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Lagrangian perturbations at order 1/mQ and the
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Abstract

We pursue the program of the study of the non-forward amplitude in

HQET. We obtain new sum rules involving the elastic subleading form fac-

tors χi(w) (i = 1, 2, 3) at order 1/mQ that originate from the Lkin and

Lmag perturbations of the Lagrangian. To obtain these sum rules we use

two methods. On the one hand we start simply from the definition of these

subleading form factors and, on the other hand, we use the Operator Product

Expansion. To the sum rules contribute only the same intermediate states
(

jP , JP
)

=
(

1
2

−
, 1−

)

,
(

3
2

−
, 1−

)

that enter in the 1/m2
Q corrections of the ax-

ial form factor hA1(w) at zero recoil. This allows to obtain a lower bound on

−δ
(A1)
1/m2 in terms of the χi(w) and the shape of the elastic IW function ξ(w).

We find also lower bounds on the 1/m2
Q correction to the form factors h+(w)

and h1(w) at zero recoil. An important theoretical implication is that χ′
1(1),

χ2(1) and χ′
3(1) (χ1(1) = χ3(1) = 0 from Luke theorem) must vanish when

the slope and the curvature attain their lowest values ρ2 → 3
4 , σ

2 → 15
16 . We

discuss possible implications on the precise determination of |Vcb|.
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1 Introduction.

The study of the non-forward amplitude, proposed first by Uraltsev [1]

Tfi(q) = i
∫

d4x e−iq·x < B(vf)|T [Jf(0)Ji(x)]|B(vi) > (1)

where vi is in general different from vf and

Jf(0) = b(0)Γfc(0) Ji(x) = c(x)Γib(x) (2)

(Γi, Γf are arbitrary Dirac matrices) has been very fruitful in Heavy Quark Effective

Theory (HQET).

In the heavy quark limit, sum rules (SR) that generalize Bjorken [2] and Uraltsev

[1] SR have been obtained within the Operator Product Expansion (OPE) that yield

to bounds for all derivatives of the elastic Isgur-Wise (IW) function ξ(w) [3] [4], in

particular for the curvature [5]. The radiative corrections to these SR and bounds

in the framework of HQET have been computed by Dorsten [6].

In a recent paper we have extended our formalism to the subleading order in

1/mQ [7]. We did obtain the interesting relations, valid for all w :

Λξ(w) = 2(w + 1)
∑

n

∆E
(n)
3/2τ

(n)
3/2(1)τ

(n)
3/2(w) + 2

∑

n

∆E
(n)
1/2τ

(n)
1/2(1)τ

(n)
1/2(w) (3)

ξ3(w) = (w + 1)
∑

n

∆E
(n)
3/2τ

(n)
3/2(1)τ

(n)
3/2(w)− 2

∑

n

∆E
(n)
1/2τ

(n)
1/2(1)τ

(n)
1/2(w) . (4)

These remarkably simple relations were the basic results of ref. [7]. Both sublead-

ing quantities Λξ(w) and ξ3(w) can be expressed in terms of the leading quantities,

namely IW functions τ
(n)
j (w) and level spacings ∆E

(n)
j

(

j = 1
2
, 3
2

)

. These equations

give information on the 1/mQ Current perturbations to the matrix elements. In the

present paper we will deal with the Lagrangian perturbations.

The paper is organized as follows. Section 2 gives a simple derivation of the rel-

evant SR, starting from the definition of the different subleading Lagrangian form

factors. In Section 3 we summarize the basic results and comment on general theo-

retical features of the SR. In Section 4 we recall the contribution of 1− intermediate

states to the OPE sum rule at zero recoil at order 1/m2
Q for the form factor B → D∗.

In Section 5, using Schwarz inequality, we obtain a bound on the correction δ1/m2 to

FB→D∗(1) in terms of the Lagrangian elastic subleading form factors and the elastic
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Isgur-Wise function. In Section 6 we also obtain lower bounds on the 1/m2
Q correc-

tions to the form factors h+(w) and h1(w) at w = 1. In Section 7 we summarize

some theoretical features of the obtained bounds. In Section 8 we demonstrate that

χ′
1(1), χ2(1) and χ′

3(1) must vanish in the limit in which the slope ρ2 and curvature

σ2 of the elastic IW function ξ(w) attain their lowest values. In Section 9 we discuss

phenomenological implications of our results for the exclusive determination of |Vcb|
and in Section 10 we conclude. In Appendix A we derive the same SR as in Sec-

tion 2 using the Operator Product Expansion (OPE), following the same method

developed for the derivation of the Current SR in [7]. In Appendix B we make a nu-

merical analysis of the obtained bounds and in Appendix C we discuss the radiative

corrections.

2 New sum rules on Lagrangian perturbations.

In this section, we will formulate new SR for the Lagrangian perturbations,

parallel to the ones on the Current perturbations (3)-(4).

Instead of using the OPE, we will here simply use the definition of the subleading

elastic 1
2

− → 1
2

−
functions χi(w) (i = 1, 2, 3) [8]

< D(v′)|i
∫

dxT [Jcb(0),L(b)
v (x)]|B(v) > =

1

2mb

{

−2χ1(w)Tr
[

D(v′)ΓB(v)
]

+
1

2
Tr

[

Aαβ(v, v
′)D(v′)ΓP+iσ

αβB(v)
]

}

(5)

< D(v′)|i
∫

dxT [Jcb(0),L(c)
v′ (x)]|B(v) > =

1

2mc

{

−2χ1(w)Tr
[

D(v′)ΓB(v)
]

− 1

2
Tr

[

Aαβ(v
′, v)D(v′)iσαβP ′

+ΓB(v)
]

}

(6)

with

Aαβ(v, v
′) = −2χ2(w)

(

v′αγβ − v′βγα
)

+ 4χ3(w)iσαβ

Aαβ(v
′, v) = −2χ2(w) (vαγβ − vβγα)− 4χ3(w)iσαβ (7)

where A = γ0A+γ0 denotes the Dirac conjugate matrix, the current Jcb(0) denotes

Jcb = h
(c)

v′ Γh
(b)
v (8)
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where Γ is any Dirac matrix, and L(Q)
v (x) is given by

L(Q)
v =

1

2mQ

[

O
(Q)
kin,v +O(Q)

mag,v

]

(9)

with

O
(Q)
kin,v = h

(Q)

v (iD)2h(Q)
v O(Q)

mag,v =
gs
2
h
(Q)

v σαβG
αβh(Q)

v . (10)

In relations (5)-(7), the χi(w) (i = 1, 2, 3) have dimensions of mass, and corre-

spond to the definition given by Luke [9].

