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5 Hyperon Semileptonic Decays and CKM Unitarity∗

V. Mateua
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We perform a new numerical analysis of hyperon semileptonic decays emphasizing the systematic uncertainties.
The poor understanding of SU(3) symmetry breaking effects at second order in the vector form factor translates
into a large error of |Vus|. Using our determination |Vus| = 0.226 ± 0.005 together with those coming from other
sources we test the unitarity of the CKM matrix.

1. Introduction

One of the most involved sectors of the Stan-
dard Model is its flavour structure. The problems
of CP violation [1] and the unitarity of the CKM
matrix [2,3,1,4] are two major issues that deserve
to be clarified. In order to achieve this goal, a
very accurate control of systematic uncertainties
becomes mandatory.
Since the numerical value of |Vub|

2 is negligible,
to test the unitarity if the CKM matrix [5] in its
first row, the values of |Vud| and |Vus| owe to be
rather well fixed. Due to recent changes on the
experimental side, the values of |Vud| and |Vus|
have suffered strong fluctuations. In the case of
|Vud|, while data from superallowed nuclear beta
decay remains unchanged [4], this is not the case
for neutron decay [6,7]. Concerning of |Vus|, new
experiments on K → πlν find branching ratios
larger than previous results [8,9,10,11].
Data from hadronic τ decays are stable and

it can be used to obtain an accurate determina-
tion of |Vus| [12]. Besides kaon and hadronic τ
decays, there exists another, in principle less ac-
curate, determination of |Vus|. Hyperon decays
are affected by larger theoretical and experimen-
tal uncertainties. However, one can find two re-
cent analyses [13,14] that claim accuracies com-
petitive with previous determinations. Moreover,
using the same data, they obtain different central
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values and different conclusions on the pattern of
SU(3) symmetry breaking.
The work of Ref. [15] aims to clarify this sit-

uation. A complete study of SU(3) braking ef-
fects is done, trying to fit the experimental data
with different parameterizations obtained using
the framework of the 1/NC expansion of QCD in
the baryonic sector. A very careful study of all
the possible sources of systematic uncertainties is
also performed.

2. Theoretical Description of Hyperon
Semileptonic Decays

The semileptonic decay of a spin- 1
2

hy-
peron into another spin- 1

2
hyperon plus leptons,

B1 → B2 l
−ν̄l, is governed by the hadronic matrix

elements of the vector and axial-vector currents:

〈B2(p2)|V
µ|B1(p1)〉 = ū(p2)

[

f1(q
2)γµ

+ i
f2(q

2)

MB1

σµνqν +
f3(q

2)

MB1

qµ
]

u(p1)

(1)

〈B2(p2)|A
µ |B1(p1)〉 = ū(p2)

[

g1(q
2)γµ

+ i
g2(q

2)

MB1

σµνqν +
g3(q

2)

MB1

qµ
]

γ5 u(p1)

where q = p1−p2 is the four-momentum transfer.
Considering the limit of exact SU(3) symmetry,

the form factors among the different members of
the baryon octet are related [16] by the SU(3)
Wigner–Eckart theorem. Hence, there are two
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reduced form factors for each fi and gi and their
linear combinations using Clebsh-Gordan coeffi-
cients gives the form factors for the different de-
cays. The conservation of the vector current can
also be used to fix several reduced form factors at
q2 = 0. Though, there is no information on the
momentum dependence of the form factors on q2

comming from symmetry principles.
For the observables we need to calculate several

simplifications can be done. In one hand, one can
neglect the form factors f3, g2 and g3 because
they appear multiplied in eq. (1) by qν and so
their contribution to any integrated observable is
small. Then they can be fixed to their value in the
limit of exact SU(3) symmetry, which is zero. On
the oder hand, since q2 is parametrically small,
the only momentum dependence which needs to
be taken into account is that of the leading form
factors f1(q

2) and g1(q
2) (the f2 form factor ap-

pears already multiplied by qν in eq. (1) and we
can use its symmetric value at q2 = 0). This de-
pendence can be expanded in Taylor series and be
truncated at second order, such that all the de-
pendence comes from the slopes in q2 λf

1 and λg
1.

