and momentum for the reduced
temperature ε = 0.1, 0.2 and 0.5, from the far left to the right. When T is close to Tc, there appear well developed peaks
yielding the existence of collective modes or well defined elementary excitations. As T goes high away from Tc the peaks become
obscure and eventually disappear.

FIG. 2: The upper diagram defines the collective modes,
i.e., ‘para-σ(π)’ mode, which are composed of the quark-
antiquarks in RPA and denoted by the wavy line. The lower
diagram defines the quasi-quark which is dressed with the col-
lective modes; the thick and thin straight lines represent the
dressed and free quark, respectively.

Green function is expressed as

GR(p, ω) =
Λ+(p)γ

0

ω − |p| − ΣR
+ + iη

+
Λ−(p)γ

0

ω + |p| − ΣR
− + iη

,

(7)
with ΣR

±(p, ω) = (1/2)TrD[ΣRγ0Λ±(p)] where TrD de-
notes the trace over the Dirac index. Each term in Eq. (7)
defines the quasi-quark and quasi-antiquark spectral
functions, ρ±(p, ω) = −(1/π)Im[ω ∓ |p| − ΣR

±(p, ω)]
−1,

respectively. Remarks are in order here: A (anti-)particle
number at finite T may be supplied either by a genuine
(anti-)quark or by a ‘hole’ of the thermally-excited anti-
quarks(quarks)[17], which implies that both the states or
their mixed states can contribute to ρ+(ρ−).

For later convenience, we define the quasi-dispersion
relations ω = ω±(p) as the zero of the real part
of the inverse of the Green function; ω±(p) ∓ |p| −
ReΣR

±(p, ω±(p)) = 0. This quasi-dispersion relations will
be found useful as an eye-guide of the peaks of ρ±. One
should, however, be warned that ω±(p) does not neces-
sarily represent the real excitation spectrum when the
imaginary part of the Green function is large, since it is
only a zero of the real part of the inverse of the Green
function. The physical dispersion relation should be iden-
tified as the peak position of the energy ω as the function
of the momentum.

III. NUMERICAL RESULTS AND

DISCUSSIONS

Now we shall show the numerical results of the single-
quark spectral function ρ±(p, ω) for several temperatures
above Tc.
In the upper panels of Fig. 3, we show the quark spec-

tral function ρ+(p, ω) for the reduced temperature ε ≡
(T −Tc)/Tc = 0.1, 0.2 and 0.5. We remark that the anti-
quark part ρ− of the spectral function can be figured out
by the symmetric property, ρ−(p, ω) = ρ+(p,−ω). The
upper far-left panel shows the spectral function ρ+(p, ω)
for ε = 0.1 where the system is closest to the critical
point in the present three cases and the soft modes are
well developed as we have just seen in Fig. 1: One can
see a clear three-peak structure in the spectral function.
The detailed peak structure is seen in the contour map of
the spectral function shown in the lower panel in the far-
left. One finds that the quasi-dispersion relation ω±(p)
gives an approximate eye-guide of the peak position of
the spectral function; notice that the dispersion relation
for small momenta p has a negative slope in the negative-
energy region. We remark that although ω±(p) has an
acausal ‘back-bending’-region in the (p, ω)-plane, it does
not correspond to any peak of the spectral function and
hence has no physical significance.
The upper-middle panel of Fig. 3 shows that the three-

peak structure still barely exists even at higher temper-
ature with ε = 0.2; the would-be peak in the negative
energy region has turned to be a ‘bump’ with a smaller
strength. The contour map of the spectral function and
the quasi-dispersion relation in the lower panel show
that the dispersion relation around the origin is some-
what shifted upward and becomes almost a constant as
a function of the momentum. The far-right panels for
ε = 0.5 show that when T is raised further well above
Tc, the three-peak structure disappears completely and
the quark spectral function has a single peak as the free
quark system has, although the quark dispersion relation
is modified at small momenta.
We have now seen that the three-peak structure is the

most characteristic feature in the quark spectra caused
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ε = 0.1 ε = 0.2 ε = 0.5

FIG. 3: The upper panels show the quark spectral function ρ+(p, ω) for the reduced temperatures ε = 0.1, 0.2 and 0.5. The
lower panels show the dispersion relations ω = ω±(p) together with the contour map of ρ±(p, ω): ω+ (ω−) and ρ+ (ρ−) are
shown in the right (left) half of the figures; notice the direction of the momentum scale in the left half plane is opposite to that
of the right half plane.
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FIG. 4: The imaginary and real parts of the quark self-energy,
ImΣR