We will now insert intermediate states in the T -products (5). We can separately

consider L(b)
kin or L(b)

mag. The possible Z-diagrams involving heavy quarks contribut-

ing to the T -products are suppressed by the heavy quark mass since they are bcc

intermediate states.

Conveniently choosing the initial and final states, we find the following results

(we use the normalization of the states as made explicit for example in formula (5.6)

of ref. [10]) :

(1) With L(b)
kin,v, pseudoscalar initial state B(v) = P+(−γ5) and pseudoscalar

final state D(v′) = γ5P
′
+, one finds, for any current (8)

−2χ1(w)Tr
[

D(v′)ΓB(v)
]

= −Tr
[

D(v′)ΓB(v)
]

∑

n 6=0

1

∆E
(n)
1/2

ξ(n)(w)
< B(n)(v)|O(b)

kin,v(0)|B(v) >√
4mB(n)mB

(11)

where

< D(v′)|hc

v′(0)Γh
b
v(0)|B(n)(v) > = −ξ(n)(w)Tr

[

D(v′)ΓB(v)
]

(12)

that yields

2χ1(w) =
∑

n 6=0

1

∆E
(n)
1/2

ξ(n)(w)
< B(n)(v)|O(b)

kin,v(0)|B(v) >√
4mB(n)mB

. (13)

Likewise, we obtain, in the case of a vector initial state B∗(v, ε) = P+/ε and a vector

final state D
∗
(v′, ε′) = /ε′∗P ′

+

2χ1(w) =
∑

n 6=0

1

∆E
(n)
1/2

ξ(n)(w)
< B∗(n)(v, ε)|O(b)

kin,v(0)|B∗(v, ε) >√
4mB∗(n)mB∗

(14)

since Lkin is spin-independent. In the preceding expressions the energy denominators

are

∆E
(n)
1/2 = E

(n)
1/2 −E

(0)
1/2 (n 6= 0) . (15)

4



(2) Consider L(b)
mag,v, pseudoscalar initial state B(v) = P+(−γ5) and pseudoscalar

final state D(v′) = γ5P
′
+. Because of parity conservation by the strong interactions,

the intermediate states B(n) must have the same parity than the initial state B.

Moreover, L(b)
mag,v being a scalar and producing transitions at zero recoil, the spin

of B and B(n) must be the same. Therefore, only pseudoscalar intermediate states

B(n)(0−) can contribute, only states with j = 1
2

−
. One finds, for any current (8)

4(w − 1)χ2(w)Tr
[

D(v′)ΓB(v)
]

− 12χ3(w)Tr
[

D(v′)ΓB(v)
]

= −Tr
[

D(v′)ΓB(v)
]

∑

n 6=0

1

∆E
(n)
1/2

ξ(n)(w)
< B(n)(v)|O(b)

mag,v(0)|B(v) >√
4mB(n)mB

(16)

that gives

−4(w−1)χ2(w)+12χ3(w) =
∑

n 6=0

1

∆E
(n)
1/2

ξ(n)(w)
< B(n)(v)|O(b)

mag,v(0)|B(v) >√
4mB(n)mB

. (17)

It is remarkable that this linear combination depends only on 1
2

−
intermediate states.

We will comment on this feature below.

(3) Consider L(b)
mag,v and a vector initial state B∗(v, ε) = P+/ε and pseudoscalar

final state D(v′) = γ5P
′
+. Now we will have vector 1− intermediate states, either

B∗(n)
(

1
2

−
, 1−

)

or B∗(n)
(

3
2

−
, 1−

)

. For the latter, we have to compute the current

matrix element

< D(v′)|Jcb(0)|B∗(n)
(

3
2

−
, 1−

)

(v, ε) > = τ
(2)(n)
3/2 (w)Tr

[

D(v′)ΓF σ
v v

′
σ

]

(18)

where the
(

3
2

−
, 1−

)

operator is given by

F σ
v =

√

3

2
P+εν

[

gσν − 1

3
γν (γσ + vσ)

]

(19)

obtained from the
(

3
2

+
, 1+

)

operator defined by Leibovich et al. (formula (2.5) of

[10]), multiplying by (−γ5) on the right [11]. The Isgur-Wise functions τ
(2)(n)
3/2 (w)

correspond to 1
2

− → 3
2

−
transitions, the superindex (2) meaning the orbital angular

momentum [3] [4] [11]. As noticed by Leibovich et al., on general grounds the IW

functions τ
(2)(n)
3/2 (w) do not vanish at zero recoil.

One finds, for any curent (8),

< D(v′)|Jcb(0)|B(n)
(

3
2

−
, 1−

)

(v, ε) > =

√

3

2
τ
(2)(n)
3/2 (w)(ε · v′)Tr

[

D(v′)ΓP+

]

− 1√
6
(w − 1)τ

(2)(n)
3/2 (w)Tr

[

D(v′)ΓP+/ε
]

(20)
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and finally

−4χ2(w)(ε · v′)Tr
[

D(v′)ΓP+

]

+ 4χ3(w)Tr
[

D(v′)ΓB∗(v, ε)
]

= −Tr
[

D(v′)ΓB∗(v, ε)
]

∑

n 6=0

1

∆E
(n)
1/2

ξ(n)(w)
< B∗(n)(v, ε)|O(b)

mag,v(0)|B∗(v, ε) >√
4mB∗(n)mB∗

+







√

3

2
(ε · v′)Tr

[

D(v′)ΓP+

]

− 1√
6
(w − 1)Tr

[

D(v′)ΓB∗(v, ε)
]







∑

n

1

∆E
(n)
3/2

τ
(2)(n)
3/2 (w)

< B
∗(n)
3/2 (v, ε)|O(b)

mag,v(0)|B∗(v, ε) >
√

4m
B

∗(n)

3/2

mB∗

. (21)

The energy denominators ∆E
(n)
1/2 and ∆E

(n)
3/2

∆E
(n)
1/2 = E

(n)
1/2 −E

(0)
1/2 (n 6= 0)

∆E
(n)
3/2 = E

(n)
3/2 −E

(0)
1/2 (n ≥ 0) . (22)

To obtain other linearly independent relations, let us specify the final state and

the current. We make explicit the pseudoscalar D(v′) = γ5P
′
+ and take Γ = γµγ5.