Those are usually fixed assuming a dipole form
regulated by the mesonic resonance with the ap-
propriate quantum numbers [17,18].

It is useful to define the ratio of the physical
value of f1(0) over the SU(3) prediction.

f̃1 = f1(0)/f
sym
1 = 1 +O(ǫ2) . (2)

The Ademollo–Gatto theorem [19] ensures that f̃1
is equal to one up to second-order SU(3) breaking
effects.

Radiative and higher order corrections should
be included in the calculations to get an accurate
determination of |Vus|. However, only the total
decay rates are experimentally known precisely
enough to make this corrections necessary.

3. g1(0)/f1(0) Analysis

The experimental data on Hyperon Semilep-
tonic decays provide the total decay rate, the
angular correlation coefficient between the final
electron and neutrino, and some angular asym-
metries. From the correlation coefficient and the
asymmetries, the ratio g1(0)/f1(0) it is also de-

termined.
Using directly the ratios g1(0)/f1(0) and the

total decay rate [13], one can perform a very sim-
ple analysis, as it is shown in Table 1. Performing
a combined average, we find the value

|f̃1 Vus| = 0.2247± 0.0026 . (3)

with χ2/d.o.f. = 2.52/3 where the associated er-
ror is purely statistic, and it does not take into
account other sources of theoretical uncertainties.
Table 1 shows that the fitted results are con-

sistent, within errors, with a common f̃1 value
for the four hyperon decays. The deviations of
f̃1 from one are of second order in symmetry
breaking, but unfortunately there are no reliable
calculations and even the sign seem controversial
[20,21,22,23,24]. It is mandatory to estimate f̃1
in order to provide a more realistic error for |Vus|.

4. 1/NC Analysis of SU(3) Breaking Ef-
fects

Since the SU(3) breaking parameter ǫ ∼
ms/ΛQCD is of the same order as the 1/NC cor-
rections in the 1/NC expansion of QCD this tech-
nique seems a very convenient framework to ana-
lyze this problem in the baryonic sector [25,26].
The expression of f1(0) for the different transi-

tions to second order in SU(3) breaking has been
computed in [16,27]. For |∆S| = 1 channels it can
be expressed in terms of three unknown parame-
ters v1, v2 and v3. In the limit of exact symmetry,
and even considering only first order corrections,
vi = 0 and f1(0) is completely fixed by symmetry
principles.
Similarly, the expression of g1(0) to first or-

der in symmetry breaking has been studied in
refs. [26,28]. For |∆S| = 1 channels it can be
expressed in terms of the unknown constants ã,
b̃, c3 and c4. In the limit of exact symmetry, the
constants c3 and c4 are zero.
Different fits can be performed, and the results

are shown in Table 2. Columns 2 and 3 are de-
voted to SU(3) symmetric fits. In the first of the
two columns the g1(0)/f1(0) ratios are used while
in the second the asymmetries have been used.
The parameters to fit are |Vus|, ã and b̃. Analo-
gously, in the third and fourth columns, we have
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Table 1
Results for |f̃1 Vus| obtained from the measured rates and g1(0)/f1(0) ratios. The quoted errors only
reflect the statistical uncertainties.

