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Abstract

We consider the minimal supersymmetric triplet seesaw model as the origin of neutrino masses

and mixing as well as of the baryon asymmetry of the Universe, which is generated through

soft leptogenesis employing a CP violating phase and a resonant behavior in the supersymmetry

breaking sector. We calculate the full gauge–annihilation cross section for the Higgs triplets,

including all relevant supersymmetric intermediate and final states, as well as coannihilations

with the fermionic superpartners of the triplets. We find that these gauge annihilation processes

strongly suppress the resulting lepton asymmetry. As a consequence of this, successful leptogenesis

can occur only for a triplet mass at the TeV scale, where the contribution of soft supersymmetry

breaking terms enhances the CP and lepton asymmetry. This opens up an interesting opportunity

for testing the model in future colliders.

PACS numbers: 98.80.Cq,12.60.Cn,12.60.Jv
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Leptogenesis is an elegant way to generate the baryon asymmetry of the Universe in

connection with the origin of the observed neutrino masses and mixing through the seesaw

mechanism [1]. One way of understanding a tiny neutrino mass is to relate it with the small

vacuum expectation value of a Higgs triplet [2] whose decay can also induce the cosmological

baryon asymmetry in the presence of at least two Higgs triplets [3] or a right-handed neutrino

[4] as required by the generation of non-trivial CP and lepton asymmetry. In the minimal

supersymmetric version with one pair of triplets, there is a new way of leptogenesis (called

“soft leptogenesis”) in which CP phases in the soft terms can contribute to generate the

lepton asymmetry [5, 6]. Soft leptogenesis in the minimal supersymmetric Higgs triplet

model has been considered first in Ref. [7].

In this paper, we revisit this last scenario to provide a careful analysis on the quantities

for the lepton and CP asymmetries and their cosmological evolution by considering the full

set of Boltzmann equations including thermal masses and the temperature supersymmetry

breaking effects consistently. We will also derive a set of simple Boltzmann equations from

the Maxwell-Boltzmann approximation taking into account the difference between the Bose–

Einstein and Fermi–Dirac statistics, and show that they provide a fairly good approximation

to the full Boltzmann equations.

The most important effect included in our analysis is the contribution of the gauge anni-

hilation processes, which lead to a significant reduction of the resulting lepton asymmetry for

the low Higgs triplet mass. The dynamics of such a system is analyzed in Ref. [8] for the case

of the conventional baryogenesis with heavy Higgs bosons in the SU(5) unification scheme.

Our analysis is extended to the lowest possible values of the Higgs triplet mass where, as will

be shown in the following, the annihilation effect dominates over decays and inverse decays.

Another crucial ingredient of soft leptogenesis is the suppression of the asymmetry due to

a small difference between boson and fermion statistics at finite temperature. We find that

this effect for low values of the triplet mass becomes subleading compared to that due to

soft supersymmetry–breaking terms. Let us also note that the annihilation effect becomes

irrelevant for a triplet mass higher than about 1010 GeV [9], for which, however, the lepton

asymmetry in the soft leptogenesis scenario is also suppressed, as it is inversely proportional

to the triplet mass [5]. As a result, we will conclude that the required baryon asymmetry

can be generated only at the multi-TeV range of the Higgs triplet mass, and thus the model

can lead to distinct collider signatures through, in particular, the production and decay of
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a doubly charged Higgs boson [10, 11]. This opens up another interesting possibility for

generating the neutrino masses and mixing as well as the cosmological baryon asymmetry

at the TeV scale, which can be tested in future colliders [12, 13].