This gives, from the preceding expression,

−4χ2(w)(ε · v′)(v′µ − vµ) + 4χ3(w) [(w − 1)εµ + (ε · v′)vµ]

= − [(w − 1)εµ + (ε · v′)vµ]
∑

n 6=0

1

∆E
(n)
1/2

ξ(n)(w)
< B∗(n)(v, ε)|O(b)

mag,v(0)|B∗(v, ε) >√
4mB∗(n)mB∗

+







√

3

2
(ε · v′)(v′µ − vµ)−

1√
6
(w − 1) [(w − 1)εµ + (ε · v′)vµ]







∑

n

1

∆E
(n)
3/2

τ
(2)(n)
3/2 (w)

< B
∗(n)
3/2 (v, ε)|O(b)

mag,v(0)|B∗(v, ε) >
√
4mB∗(n)mB∗

. (23)

Since the two four vectors (v′µ − vµ) and [(w − 1)εµ + (ε · v′)vµ] can be chosen to be

independent, one obtains independent sum rules for χ2(w) and χ3(w), namely

− 2χ2(w) =
1

2

√

3

2

∑

n

1

∆E
(n)
3/2

τ
(2)(n)
3/2 (w)

< B
∗(n)
3/2 (v, ε)|O(b)

mag,v(0)|B∗(v, ε) >
√

4m
B

∗(n)

3/2

mB∗

(24)

4χ3(w) = −
∑

n 6=0

1

∆E
(n)
1/2

ξ(n)(w)
< B∗(n)(v, ε)|O(b)

mag,v(0)|B∗(v, ε) >√
4mB∗(n)mB∗

−w − 1√
6

∑

n

1

∆E
(n)
3/2

τ
(2)(n)
3/2 (w)

< B
∗(n)
3/2 (v, ε)|O(b)

mag,v(0)|B∗(v, ε) >
√

4m
B

∗(n)

3/2

mB∗

(25)
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As a final remark on this Section on the derivation of the sum rules, let us point

out that if, instead of (5) that involves L(b) we start from (6) with L(c), we obtain the

same SR as above, with the replacement b → c in the operators and in the states.

The reason is that the IW functions and energy denominators are flavor-independent

in the heavy quark limit.

3 Summary and comments on the Lagrangian sum

rules.

To summarize, making explicit the c flavor, we have obtained the sum rules

χ1(w) =
1

2

∑

n 6=0

1

∆E
(n)
1/2

ξ(n)(w)
< D(n)(v)|O(c)

kin,v(0)|D(v) >√
4mD(n)mD

=
1

2

∑

n 6=0

1

∆E
(n)
1/2

ξ(n)(w)
< D∗(n)(v, ε)|O(c)

kin,v(0)|D∗(v, ε) >√
4mD∗(n)mD∗

(26)

χ2(w) = − 3

4
√
6

∑

n

1

∆E
(n)
3/2

τ
(2)(n)
3/2 (w)

< D
∗(n)
3/2 (v, ε)|O(c)

mag,v(0)|D∗(v, ε) >
√

4m
D

∗(n)

3/2

mD∗

(27)

χ3(w) = −1

4

∑

n 6=0

1

∆E
(n)
1/2

ξ(n)(w)
< D∗(n)(v, ε)|O(c)

mag,v(0)|D∗(v, ε) >√
4mD∗(n)mD∗

− w − 1

4
√
6

∑

n

1

∆E
(n)
3/2

τ
(2)(n)
3/2 (w)

< D
∗(n)
3/2 (v, ε)|O(c)

mag,v(0)|D∗(v, ε) >
√

4m
D

∗(n)

3/2

mD∗

(28)

There are a number of striking features in relations (26)-(28).

(i) One should notice that elastic subleading form factors of the Lagrangian type

are given in terms of leading IW functions, namely ξ(n)(w) and τ
(2)(n)
3/2 (w), and sub-

leading form factors at zero recoil.

(ii) χ1(w) is given in terms of matrix elements of Lkin, as expected from the

definitions (5)-(6) and involve transitions 1
2

− → 1
2

−
.

(iii) The elastic subleading magnetic form factors χ2(w) and χ3(w) involveD
∗(1−) →

D∗(n)(1−) transitions 1
2

− → 1
2

−
and 1

2

− → 3
2

−
.

(iv) χ1(w) and χ3(w) satisfy, as they should, Luke theorem [9],

χ1(1) = χ3(1) = 0 (29)

7



because the 1
2

− → 1
2

−
IW functions at zero recoil satisfy

ξ(n)(1) = δn,0 (30)

(v) There is a linear combination of χ2(w) and χ3(w) that gets only contributions

from 1
2

− → 1
2

−
transitions, namely

−4(w−1)χ2(w)+12χ3(w) = −3
∑

n 6=0

1

∆E
(n)
1/2

ξ(n)(w)
< D∗(n)(v, ε)|O(c)

mag,v(0)|D∗(v, ε) >√
4mD∗(n)mD∗

(31)

where the factor −3 is in consistency with (17), shifting from vector to pseudoscalar

mesons.

This latter relation and (26) imply that the combination

L1(w) = 2χ1(w)− 4(w − 1)χ2(w) + 12χ3(w) (32)

gets only contributions from 1
2

− → 1
2

−
transitions. We will give an alternative

demonstration of this feature using the OPE in Appendix A.

4 The OPE sum rule for hA1
(1).

It is well-known that the determination of |Vcb| from the B → D∗ℓν differential

rate at zero recoil depends on the value of hA1(1).

The interesting point is that precisely the subleading matrix elements of Okin

and Omag at zero recoil, that enter in the SR (26)-(28), are related to the quantity

|hA1(1)|, as we will see now.

The following SR follows from the OPE [12] [10],

|hA1(1)|2 +
∑

n

| < D∗(n)
(

1
2

−
, 3
2

−
)

(v, ε)| ~A|B(v) > |2

4mD∗(n)mB

= η2A − µ2
G

3m2
c

− µ2
π − µ2

G

4

(

1

m2
c

+
1

m2
b

+
2

3mcmb

)

(33)

where D∗(n) are 1− excited states, and

µ2
π =

1

2mB

< B(v)|h(b)

v (iD)2h(b)
v |B(v) >

µ2
G =

1

2mB

< B(v)|h(b)

v

gs
2
σαβG

αβh(b)
v |B(v) >

= − 3

2mB

< B∗(v, ε)|h(b)

v

gs
2
σαβG

αβh(b)
v |B∗(v, ε) > (34)

8



In relation (33) one assumes the states at rest v = (1, 0) and the axial current is

space-like, orthogonal to v. The relation of (34) with the other common notation

[8] [10] is µ2
π = −λ1 and µ2

G = 3λ2.