+(0, ω) and ReΣR
+(0, ω).

by the coupling with the soft modes. To understand the
mechanism of the appearance of the three-peak struc-
ture in the quark spectral function, we show the imag-
inary and real parts of ΣR

+(p = 0, ω) for several values
of ε in the upper and lower panels in Fig. 4. From the
upper panel, one sees that there develop two peaks in
|ImΣR

+| in the positive- and negative-energy regions at

small temperatures, with the peak positions moving to-
ward the origin as T is lowered to Tc. It is found that
the peaks in ImΣR

±(p, ω) in the positive and negative
energy regions essentially correspond to the decay pro-
cesses shown in Fig. 5(a) and (b), respectively, where the
wavy lines represent the soft modes. As noticed before,
when T is close to Tc, the soft modes acquire the charac-
ter of the well-defined elementary excitation with a mass
m∗

σ(T ) and a small width, and thereby the system can
be described by a Yukawa theory with a massless quark
and a boson with a finite but small mass. In fact, we
have confirmed that the essential features obtained here,
including the three-peak structure in the quark spectral
function can be reproduced by such a Yukawa model [22].
The processes in Fig. 5(a) and (b) are also interpreted
as a Landau damping of a quark state due to the colli-
sion with the thermally excited soft modes with the dis-
persion relation ω = ωs(p;T ). One should notice here
that the incident anti-quark line in Fig. 5(a) may de-
scribe a thermally excited antiquark, which disappears
after the collision with the soft modes. But the disap-
pearance of the anti-quark means the creation of a hole
in the anti-quark distribution[17]. The point is that an
‘anti-quark hole’ has a positive quark number. Fig.5(b)
describes the decay process of a quasi-quark state which
is a mixed state of quarks and antiquark-holes to an on-
shell quark via a collision with the soft modes. These
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processes induce a quark-‘antiquark hole’ mixing, which
constitute the physical states in the system with a mod-
ified spectrum. Notice that the closer the T to Tc, more
significant the Landau damping processes shown in Fig 5,
because the thermally excited soft modes are expected to
be abundant.

The mixing mechanism of quarks can be described in
terms of the notion of resonant scattering as in the case
of the (color-)superconductivity [11, 23], although a cru-
cial difference arises owing to the different nature of the
soft modes. In the case of the superconductivity, the
precursory soft mode is diffusion-mode like and has a
strength around ω = 0. A particle (electron or quark)
is scattered by the soft mode and creates a hole, and
vice versa, whose process is called a resonant scattering.
The resonant scattering with the soft mode induces the
mixing between a particle and a hole, and thereby giv-
ing rise to a gap-like structure in the fermion spectrum
around the Fermi energy; correspondingly, the imaginary
part |ImΣR| of the quark self-energy has a single peak
around the Fermi energy ω = 0[10, 11]. In the present
case, the soft modes are propagating modes and have a
strength at finite ω = ±ωs(p;T ) both in the positive- and
negative-energy regions, and hence the resonant scatter-
ings of the quarks with the chiral soft modes give rise
to two peaks in |ImΣR| at finite energies roughly of the
order of m∗

σ(T ) and induce a mixing between a quark
and an antiquark-hole and between an antiquark and a
quark-hole, respectively. Thus the two gap-like struc-
tures in the quark spectrum are formed at the positive-
and negative-energies.

The modified quark spectra can be graphically ob-
tained from the lower panel of Fig. 4 where ReΣR

+(0, ω)
is shown: One can see there exist two regions of ω where
ReΣR

+(0, ω) shows a steep rise. These two regions cor-

respond to that in which |ImΣR
+| has a peak and the

steepness becomes more significant as T is lowered to-
ward Tc. This behavior of ReΣ

R
+ is naturally understood

from the behavior of ImΣR
+ using the Kramers-Kronig re-

lation. Because the quasi-quark dispersion ω±(p) at the
vanishing momentum is the solution of ω−ΣR

±(0, ω) = 0,
they are given graphically by the crossing points of
ReΣR

±(0, ω) and ω denoted by the straight dash-dotted
line in the lower panel of Fig. 4. One sees that there
eventually appear five crossing points for ε = 0.1 corre-
sponding to the five solutions of ω+(p = 0) in Fig. 3. The
second and forth solutions of them, however, correspond
to the peak of |ImΣR

+(p, ω)| and hence there appear no
peaks in the spectral function in this region.