In the supersymmetric form of the Higgs triplet model [14], one needs to introduce a

vector-like pair of ∆ = (∆++,∆+,∆0) and ∆c = (∆c−−,∆c−,∆c0) with hypercharge Y = 1

and −1, allowing for the renormalizable superpotential as follows:

W = hLL∆ + λ1H1H1∆+ λ2H2H2∆
c +M∆∆c (1)

where hLL∆ contains the neutrino mass term, hνν∆0. The soft supersymmetry breaking

terms relevant for us are

−Lsoft = {hALLL∆+ λ1A1H1H1∆

+ λ2A2H2H2∆
c +BM∆∆c + h.c.}

+ m2
∆|∆|2 +m2

∆c |∆c|2. (2)

Note that we have used the same capital letters to denote the superfields as well as their

scalar components. We will consider the universal boundary condition of soft masses; AL =

A1 = A2 = A and m∆ = m∆c = m0. In the limit M ≫ m0, A, the Higgs triplet vacuum

expectation value 〈∆0〉 = λ2〈H0
2 〉2/M gives the neutrino mass

mν = 2hλ2
v22
M

. (3)

The mass matrix of the scalar triplets is diagonalized by

∆ =
1√
2
(∆+ +∆−)

∆̄c =
1√
2
(∆+ −∆−)

where ∆± are the mass eigenstates with the mass-squared values, M2
± = M2+m2

0±BM , and

the mass-squared difference, ∆M2 = 2BM . In terms of the mass eigenstates, the Lagrangian

becomes

−L =
1√
2
∆±[h L̃L̃+ h(AL ±M)LL

λ1 H̃1H̃1 + λ1(A1 ±M)H1H1 (4)

±λ∗
2
¯̃H2

¯̃H2 ± λ∗
2(A

∗
2 ±M) H̄2H̄2] + h.c.
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The heavy particles ∆̄± decay to the leptonic final states, LL, ¯̃L ¯̃L, as well as the Higgs final

states, H1H1, H̃1H̃1 and H̄2H̄2,
¯̃H2

¯̃H2. Thus, the out-of-equilibrium decay ∆̄± → LL, ¯̃L ¯̃L

can lead to lepton asymmetry of the universe.

In order to discuss how to generate a lepton asymmetry in the supersymmetric triplet

seesaw model let us first consider the general case of a charged particle X (X̄) decaying

to a final state j (j̄) and generating tiny CP asymmetric number densities, nX − nX̄ and

nj − nj̄ . The relevant Boltzmann equations in the approximation of Maxwell–Boltzmann

distributions are

dYX

dz
= −zK

[

γD(YX − Y eq
X ) + γA

(Y 2
X − Y eq 2

X )

Y eq
X

]

dYx

dz
= −zKγD

[

Yx −
∑

k

2Bk
Y eq
X

Y eq
k

Yk

]

(5)

dYj

dz
= 2zKγD

[

ǫj(YX − Y eq
X ) +Bj(Yx − 2

Y eq
X

Y eq
j

Yj)

]

where Y ’s are the number densities in unit of the entropy density s as defined by YX ≡
nX/s ≈ nX̄/s, Yx ≡ (nX − nX̄)/s and Yj ≡ (nj − nj̄)/s. Here, the CP asymmetry ǫj in the

decay X → j is defined by

ǫj ≡
Γ(X → j)− Γ(X̄ → j̄)

ΓX
. (6)

In Eq. (5), K ≡ ΓX/H1 with the Hubble parameter H1 = 1.66
√
g∗M

2/mP l at the tempera-

ture T = M , and Bj is the branching ratio of the decay X → j. For the relativistic degrees

of freedom in thermal equilibrium g∗, we will use the Supersymmetric Standard Model value:

g∗ = 228.75.