In the l.h.s. of relation (33),

hA1(1) = ηA1 + δ
(A1)
1/m2 (35)

(ηA1 = 1+ radiative corrections) because there are no first order 1/mQ corrections

due to Luke theorem [9]. The sum over the squared matrix elements of B →
D∗(n)(1−) transitions contains two types of possible contributions, corresponding to

D∗(n)
(

1
2

−
, 1−

)

(n 6= 0), and D∗(n)
(

3
2

−
, 1−

)

(n ≥ 0). The r.h.s. of (33) exhibits the

OPE at the desired order. From the decomposition between radiative corrections

and 1/m2
Q corrections (35) one gets, from (33), neglecting higher order terms,

−δ
(A1)
1/m2 =

µ2
G

6m2
c

+
µ2
π − µ2

G

8

(

1

m2
c

+
1

m2
b

+
2

3mcmb

)

+
1

2

∑

n

| < D∗(n)
(

1
2

−
, 3
2

−
)

(v, ε)| ~A|B(v) > |2

4mD∗(n)mB
. (36)

The correction δ
(A1)
1/m2 is therefore negative, both terms being of the same sign.

The matrix elements < D∗(n)
(

1
2

−
, 3
2

−
)

(v, ε)| ~A|B > have been expressed in terms

of the matrix elements < D∗(n)
(

1
2

−
)

(v, ε)|O(c)
kin,v(0)|D∗(v, ε) > and < D∗(n)

(

1
2

−
, 3
2

−
)

(v, ε)|O(c)
mag,v(0)|D∗(v, ε) > by Leibovich et al. [10], within the same normalization

convention used in the preceding sections,

< D∗(n)
(

1
2

−
)

(v, ε)| ~A|B(v) >
√
4mD∗(n)mB

= − ~ε

∆E
(n)
1/2





(

1

2mc

+
3

2mb

) < D∗(n)
(

1
2

−
)

(v, ε)|O(c)
mag,v(0)|D∗(v, ε) >

√
4mD∗(n)mD∗

+
(

1

2mc

− 1

2mb

) < D∗(n)
(

1
2

−
)

(v, ε)|O(c)
kin,v(0)|D∗(v, ε) >

√
4mD∗(n)mD∗



 (37)

< D∗(n)
(

3
2

−
)

(v, ε)| ~A|B(v) >
√
4mD∗(n)mB

= − ~ε

∆E
(n)
3/2

1

2mc

< D∗(n)
(

3
2

−
)

(v, ε)|O(c)
mag,v(0)|D∗(v, ε) >

√

4m
D

∗(n)

3/2

mD∗

. (38)

9



Therefore −δ
(A1)
1/m2 (36) can be written as

−δ
(A1)
1/m2 =

µ2
G

6m2
c

+
1

8

(

1

m2
c

+
1

m2
b

+
2

3mcmb

)

(

µ2
π − µ2

G

)

+
1

2

∑

n





(

1

2mc

+
3

2mb

)

1

∆E
(n)
1/2

| < D∗(n)
(

1
2

−
)

(v, ε)|O(c)
mag,v(0)|D∗(v, ε) >

√
4mD∗(n)mD∗

+
(

1

2mc
− 1

2mb

)

1

∆E
(n)
1/2

< D∗(n)
(

1
2

−
)

(v, ε)|O(c)
kin,v(0)|D∗(v, ε) >

√
4mD∗(n)mD∗





2

+
1

2

∑

n









1

2mc

1

∆E
(n)
3/2

< D∗(n)
(

3
2

−
)

(v, ε)|O(c)
mag,v(0)|D∗(v, ε) >

√

4m
D

∗(n)

3/2

mD∗









2

. (39)

The important point to emphasize here is that the matrix elements

< D∗(n)
(

1
2

−
)

(v, ε)|O(c)
kin,v(0)|D∗(v, ε) > and< D∗(n)

(

1
2

−
, 3
2

−
)

(v, ε)|O(c)
mag,v(0)|D∗(v, ε) >

are precisely the same ones that enter in the SR (26)-(28). This allows to obtain an

interesting lower bound on −δ
(A1)
1/m2 .

5 A lower bound on the inelastic contribution to

the −δ
(A1)
1/m2 correction of the B → D∗ axial form

factor at zero recoil.

We take now the relevant linear combinations of the matrix elements suggested

by the r.h.s. of (39), and use (26), (27) and (31),

∑

n 6=0

1

∆E
(n)
1/2

ξ(n)(w)







(

1

2mc

− 1

2mb

) < D∗(n)
(

1
2

−
)

(v, ε)|O(c)
kin,v(0)|D∗(v, ε) >

√
4mD∗(n)mD∗

+
(

1

2mc

+
3

2mb

) < D∗(n)
(

1
2

−
)

(v, ε)|O(c)
mag,v(0)|D∗(v, ε) >

√
4mD∗(n)mD∗







=
(

1

2mc
− 1

2mb

)

2χ1(w)−
1

3

(

1

2mc
+

3

2mb

)

[−4(w − 1)χ2(w) + 12χ3(w)]

(40)

∑

n

1

∆E
(n)
3/2

τ
(2)(n)
3/2 (w)

< D∗(n)
(

3
2

−
)

(v, ε)|O(c)
mag,v(0)|D∗(v, ε) >

√

4m
D

∗(n)

3/2

mD∗

= − 1

2mc

4
√
6

3
χ2(w) . (41)

10



Using now Schwarz inequality

∣

∣

∣

∣

∣

∑

n

AnBn

∣

∣

∣

∣

∣

≤
√

√

√

√

(

∑

n

|An|2
)(

∑

n

|Bn|2
)

(42)

one finds

∑

n 6=0

[

ξ(n)(w)
]2 ∑

n 6=0







1

∆E
(n)
1/2





(

1

2mc
− 1

2mb

) < D∗(n)
(

1
2

−
)

(v, ε)|O(c)
kin,v(0)|D∗(v, ε) >

√
4mD∗(n)mD∗

+
(

1

2mc

+
3

2mb

) < D∗(n)
(

1
2

−
)