As T approaches Tc closer than those in Fig. 3,
m∗

σ(T ) and hence the ratio m∗
σ(T )/T become vanish-

ingly small, the system may become identical in effect
with an extremely high-T system where the hard-thermal
loop(HTL) approximation is valid. In fact, in such a crit-
ical region, the two peaks of ImΣR

+ in the positive- and
negative-energy regions come closer and merge together
effectively with the peak at ω = 0 and thereby only a sin-
gle resonant scattering around ω = 0 is seen in the limit

(a)

(c) (d)

(b)

FIG. 5: Parts of the physical processes which the Im ΣR
+(p, ω)

describes. The other parts are the inverse processes of the
above. The thick solid lines represent the quasi-quarks with
(p, ω), the thin solid lines the on-shell free quarks and the
wavy lines the soft mode.

of T → Tc+. This means that there will be eventually
only two peaks originated by the scattering of a mass-
less quark with a massless boson at finite T . Thus the
resultant quark spectrum at T → Tc+ continuously ap-
proaches that obtained in the HTL approximation in the
Yukawa theory[24]. Although not explicitly shown in the
present paper because of the lack in space, our numer-
ical calculation shows that this is indeed the case: The
strength of the peak around ω = 0 becomes weaker as T
is lowered toward Tc, while the width of the two peaks
which have a thermal mass becomes sharper. The latter
two peaks eventually become the quasi-particle peak and
the plasmino peak when m∗

σ(T )/T → 0, or equivalently,
T → Tc+.

IV. BRIEF SUMMARY AND CONCLUDING

REMARKS

We have investigated the quark spectrum at T near but
above the critical temperature of the chiral phase tran-
sitions taking the effect of the fluctuations of the chiral
order parameter (para-σ and para-πmodes) into account.
We have shown that for ε ≡ (T −Tc)/Tc <∼ 0.2 the quark
spectrum has a three-peak structure at low frequency and
low momentum, for which the growth of the two peaks in
ImΣR

± for lower ω near Tc is crucial. We have elucidated
that the mechanism for realizing the two peaks can be
understood as a formation of gaps owing to the mixing
between a quark(anti-quark) and a hole of the thermally-
excited antiquarks(quarks); the mixing is induced by the
resonant scattering of the quarks off the propagating soft
modes with small but finite energies near Tc.
The present discussions to account for the mechanism

of the formation of the three-peak structure have taken
it for granted that the soft modes which are compos-
ite system of quark-antiquarks acquire the character of
the well-defined elementary excitation when T is close
to Tc. It would be helpful for elucidating the essential
mechanism quantitatively to consider a Yukawa model
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at finite T , in which the mass of the boson field is varied
by hand[22], where we have confirmed that the three-
peak structure of the quark spectral function emerges
in such a Yukawa model. Moreover, our preliminary
calculation[22] shows that the three-peak structure is ob-
tained even if the bosonic modes are vector or axial-
vector fields, instead of the scalar (pseudoscalar) field.
This result suggests that any bosonic mode in the QGP
phase, whose mass is comparable with T , can give rise to
the three-peak structure of the quark spectral function:
Notice that the peaks of the spectral function correspond
to complex poles of the quark Green function, which are
gauge invariant! The detailed analysis of the quark spec-
trum will be given elsewhere[22].
We have adopted the chiral limit in this exploring work

for simplicity. It is instructive to investigate the quark
spectrum for finite quark mass. In this case, the chi-
ral transition becomes crossover and the mass of the σ
mode does not vanish in any T . We expect, however,
that the three-peak structure of the quark will be seen
even in this case because the three-peak structure is seen
in rather wide range of T . It is also instructive to ex-
plore the quark spectrum at finite chemical potential, in
particular near the tri-critical point and/or critical end-

point of the chiral transition. In this work, we have also
employed the non-selfconsistent approximation. It is of
course more desirable to adopt more sophisticated ap-
proximation incorporating the self-consistency between
the soft modes and the quasi-quarks, especially near Tc.

Some authors [25, 26] suggest the importance of the
phase fluctuation of the chiral order parameter on the
properties of the QGP above Tc. It would be interesting
to explore possible effects of the phase fluctuation on the
quark spectrum.
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