The evolution of theX abundance is determined by the decay and inverse decay processes,

as well as by the annihilation effect described by the diagrams of FIG. 1, and are accounted

for by the functions γD and γA, respectively. Note that the triplets are charged under the

Standard Model gauge group and thus have nontrivial gauge annihilation effect which turns

out to be essential in determining the final lepton asymmetry. Moreover, as a consequence

of unitarity, the relation 2Yx +
∑

j Yj ≡ 0 holds, so that one can drop out the equation for

Yx, taking the replacement:

Yx = −1

2

∑

j

Yj (7)

in the last of Eqs. (5). In our model, the heavy particle X can be either of the six charged
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FIG. 1: Diagrams contributing to the gauge–annihilation amplitude of triplet particles. ∆̃, ∆̃c

represent the fermionic partners of ∆ and ∆c, respectively, while A indicates a gauge boson, λ a

gaugino, h a Higgs particle, h̃ a higgsino, f a fermion and f̃ a sfermion.

particles; X = ∆++
± ,∆+

± or ∆0
±. Each of them follows the first Boltzmann equation in Eq. (5)

where γD and γA are given by

γD =
K1(z)

K2(z)
(8)

γA =
α2
2M

πKH1

∫ ∞

1
dt

K1(2zt)

K2(z)
t2β(t) σ(t) (9)

with

σ(t) = (14 + 11t4w)(3 + β2) + (4 + 4t2w + t4w)

[

16 + 4(−3− β2 +
β4 + 3

2β
ln

1 + β

1− β
)

]

+4

[

−3 +

(

4− β2 +
(β2 − 1)(2− β2)

β
ln

1 + β

1− β

)]

, (10)

where tw ≡ tan(θW ) with θW the Weinberg angle, and β(t) ≡
√
1− t−2. The function γD is

the ratio of the modified Bessel functions of the first and second kind which as usual takes into

account the decay and inverse decay effects in the Maxwell–Boltzmann limit. The function

γA accounts for the annihilation cross-section of a triplet componentX summing all the anni-

hilation processes; XX̄ ′ → Standard Model gauge bosons/gauginos and fermions/sfermions

where X ′ is some triplet component or its fermionic partner. The separate contribution of

each diagram in FIG. 1 is detailed in the Appendix. As far as the Standard Model part is

concerned, our result agrees with that of Ref. [9], with one exception: the term proportional
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FIG. 2: Decay and inverse-decay amplitudes entering in the Boltzmann equations. The solid

lines show the decay amplitude γD in the Maxwell–Bolzmann limit as given by Eq. (8), and the

corresponding inverse–decay amplitude γID. The dotted and dashed curves show the result of a full

numerical evaluation of the same amplitudes for fermionic and bosonic final states, respectively.

to t2w, due to the mixed gauge boson (W3B) final state in diagrams (c–f) of FIG. 1, is missing

in Ref. [9]. However, this difference concerns a subdominant contribution which is expected

to have a negligible impact on phenomenology. The decay and inverse decay amplitudes in

the Maxwell–Boltzmann limit are plotted in FIG. 2, along with a numerical evaluation of

the same quantities in the case of bosonic and fermionic final states, where Bose–Einstein

and Fermi–Dirac distributions, as well as thermal masses, are included in the calculation.

We use this latter evaluation when we solve the full Boltzmann equations for the lepton

asymmetry numerically. The last figure shows that the Boltzmann approximation is well

justified as expected for the region of our relevance, z > 10.

Given γD and γA, we can now analyze the thermal evolution of YX [8]. In FIG. 3, we plot

the quantity (YX − Y eq
X )/YX , which quantifies the departure of the triplet density from its
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FIG. 3: Fractional departure of the triplet comoving density YX from its equilibrium value Y eq
X ,

as a function of z ≡ m/T . The higher curve shows the result of a calculation where the gauge

annihilation effect is neglected, while the lower ones show the same quantity including annihilation

for Im(A)=1 TeV and log10(M/GeV) = 8,7,6,5,4,3 from left to right. All curves are evaluated in

the Maxwell–Boltzmann approximation.

equilibrium value. In particular, the higher line shows the result when only the processes

of decay and inverse decay to light particles are included in the calculation. As expected,

since K >> 1, YX follows closely the equilibrium density Y eq
X with a slight deviation of

order 10−1. However, annihilation is indeed important in our case and cannot be neglected.