(v, ε)|O(c)
mag,v(0)|D∗(v, ε) >

√
4mD∗(n)mD∗











2

≥ 4
{(

1

2mc
− 1

2mb

)

χ1(w)−
1

3

(

1

2mc
+

3

2mb

)

[−2(w − 1)χ2(w) + 6χ3(w)]
}2

(43)

∑

n

[

τ
(2)(n)
3/2 (w)

]2∑

n















1

∆E
(n)
3/2









1

2mc

< D∗(n)
(

3
2

−
)

(v, ε)|O(c)
mag,v(0)|D∗(v, ε) >

√

4m
D

∗(n)

3/2

mD∗























2

≥ 32

3

[

1

2mc
χ2(w)

]2

. (44)

These two last equations imply, from (39), the inequality

−δ
(A1)
1/m2 ≥

µ2
G

6m2
c

+
µ2
π − µ2

G

8

(

1

m2
c

+
1

m2
b

+
2

3mcmb

)

+ 2

{(

1
2mc

− 1
2mb

)

χ1(w)− 1
3

(

1
2mc

+ 3
2mb

)

[−2(w − 1)χ2(w) + 6χ3(w)]
}2

∑

n 6=0
[ξ(n)(w)]

2

+
16

3

[

1
2mc

χ2(w)
]2

∑

n

[

τ
(2)(n)
3/2 (w)

]2 . (45)

This inequality on −δ
(A1)
1/m2 involves on the r.h.s. elastic subleading functions

χi(w) (i = 1, 2, 3) in the numerator and sums over inelastic leading IW functions
∑

n 6=0
[ξ(n)(w)]2 and

∑

n
[τ

(2)(n)
3/2 (w)]2 in the denominator. We must emphasize that this

inequality is valid for all values of w and constitutes a rigorous constraint between

these functions and the correction −δ
(A1)
1/m2 . Let us point out that, near w = 1, since

ξ(n)(w) ∼ (w − 1) (n 6= 0) (46)
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and, due to Luke theorem

χ1(w), χ3(w) ∼ (w − 1) (47)

the second term on the r.h.s. of (45) is a constant in the limit w → 1.

On the other hand, since χ2(w) is not protected by Luke theorem,

χ2(1) 6= 0 (48)

and in general, as pointed out by Leibovich et al. [10]

τ
(2)
3/2(1) 6= 0 (49)

the last term in the r.h.s. of (45) is also a constant for w = 1.

The inequality (45) is valid for all values of w, and in particular it holds in the

w → 1 limit. Let us consider this limit, that gives

−δ
(A1)
1/m2 ≥

µ2
G

6m2
c

+
µ2
π − µ2

G

8

(

1

m2
c

+
1

m2
b

+
2

3mcmb

)

+2

{(

1
2mc

− 1
2mb

)

χ′
1(1)− 1

3

(

1
2mc

+ 3
2mb

)

[−2χ2(1) + 6χ′
3(1)]

}2

∑

n 6=0
[ξ(n)′(1)]

2

+
16

3

[

1
2mc

χ2(1)
]2

∑

n

[

τ
(2)
3/2(1)

]2 . (50)

On the other hand, using the OPE in the heavy quark limit, we have demonstrated

the following sum rules [5]

∑

n

[

τ
(2)
3/2(1)

]2
=

4

5
σ2 − ρ2 (51)

∑

n 6=0

[

ξ(n)
′

(1)
]2

=
5

3
σ2 − 4

3
ρ2 − (ρ2)2 (52)

where ρ2 and σ2 are the slope and the curvature of the elastic Isgur-Wise function

ξ(w),

ξ(w) = 1− ρ2(w − 1) +
σ2

2
(w − 1)2 + · · · (53)

The positivity of the l.h.s. of (51), (52) yield respectively the lower bounds on the

curvature obtained in [4] [5],

σ2 ≥ 5

4
ρ2 (54)

12



σ2 ≥ 1

5

[

4ρ2 + 3(ρ2)2
]

. (55)

On the other hand, Uraltsev [1] plus Bjorken [2] SR imply

ρ2 ≥ 3

4
(56)

giving, from both (54), (55), the absolute bound for the curvature

σ2 ≥ 15

16
. (57)

Relations (50)-(52) give finally the bound

−δ
(A1)
1/m2 ≥

µ2
G

6m2
c

+
µ2
π − µ2

G

8

(

1

m2
c

+
1

m2
b

+
2

3mcmb

)

+
2

3[5σ2 − 4ρ2 − 3(ρ2)2]

{(

1

2mc
− 1

2mb

)

3χ′
1(1)−

(

1

2mc
+

3

2mb

)

[−2χ2(1) + 6χ′
3(1)]

}2

+
80

3(4σ2 − 5ρ2)

[

1

2mc

χ2(1)
]2

. (58)

We briefly discuss in Appendix B the radiative corrections to relations (51) and

(52), computed in [6], and their impact on the bound (58).

6 Lower bound on the 1/m2
Q corrections to h+(1)

and h1(1).

Of theoretical interest are also the quantities at zero recoil ℓ1(1), ℓ2(1), that

would correspond to the wave function overlaps in the non-relativistic quark model

[8]. Using the notation of Falk and Neubert [8], these quantities are related to the

matrix elements of the vector current at zero recoil,

< D(v)|Vµ|B(v) >√
4mBmD

= vµ h+(1)

< D∗(v, ε)|Vµ|B∗(v, ε) >√
4mB∗mD∗

= vµ h1(1) (59)

where

h+(1) = 1 + δ
(+)
1/m2 + · · ·

h1(1) = 1 + δ
(1)
1/m2 + · · · (60)
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with

δ
(+)
1/m2 =

(

1

2mc
− 1

2mb

)2

ℓ1(1)

δ
(1)
1/m2 =

(

1

2mc

− 1

2mb

)2

ℓ2(1) . (61)

On the other hand, using also the notations of [8], δ
(A1)
1/m2 is given by the expression

δ
(A1)
1/m2 =

(

1

2mc
− 1

2mb

) [

1

2mc
ℓ2(1)−

1

2mb
ℓ1(1)

]

+
1

4mcmb
∆ (62)

where

∆ = ℓ1(1) + ℓ2(1) +m2(1) +m9(1) . (63)

We observe that

δ
(A1)
1/m2 →

1

4m2
b

ℓ1(1) for mc → ∞

δ
(A1)
1/m2 →

1

4m2
c

ℓ2(1) for mb → ∞ . (64)

Therefore, since the lower bound (58) is valid for any value of mc and mb, we can

obtain lower bounds on −ℓ1(1) and −ℓ2(1) by taking the limits (64). We find, in

this way,

− ℓ1(1) ≥
µ2
π − µ2

G

2
+

6

5σ2 − 4ρ2 − 3(ρ2)2
[−χ′

1(1) + 2χ2(1)− 6χ′
3(1)]

2
(65)

−ℓ2(1) ≥
3µ2

π + µ2
G

6
+

2

3[5σ2 − 4ρ2 − 3(ρ2)2]
[3χ′

1(1) + 2χ2(1)− 6χ′
3(1)]

2

+
80

3(4σ2 − 5ρ2)
[χ2(1)]

2 (66)

and from (61) we obtain lower bounds on −δ
(+)
1/m2 and −δ

(1)
1/m2 .