Λ → p Σ− → n Ξ− → Λ Ξ0 → Σ+

|f̃1 Vus| 0.2221 (33) 0.2274 (49) 0.2367 (97) 0.216 (33)

used a parameterization which includes first or-
der in symmetry breaking effects, i.e. in addition
to the parameters fitted in the symmetric case,
c3 and c4 are now included. The change of the
value of ã in the second and fourth column (or
third and fifth) and non-zero value of c4 indicate
a SU(3) breaking effect.
It is tempting to perform a second order in sym-

metry breaking fit, i.e. including the vi parame-
ters as well, as done in Ref. [14]. When one tries
to fit the data, finds that the χ2 function is almost
flat, and therefore there exist an infinite number
if minima with similar χ2 values. The reason of
this behaviour is that the dependence of the ob-
servables appears as the product |Vus(1+v1+v2)|
and so it is not possible to disentangle |Vus| and
v1.
According to the results shown in Table 2 we

conclude that the ratios g1(0)/f1(0) are less sen-
sitive to SU(3) symmetry breaking effects than
the asymmetries, and hence, our best estimate is
the first-order result in Table 2 [15]:

|f̃1 Vus| = 0.2239± 0.0027 . (4)

By including systematic uncertainties to this
result, we could give an adequate estimate of
|Vus|.

5. Systematic Uncertainties

In addition to the statistical uncertainties, the
systematic ones can play a role in the total error
assigned to |Vus|. Many of the parameters enter-
ing the theoretical expression of the observables
have tiny errors, and so the parametric uncer-
tainties induced by them are negligible. One can
safely assume that the main source of this type of
uncertainties at first order in symmetry breaking
comes from the f2 form factors and the slopes λg

1

and λf
1 governing the q2 dependence of f1(q

2) and
g1(q

2). The way to estimate the error introduced

by each of these parameters is to vary their value
between the range allowed by SU(3) symmetry.

The vector slope λf
1 is the main source of para-

metric uncertainty, but it is much smaller than
the statistical errors [15].
At second order the value of f̃1 is the main

theoretical problem. Although there are several
estimates of this quantity using quark model and
chiral lagrangians, the given results are contradic-
tory. In the absence of a reliable theoretical calcu-
lation, we have adopted the value f̃1 = 0.99±0.02
as an educated guess, assuming a common value
for every decay. Here we obtain from eq. (4) our
final result [15]:

|Vus| = 0.226± 0.005 . (5)

6. CKM unitarity

Comparing the obtained value of |Vus| from
other sources [15], one concludes that ours has
the largest uncertainty. Nevertheless we can per-
form an average of all determinations

|Vus| = 0.2225± 0.0016 . (6)

Without our estimate, the average would be
0.2221 ± 0.0016. Using |Vud| = 0.9740 ± 0.0005,
from superallowed nuclear beta decays [4], it is
obtained:

|Vud|
2 + |Vus|

2 + |Vub|
2 = 0.9982± 0.0012 , (7)

and the unitarity of the quark mixing matrix is
satisfied at the 1.5 σ level.

7. Summary

At present, the determination of |Vus| from
baryon semileptonic decays has large uncertain-
ties and cannot compete with the more precise
information obtained from other sources.
Hyperon semileptonic decays could provide an

independent determination of |Vus|, to be com-
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Table 2
Results of different fits to the semileptonic hyperon decay data.

SU(3) symmetric fit 1st-order symmetry breaking
Asymmetries g1(0)/f1(0) Asymmetries g1(0)/f1(0)

|Vus| 0.2214± 0.0017 0.2216± 0.0017 0.2266± 0.0027 0.2239± 0.0027
ã 0.805± 0.006 0.810± 0.006 0.69± 0.03 0.72± 0.03

b̃ −0.072± 0.010 −0.081± 0.010 −0.071± 0.010 −0.081± 0.011
c3 0.026± 0.024 0.022± 0.023
c4 0.047± 0.018 0.049± 0.018

χ2/d.o.f. 40.23/13 14.15/6 18.09/11 2.15/4

pared with other sources. However, we are lim-
ited in precission by the lack of a theoretical un-
derstanding of SU(3) breaking in the baryonic
sector.

From the comparison of fits presented in Ta-
ble 2, one can clearly identify the presence of a
sizeable SU(3) breaking corrections at first order,
but second order effects barely manifest.
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