This is shown in the same figure by the lower curves, which represent the departure of the

triplet density from its equilibrium value when annihilation is included. The importance of

annihilation can be understood in the following way. The inverse decay freezes out at zf ≈ 9

for K = 32 as Kz
5/2
f e−zf = 1. On the other hand, the thermal averages of the annihilation

and decay rate can be compared by considering the following ratio [8]:

< ΓA >

< ΓD >
(zf) ≃ 2

α2

αX
z
−3/2
f e−zf ≈ 2× 108 GeV

M
,
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where αX = KH1/M . Thus, the annihilation effect becomes negligible for M >∼ 109 GeV.

But in our case of soft leptogenesis, higher M suppresses the lepton asymmetry as ǫ̃l ∝ A/M ,

so there is a tension between these two effects, and lower values of M turn out to be favored.

In FIG. 3, one can see that, due to annihilation which freezes out at z ≈ 20, YX follows

more closely its equilibrium density Y eq
X compared with the previous case, with a deviation

which is now of order 10−3. In particular, this implies that the approximation

YX − Y eq
X =

−Y eq′
X

zK(γD + 2γA)
(11)

is a good one, since decoupling occurs indeed at high z. Nevertheless, in our numerical

analysis, we solve the full Boltzmann equations where the Bose–Einstein and Fermi–Dirac

distributions as well as thermal masses, are included properly.

To find out the cosmological lepton asymmetry by the decay of X = ∆±, one needs to

calculate Yj with the states j = LL and L̃L̃ and thus the corresponding CP asymmetry:

ǫL,L̃ ≡ Γ(∆̄± → LL, L̃L̃)− Γ(∆± → L̄L̄, ¯̃L ¯̃L)

Γ±

. (12)

Recall that one cannot rely on the the above Boltzmann equation (5) for the mechanism of

soft leptogenesis in the supersymmetric limit of M ≫ m0, A, B, as the CP asymmetries in

the bosonic and fermionic final states takes the opposite sign, ǫL = −ǫL̃, so that the total

asymmetry in the lepton number density vanishes, Yl ≡ YL + YL̃ = 0. A non-vanishing

lepton asymmetry arises after taking into account the supersymmetry breaking effect at

finite temperature [5], namely the difference between the bosonic and fermionic statistics

given by the Bose–Einstein and Fermi–Dirac distribution, respectively. Such a thermal

supersymmetry breaking effect can be well accounted by a slight modification of the last

Boltzmann equation of Eq. (5) resulting from the extension of the usual Maxwell–Boltzmann

approximation to the second order, as we will show below.

The complete form of the Boltzmann equation for the CP asymmetry in the final state j

contains

sH1

z

dYj

dz
≡
∫

dΠXdΠj1dΠj2[|Aj|2 − |Āj̄|2]

[fX(1± fj1)(1± fj2)− fj1fj2(1 + fX)] + · · · (13)

where dΠ’s are the phase space integration factors and Aj (Āj̄) is the amplitude of the decay

X → j (X̄ → j̄). The distribution functions fji at thermal equilibrium are fBi
= 1/(e(Ei/T )−
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1) or fFi
= 1/(e(Ei/T )+1) for the bosonic or fermionic state j. Using the effective field-theory

approach of resummed propagators for unstable particles [15], the effective vertices of ∆+

(∆̄+) and the states j (j̄) are

Sj
+ = yj+ − yj−

iΠ−+

∆M2 + iΠ−−

S̄ j̄
+ = yj∗+ − yj∗−

iΠ∗
−+

∆M2 + iΠ−−

(14)

where ∆M2 = 2BM . For ∆−, one takes the interchange of + ↔ − and ∆M2 → −∆M2.