7 General considerations on the bounds.

We have obtained lower bounds on the −δ1/m2 corrections to some form factors,

namely hA1(w), h+(w) and h1(w), that are protected by Luke theorem. It is worth

to summarize their expressions at zero recoil :
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−δ
(A1)
1/m2 ≥

µ2
G

6m2
c

+
µ2
π − µ2

G

8

(

1

m2
c

+
1

m2
b

+
2

3mcmb

)

+
2

3[5σ2 − 4ρ2 − 3(ρ2)2]

{(

1

2mc
− 1

2mb

)

3χ′
1(1)

−
(

1

2mc
+

3

2mb

)

[−2χ2(1) + 6χ′
3(1)]

}2

+
80

4σ2 − 5ρ2

[

1

2mc
χ2(1)

]2

(67)

−δ
(+)
1/m2 ≥

(

1

2mc
− 1

2mb

)2
{

µ2
π − µ2

G

2

+
6

5σ2 − 4ρ2 − 3(ρ2)2
[−χ′

1(1) + 2χ2(1)− 6χ′
3(1)]

2

}

(68)

−δ
(1)
1/m2 ≥

(

1

2mc
− 1

2mb

)2
{

3µ2
π + µ2

G

6

+
2

3[5σ2 − 4ρ2 − 3(ρ2)2]
[3χ′

1(1) + 2χ2(1)− 6χ′
3(1)]

2
+

80

3(4σ2 − 5ρ2)
[χ2(1)]

2

}

.

(69)

A number of remarks are worth to be made here :

(i) The bounds contain an OPE piece, dependent on µ2
π and µ2

G, and a piece that

bounds the inelastic contributions, given in terms of the 1/mQ elastic quantities

χ′
1(1), χ2(1), χ

′
3(1) and on the slope ρ2 and curvature σ2 of the elastic IW function

ξ(w).

(ii) Taking roughly constant values for χ′
1(1), χ2(1), χ

′
3(1), as suggesed by the

QCD Sum Rules calculations (QCDSR) [13] [14] [15], the bounds for the inelastic

contributions diverge in the limit ρ2 → 3
4
, σ2 → 15

16
, according to (57). This feature

does not seem to us physical.

(iii) Therefore, one should expect that χ′
1(1), χ2(1) and χ′

3(1) vanish also in this

limit. We give a demonstration of this interesting feature in the next section.

(iv) Thus, the limit ρ2 → 3
4
, σ2 → 15

16
seems related to the behaviour of χi(w)

(i = 1, 2, 3) near zero recoil.

(v) The feature (iii) does not appear explicitly in the QDCSR approach, where

one gets roughly ρ2ren
∼= 0.7, and where there is no dependence on ρ2 of the functions

χi(w) (i = 1, 2, 3).

(vi) In the nonrelativistic quark model the parameters ℓ1(1) and ℓ2(1) correspond
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to the overlap of the wave functions at zero recoil [8]. The formulas (65) and (66)

give a model-independent, rigorous bound for these quantities.

8 Behaviour of the subleading functions χi(w)

(i = 1,2,3) in the limit ρ2 → 3
4, σ

2 → 15
16.

In this Section we demonstrate that indeed χ′
1(1), χ2(1) and χ′

3(1) vanish in the

limit ρ2 → 3
4
, σ2 → 15

16
. Let us rewrite the relations (26), (27) and (31) in terms of

pseudoscalar matrix elements

χ1(w) =
1

2

∑

n 6=0

1

∆E
(n)
1/2

ξ(n)(w)
< D(n)(v)|O(c)

kin(0)|D(v) >√
4mD(n)mD

(70)

χ2(w) =
1

4
√
6

∑

n

1

∆E
(n)
3/2

τ
(2)(n)
3/2 (w)

< D
∗(n)
3/2 (v, ε)|O(c)

mag(0)|D∗(v, ε) >
√

4m
D

∗(n)

3/2

mD∗

(71)

− 4(w − 1)χ2(w) + 12χ3(w) =
∑

n 6=0

1

∆E
(n)
1/2

ξ(n)(w)
< D(n)(v)|O(c)

mag(0)|D(v) >√
4mD(n)mD

(72)

At zero recoil w → 1 we have

χ′
1(1) =

1

2

∑

n 6=0

1

∆E
(n)
1/2

ξ(n)
′

(1)
< D(n)(v)|O(c)

kin(0)|D(v) >√
4mD(n)mD

(73)

χ2(1) =
1

4
√
6

∑

n

1

∆E
(n)
3/2

τ
(2)(n)
3/2 (1)

< D
∗(n)
3/2 (v, ε)|O(c)

mag(0)|D∗(v, ε) >
√

4m
D

∗(n)

3/2

mD∗

(74)

− 4χ2(1) + 12χ′
3(1) =

∑

n 6=0

1

∆E
(n)
1/2

ξ(n)
′

(1)
< D(n)(v)|O(c)

mag(0)|D(v) >√
4mD(n)mD

(75)

Using again Schwarz inequality as in Section 5, we obtain

[χ′
1(1)]

2 ≤ 1

4

∑

n 6=0

[

ξ(n)
′

(1)
]2 ∑

n 6=0





1

∆E
(n)
1/2

< D(n)(v)|O(c)
kin(0)|D(v) >√

4mD(n)mD





2

(76)

[χ2(1)]
2 ≤ 1

96

∑

n

[

τ
(2)(n)
3/2 (1)

]2∑

n





1

∆E
(n)
3/2

< D
∗(n)
3/2 (v, ε)|O(c)

mag(0)|D∗(v, ε) >
√
4mD(n)mD∗





2

(77)
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[−4χ2(1) + 12χ′
3(1)]

2 ≤
∑

n 6=0

[

ξ(n)
′

(1)
]2 ∑

n 6=0





1

∆E
(n)
1/2

< D(n)(v)|O(c)
mag(0)|D(v) >√

4mD(n)mD





2

(78)

and from relations (51) and (52) we obtain

[χ′
1(1)]

2 ≤ 1

12

[

5σ2 − 4ρ2 − 3(ρ2)2
]

∑

n 6=0





1

∆E
(n)
1/2

< D(n)(v)|O(c)
kin(0)|D(v) >√

4mD(n)mD





2

(79)

[χ2(1)]
2 ≤ 1

480

(

4σ2 − 5ρ2)
)

∑

n









1

∆E
(n)
3/2

< D
∗(n)
3/2 (v, ε)|O(c)

mag(0)|D∗(v, ε) >
√

4m
D

∗(n)

3/2

mD∗









2

(80)

[−4χ2(1) + 12χ′
3(1)]

2 ≤ 1

3

[

5σ2 − 4ρ2 − 3(ρ2)2
]

∑

n 6=0





1

∆E
(n)
1/2

< D(n)(v)|O(c)
mag(0)|D(v) >√

4mD(n)mD





2

(81)

Therefore, in the limit ρ2 → 3
4
, σ2 → 15

16
, one obtains

χ′
1(1) = χ2(1) = χ′

3(1) = 0 (82)

as it has been expected from the inspection of relations (67)-(69).

This is a very strong correlation relating the behaviour of the elastic IW function

ξ(w) to the elastic subleading IW functions χi(w) (i = 1, 2, 3) near zero recoil.

9 Discussion and phenomenological implications

on the determination of |Vcb|.
The bounds that relate second order subleading corrections δ1/m2 , the first order

1/mQ form factors χi(w) (i = 1, 2, 3) and the curvature and slope of the elastic Isgur-

Wise function ξ(w) should be taken into account in the exclusive determination of

|Vcb|.
On the one hand, the usual present point of view is that the exclusive determi-

nation of |Vcb| is not competitive with the inclusive determination, that looks much

more precise. However, one must keep in mind that the hadronic uncertainties in
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both methods are of different nature and that only a convergence of both can be

satisfactory for a precise measurement of |Vcb|.
As an illustration of the most advanced measurements, let us quote the results

of Babar [20]. To have a qualitative feeling, let us add the errors in quadrature,

|Vcb|inclusive = 0.0414± 0.0008 (83)

|Vcb|exclusive = 0.0370± 0.0020 (84)

where the exclusive determination comes form B → D∗ℓν and uses the value

− δ
(A1)
1/m2 = 0.09± 0.05 (85)

discussed in Appendix B.

The slight disagreement between both determinations (83), (84) seems to suggest

that −δ
(A1)
1/m2 could be larger than (85).

On the other hand, although this is not the main object of our discussion, in

obtaining |Vcb|inclusive one fits µ2
G = (0.27±0.07) GeV2. This is roughly within 1σ in

agreement with the experimental value obtained from the spectrum, namely µ2
G =

0.36 GeV2. However, it seems to us that this parameter is a very well determined

quantity that, in the fit, should be fixed at this latter value. This is just to emphasize

that, even in the very efficient inclusive determination, there are presumably still

hadronic uncertainties.

Coming back to the exclusive determination, it is well known that there is a

great dispersion of the data in the different experiments using B → D(D∗)ℓν, as

discussed in detail by Grinstein and Ligeti [16] (see also [20]).

Since in this determination, for example in B → D∗ℓν, enters −δ
(A1)
1/m2 and also

the subleading form factors χi(w) (i = 1, 2, 3), as well as the shape of the Isgur-Wise

function ξ(w), our bound (58) has to be taken into account, as well as the vanishing

of χ′
1(1), χ2(1), χ

′
3(1) in the limit ρ2 → 3

4
, σ2 → 15

16
.

The functions χi(w) (i = 1, 2, 3) have been computed in the framework of the

QCD Sum Rules approach [13] [14] [15], obtaining

χ′
1(1) = (0.15± 0.10) Λ

χ2(1) = −(0.05± 0.01) Λ

χ′
3(1) = (0.009± 0.004) Λ . (86)
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We have extracted these rough numbers from figures 5.5 of ref. [15], where the χi(w)

(i = 1, 2, 3) are dimensionless, given in units of Λ and we have translated them in

the definition of ref. [9], adopted in the present paper. On the other hand, one

obtains, in the QCDSR approach

ρ2ren
∼= 0.7 (87)

Therefore, the QCDSR approach does not make explicit the constraint that we

have obtained, and our discussion cannot proceed further within this scheme.

In the case of B → Dℓν the correction −δ
(1)
1/m2 is one of the pieces that constitute

the 1/m2
Q correction : besides ℓ1 there is another correction ℓ4 [8] not concerned by

our bounds, and therefore the situation is less clear. Nevertheless, what we have

said about −δ
(A1)
1/m2 applies to −δ

(1)
1/m2 .

By considering his BPS limit, Uraltsev [17] has obtained complementary results.

We will discuss separately the relation of his approach with our above sum rules.

10 Conclusion.

To conclude, we have obtained bounds that relate 1/m2
Q corrections of form

factors protected by Luke theorem, namely hA1(w), h+(w) and h1(w) to the 1/mQ

subleading form factors of the Lagrangian type χi(w) (i = 1, 2, 3) and to the shape of

the elastic Isgur-Wise ξ(w). These bounds should in principle be taken into account

in the analysis of the exclusive determination of |Vcb| in the channels B → D(D∗)ℓν.

On the other hand, we have demonstrated an important constraint on the behavior

of the subleading form factors χi(w) in the limit ρ2 → 3
4
, σ2 → 15

16
, since χ′

1(1), χ2(1)

and χ′
3(1) must vanish in this limit.

It would be very interesting to have a theoretical estimation of the functions

χi(w) (i = 1, 2, 3) satisfying this constraint. Otherwise it seems questionable to try

an exclusive determination of |Vcb| by fitting the slope ρ2 and considering uncorre-

lated subleading corrections, for example roughly constant values for χ′
1(1), χ2(1)

and χ′
3(1).
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Appendix A. Derivation of the Lagrangian Sum

Rules using the OPE.