Here, Π’s are the absorptive part of two point functions;

Π±± =
∑

k

yk∗± yk±
16π

Rk

Π±∓ =
∑

k

yk∗± yk∓
16π

Rk . (15)

Calculating |Aj |2 − |Āj̄ |2 ∝ |Sj
X |2 − |S̄ j̄

X |2, we get for Eq. (13),

[|Aj|2 − |Āj̄|2](1± fj1)(1± fj2) =

− 4

16π
Im(yj+y

j∗
−CjΠ

∗
−+)

∆M2

(∆M2)2 +Π2
−−

. (16)

Here, Rk include the thermal propagator effect in the cutting rule [16] and Cj are the thermal

phase space factor of the final states. For the bosonic and fermionic states, we have

RB =
√
1− 4xB(1 + fB1

+ fB2
+ 2fB1

fB2
)

RF = (1− 2xF )
√
1− 4xF (1− fF1

− fF2
+ 2fF1

fF2
)

CB =
√
1− 4xB(1 + fB1

)(1 + fB2
)

CF = (1− 2xF )
√
1− 4xF (1− fF1

)(1− fF2
) (17)

where xB,F = m2
B,F (T )

2/T 2 are the thermal masses of the bosons or fermions. Let us note

in Eq. (16) that the relation

∑

j,k

Im(yj+y
j∗
−Cjy

k∗
+ yk−Rk) =

1

2

∑

j,k

Im(yj+y
j∗
− yk∗+ yk−)(CjRk − CkRj) ∝

1

2

∑

j,k

Im(yj+y
j∗
− yk∗+ yk−)(e

E1+E2
T − e

E3+E4
T ) ≡ 0

9



holds for any final states of j1,2 and intermediate states in the loop k3,4. The same is

true for the second part of Eq. (13). In fact, this is nothing but the unitarity relation
∑

j Γ(X → j) =
∑

j Γ(X̄ → j̄) from Eq. (13). Therefore, the lepton asymmetry in the

integrand of the Boltzmann equation (13) is found to be

2|h|2|λ1|2 [Im(AL)M(|A1|2 −M2)

− Im(A1)M(|AL|2 −M2)]CLRH1

+2|h|2|λ2|2
{

[Im(AL)M(|A2|2 −M2)

+ Im(A2)M(|AL|2 −M2)]CLRH2

+ Im(AL)MM2
∆CLRH̃2

+ Im(A1)MM2
∆CH2

RL̃

}

. (18)

Note that the terms proportional to |h|4, which do not break lepton number, disappear

because of the previous relation of CLRL̃ − CL̃RL = 0. Thus, the asymmetry in Eq. (18)

obviously contains only the mixed terms with hλ1,2, signaling a lepton number violation.

With the universality condition for the soft terms (A = AL = A1 = A2), we get a simple

equation for the lepton asymmetry as follows:

8|h|2|λ2|2 Im(A)M3[δBF + δsoft] (19)

where δBF =
1

2
[RH2

(CL − CL̃) + CL̃(RH̃2
−RH2

)]

and δsoft = RH2
CL̃

m2
0 + |A|2
M2

,

putting R = C = 1 in the denominator. In the limit M ≫ m0, |A|, we have

Π±± = MΓ± =
M2

8π
(|h|2 + |λ1|2 + |λ2|2) (20)

ignoring the small thermal effect and thus putting Rk = 1. One thus finds that, the quantity

inside the integrand of Eq. (13) is proportional to

4BΓ±

4B2 + Γ2
±

4|h|2|λ2|2
(|h|2 + |λ1|2 + |λ2|2)2

Im(A)

M
[δBF + δsoft] ≡ ǫ̃l [δBF + δsoft] . (21)

Here, one has the approximation of δsoft = (m2
0 + |A|2)/M2 as can be seen in FIG. 4. One

can also find similar expressions for the Higgs–Higgsino final states. Recall that unitarity

relation enforces
∑

j ǫ
j
± = 0. The supersymmetry breaking effect δBF at finite temperature

can now be encoded in the Boltzmann equation with the Maxwell–Boltzmann approximation

by considering the expansion: 1/[exp(E/T ) ± 1] ≈ exp(−E/T )[1 ∓ exp(−E/T )]. After

10



FIG. 4: The dashed curve shows the approximation to δBF (z) in Eq. (22), while the solid line

is the result of a numerical evaluation of the same quantity, which includes the effect of thermal

masses and of Fermi–Dirac and Bose–Einstein distributions. The dotted curve shows the result of

a numerical calculation of the thermal average RH2
CL̃ which multiplies the soft supersymmetry

breaking term in Eq. (19).

the phase space integration in Eq. (13), one obtains the simple modification of the usual

Boltzmann equation with the insertion of the δBF (z) function determined by

δBF (z) ≡ 2
√
2
K1(

√
2z)

K1(z)
(22)

which gives a further suppression compared to the conventional contribution with the Bessel

Function K1(z). The above expression, which is monotonically decreasing in z, is valid for

z ≫ 1, and is compared in FIG. 4 to a numerical calculation including the effect of thermal

masses, which cause δBF to vanish at small z. The latter calculation of δBF is obtained by

numerically evaluating the thermal average of the absorption part of the two–point function

Π±∓. Concluding the above discussions, we find that the total lepton asymmetry density

11



Yl = YL + YL̃ follows the approximate Boltzmann equation:

dYl

dz
= 2g∆zKγD

[

ǫ̃lδ(z)(YX − Y eq
X ) +Bl(Yx − 2

Y eq
X

Y eq
l

Yl)

]

(23)

where g∆ = 6 counts the total number of triplet components generating the lepton asym-

metry and δ(z) ≡ δBF (z) + δsoft. In the above equation, the number K = Γ±/H1 takes the

minimal value of K = 32 for |h| = |λ2| ≫ |λ1| as we have the relation [7];

K = 32
|h|2 + |λ2|2
2|h||λ2|

(

|mν |
0.05 eV

)

. (24)

As one goes away from the minimum value of K with |h| 6= |λ2|, the quantity ǫ̃l in Eq. (21)

gets suppressed. Furthermore, one realizes that the resulting lepton asymmetry is maximized

in case of BL,L̃ = BH2,H̃2
≫ BH1,H̃1

with |h| = |λ2| ≫ |λ1|, in which case the Boltzmann

equation for the lepton asymmetry takes the simplest form of

dYl

dz
= 2g∆zKγD

[

ǫ̃lδ(z)(YX − Y eq
X )− Y eq

X

Y eq
l

Yl

]

(25)

Let us now note that, taking the resonance condition B = Γ±, one finds the maximal value

of ǫ̃l =
Im(A)

M
, which becomes order one for A ∼ M ∼ TeV.

It is now easy to find the approximate solution for Yl from Eq. (25) with the insertion of

YX given in Eq. (11). Both are found to be a fairly good approximation to the numerical

solution of the full Boltzmann equations, as expected from our previous discussions. The

results of our numerical calculation are shown in FIG. 5 where we plot the final lepton

asymmetry as a function of the triplet mass M for Im(A) from 1 to 5 TeV. When |A| ∼ M ,

one needs to recover the contributions of order |A|/M which were neglected, e.g., in Eqs. (15)

and (21). Taking the parameter region, m0 < |A| = Im(A), we keep those contributions in

the numerical calculations for the curves in FIG. 5. A remark is in order here. For M >∼ 1010

GeV, the annihilation effect becomes irrelevant and the final asymmetry is determined by

the decay and inverse decay effects, i.e., by the value of K only, which confirms the result

of Ref. [9]. One can see this feature in FIG. 5, where the lepton asymmetry as a function of

M changes slope at about M ∼ 1010 GeV. Below this value the annihilation effect sets in,

and the final asymmetry is strongly suppressed compared to the value one would obtain by

extrapolating the curve with the slope for M >∼ 1010 GeV.

When the trilinear coupling is larger than the triplet mass, |A|/M ≥ 1, besides an en-

hancement of the CP–violating term of Eq.(21), one could expect that the additional con-

tribution to the coupling of the triplet particles to scalar final states enhances the total

12



FIG. 5: Final lepton asymmetry produced by triplet decay as a function of M . Different curves

refer to Im(A) = 1, 2, 3, 4, 5 TeV from bottom to top.

annihilation rate, increasing substantially the value of the parameter K compared to the

amount given by Eq. (24), which is obtained in the limit |A|/M ≪ 1. As a consequence of

this, the consequent additional wash–out effect could in principle suppress the ensuing lepton

asymmetry. However, this is not the case due to the fact that, as we have already discussed,

the annihilation process freezes out later than inverse decays, so the latter play almost no

role in the determination of the epoch when lepton asymmetry production can start. Actu-

ally, this epoch starts when decays eventually overcome annihilations, so a higher value of

K can slightly anticipate it, leading so to a higher asymmetry instead than a suppression,

although this effect is quite mild. This is what we observe in the numerical calculation

shown in FIG. 5, where we have assumed as before |h| = |λ2| ≫ |λ1| (in order to maximize

the amount of CP violation given by Eq. (21)) and maximized the CP–violating phase (i.e.,

we have assumed Re(A) = 0).

We also remark that sphaleron interactions are kept in thermal equilibrium even after

the electroweak phase transition and freeze out around Tsp = M/zsp ≃ 90 GeV, so that
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only the lepton asymmetry produced for z < zsp can be efficiently converted into a baryon

asymmetry [13]. As shown in FIG. 3, due to the gauge annihilation effect, the lepton

asymmetry production is delayed until z = z0 ≃ 20. For low values of M (∼ a few TeV)

one can have zsp < z0, which implies a suppression in the final lepton asymmetry. This

explains the fast rise at low values of M of all the curves in FIG.5. On the other hand, the

dips observed in the final asymmetry for M ∼ 20|A| correspond to the case when the two

contributions δBF and δsoft in Eq. (21) are of the same order and cancel. This dip separates

the two regions where δBF or δsoft dominates in the determination of the final asymmetry.

As shown in FIG. 5, the CP–violating contribution from the soft supersymmetry breaking

term δsoft in Eq. (19) can strongly enhance the final lepton asymmetry at low values of M .

As a result, it is evident that the required baryon asymmetry can be reached whenever A

and M are in the multi-TeV region.

Before concluding our work, let us remark some experimental consequences of the model

at future colliders. As shown above, successful baryogenesis requires a TeV-scale triplet

mass and Yukawa couplings of the same order, h ∼ λ2 ∼
√

mνM/v22 ∼ 10−6. Thus, all the

low-energy lepton flavor violating processes like µ → eγ or µ → 3e are highly suppressed

[11]. On the other hand, future accelerators have a potential to produce such Higgs triplets,

in particular, the peculiar doubly charged component through the Drell-Yan processes [10].

Then, various features of the model can be checked by observing the branching ratios of the

triplet decay to lepton and Higgsino pairs, in particular, ∆−− → l−i l
−
j , H̃

−
2 H̃

−
2 , allowing also

to study neutrino mass patterns [11].

In conclusion, we have investigated baryogenesis assuming the minimal supersymmetric

Higgs triplet model as the origin of neutrino masses and mixings. This model, with only

one pair of triplets, can provide a mechanism for soft leptogenesis employing a CP violating

phase and a resonant behavior in the supersymmetry breaking sector. Our analysis shows

that the original soft leptogenesis, relying on the supersymmetry breaking effect proportional

to the small difference between boson and fermion statistics at finite temperature cannot

produce the right amount of baryon asymmetry due to the gauge annihilation effect. In par-

ticular, we have calculated the full gauge–annihilation cross section including all the relevant

supersymmetric intermediate and final states, as well as coannihilations with the fermionic

superpartners of the triplets, finding that this effect strongly suppresses the resulting lepton

asymmetry. On the other hand, the contribution of soft supersymmetry breaking terms,
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particularly a sizable value for the Im(A) parameter, can enhance the lepton asymmetry

to provide successful leptogenesis if the triplet mass is in the TeV range. In this case, the

model predictions can be tested in future colliders by searching for a very clean signal, e.g.,

from the production and decay of doubly charged Higgs bosons.

APPENDIX

In this appendix we give the detailed expression for the the annihilation cross section

shown in compact form in Eq.(10), and calculated from the diagrams (a)–(s) of FIG. 1. In

the following, masses of light particles are neglected, while we assume a common mass M

for the triplets and their supersymmetric partners. The reduced cross section introduced in

Eq. (10) is defined as:

σ(t) ≡ 1

2g42

1

3

∑

∫

dcos θ |M|2,

in terms of the integrated squared amplitude, averaged over the initial triplet state (hence

the factor 1/3) and summed over the coannihilating particles, given by:

1

3

∑

∫

dcos θ |M|2 =
4

3

∑

a

tr(Ta)
2tr

(

τa
2

)2 [

F(a)+(h) + F(b)+(g) + F(i) + F(l)

]

+

+
4

3

∑

ab

{

tr(T 2
aT

2
b )
[

F(c)+(d)+(e) + F(n)+(o) + F(p)+(q)+(r)

]

+

+ 8fabcfabc
[

F(f) + F(m) + F(s) + F ′
(d)

]}

, where (26)

F(a)+(h) =
β2

3
, F(b)+(g) =

β2

6
, F(i) =

1

2
, F(l) = 1, F ′

(d) = −1

2
, F(s) = −1

F(c)+(d)+(e) = 2 + 2

[

1− β2 +
β4 − 1

2β
ln

1 + β

1− β

]

, F(n)+(o) = 2 + 2

[

−2 +
1

β
ln

1 + β

1− β

]

,

F(p)+(q)+(r) = 4 + 2

[

−2 +
1

β
ln

1 + β

1− β

]

F(f) =

[

1− 5

6
β2 − (β2 − 1)2

2β
ln

1 + β

1− β

]

,

F(m) =
β2

3
+

[

1 +
β2 − 1

2β
ln

1 + β

1− β
,

]

.

In the last equation we have kept within squared parentheses quantities that vanish for

β → 0, and the subscripts refer to the contributing Feynman diagrams listed in Fig. 1. In

Eq. (26), Ta and τa/2 are the SU(2)× U(1) group generators for the triplet and doublet

representations and fabc are the structure constants. Assuming the minimal supersymmetric
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Standard Model particle content, the traces are given by:

1

3

∑

a

tr(Ta)
2tr(

τa
2
)2 = g42(14 + 11t4w),

1

3

∑

ab

tr(T 2
aT

2
b ) = g42(4 + 4t2w + t4w), (27)

and
∑

ab fabcfabc = 6g42.

Since annihilation decouples for z ≫ 1, the integral in Eq. (9) can be approximated by

making use of the following low-temperature expansion:
∫ ∞

1
dt

K1(2zt)

[zK2(z)]2
t2β(t) σ(t) ≃ 1

2z3

[

b0 +
b1
z
+ ...

]

, (28)

where b0 = 47 + 32t2w +
49

2
t4w and b1 = −3

2

(

98

3
+ 32t2w + 19t4w

)

. (29)

Although for our results we used a numerical integration of Eq.(9), we have checked that

the above approximation leads to a good fit to the full numerical calculation for z >∼ 10, an

interval that safely includes the range of z relevant for the present analysis. We finally notice

that the annihilation amplitude increases sizably in the supersymmetric theory compared to

the Standard Model case, in significant excess of the factor O(2) suggested by a näif expec-

tation. In fact, the value of b0 in Eq. (29) is almost 8 times larger than the Standard Model

value b0 = 6+8t2W +2t4W coming from the diagrams (c)–(f). Such an enhancement is mainly

due to a larger number of available final states for the diagrams (i) and (l), corresponding to

the “contact term” for scalars and to triplet–striplet annihilation to gauginos, respectively.
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