In this Appendix we give an alternative derivation of the SR (26)-(28), following

the same method used in ref. [7], based on the OPE, to obtain similar SR concerning

the 1/mQ perturbations of the heavy quark current.

To make easier the study of the subleading corrections we did consider the fol-

lowing limit

mc ≫ mb ≫ ΛQCD . (A.1)

Then, as explained in [7], the difference between the two energy denominators in

the T -product (1) is large

q0 −Ef + EXcbb
−
(

q0 + Ei − EXc

)

∼ 2mc (A.2)

where Xc and Xcbb denote the intermediate states of the direct and Z orderings.

Therefore, we can in this limit neglect the Z diagram, and consider the imaginary

part of the direct diagram, the piece proportional to

δ
(

q0 + Ei − EXc

)

. (A.3)

Notice that one can choose q0 such that there is a left-hand cut, even in the conditions

(A.1). This means that q0 is of the order of mc and mc − q0 is fixed, of the order

mb. Our conditions are, in short, as follows :

ΛQCD ≪ mb ∼ mc − q0 ≪ q0 ∼ mc → ∞ . (A.4)

To summarize, we did consider the heavy quark limit for the c quark, but allowing

for a large finite mass for the b quark.

The final result is the sum rule [7]

∑

Dn

< Bf (vf)|Jf(0)|Dn(v
′) > < Dn(v

′)|Ji(0)|Bi(vi) >

= < B(vf )|b(0)Γf
1 + /v′

2v′0
Γib(0)|B(vi) > + O(1/mc) (A.5)

that is valid for all powers of an expansion in 1/mb, but only to leading order in

1/mc.
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At leading order mb, mc → ∞ one gets the SR formulated in [3]-[5]. In ref. [7]

we considered the first order in 1/mb to both the left and right hand sides of (A.5),

using the formalisms of Falk and Neubert [8] for the 1
2

− → 1
2

−
transitions and of

Leibovich et al. [10] for the 1
2

− → 1
2

+
, 1

2

− → 3
2

+
transitions. The formalism was

extended to all possible transitions 1
2

− → j± [11].

We did consider only the 1/mQ perturbations that are perturbations of the cur-

rent, namely L4(w), L5(w) and L6(w), in the notation of [8]. To obtain the maximum

information we did consider in [7] initial and final pseudoscalar B(vi) → B(vf) or

vector states B∗(vi, εi) → B∗(vf , εf). This yielded to two interesting very simple

sum rules. The reason is that we considered the SR at the frontier

(wi, wf , wif) = (w, 1, w) (A.6)

of the domain of the variables (wi, wf , wif) = (vi · v′, vf · v′, vi · vf ) [3],

wi ≥ 1 wf ≥ 1

wiwf −
√

(w2
i − 1)(w2

f − 1) ≤ wif ≤ wiwf +
√

(w2
i − 1)(w2

f − 1) . (A.7)

In this Appendix we formulate new SR for the Lagrangian perturbations, parallel

to the ones on the Current perturbations (3)-(4), using the OPE formalism of ref.

[7]. We find the same results than with the simple method exposed in detail in

Section 2.

In obtaining (3)-(4) we did use axial currents aligned along the initial and final

velocities, Γi = /viγ5, Γf = /vfγ5. Let us use now the vector heavy quark currents,

aligned along the initial and final four-velocities,

Γi = /vi Γf = /vf (A.8)

and proceed as in [7]. Using expression (A.5) we obtain two sum rules at order

1/mb for initial and final pseudoscalar B(vi) → B(vf) or vector states B
∗(vi, εi) →

B∗(vf , εf).

To compute the SR we need the following matrix elements, including the 1/mb

order [8]

< D(v′)|Q′
ΓQ|B(v) > = −ξ(w)Tr[D(v′)ΓB(v)]

− 1

2mb

Tr
{

D(v′)Γ [P+L+(v, v
′) + P−L−(v, v

′)]
}

+O(1/mc) . (A.9)
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The 4× 4 matrices write, for a pseudoscalar meson M (initial B or intermediate

D)

M(v) = P+(v)(−γ5)

P+(v)L+(v, v
′) + P−(v)L−(v, v

′) = [L1(w)P+(v) + L4(w)P−(v)] (−γ5) (A.10)

where w = v · v′, while for a vector meson M one has

M(v) = P+(v)/ε

P+(v)L+(v, v
′) + P−(v)L−(v, v

′) =

P+(v) [/εL2(w) + (εv · v′)L3(w)] + P−(v) [/εL5(w) + (ε · v′)L6(w)] . (A.11)

The matrix elements to excited states write [10]

< D
(

3
2

+
)

(v′)|cΓb|B(v) > =
√
3 τ3/2(w) Tr

[

vσD
σ
(v′)ΓB(v)

]

+
1

2mb

{

Tr
[

S
(b)
σλD

σ
(v′)ΓγλB(v)

]

+ η
(b)
ke Tr

[

vσD
σ
(v′)ΓB(v)

]

+ Tr
[

R
(b)
σαβD

σ
(v′)ΓP+(v)iσ

αβB(v)
]}

+O(1/mc)

< D
(

1
2

+
)

(v′)|cΓb|B(v) > = 2τ1/2(w) Tr
[

D(v′)ΓB(v)
]

+
1

2mb

{

Tr
[

S
(b)
λ D(v′)ΓγλB(v)

]

+ χ
(b)
ke Tr

[

D(v′)ΓB(v)
]

+ Tr
[

R
(b)
αβD(v′)ΓP+(v)iσ

αβB(v)
]}

+O(1/mc) (A.12)

where

Dσ
2+(v

′) = P+(v
′)εσνv′ γν

Dσ
1+(v

′) = −
√

3

2
P+(v

′)ενv′γ5

[

gσν − 1

3
γν(γ

σ − v′σ)
]

D1+(v
′) = P+(v

′)ενv′γ5γν

D0+(v
′) = P+(v

′) . (A.13)

The notation S
(b)
σλ , S

(b)
λ denote the perturbations to the current, and η

(b)
ke , χ

(b)
ke and

R
(b)
σαβ , R

(b)
αβ denote respectively the kinetic and the magnetic Lagrangian perturba-

tions.
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Expanded in terms of Lorentz covariant factors and subleading IW functions,

these tensor quantities read [10]

S
(Q)
σλ = vσ

[

τ
(Q)
1 (w)vλ + τ

(Q)
2 (w)v′λ + τ

(Q)
3 (w)γλ

]

+ τ
(Q)
4 (w)gσλ

S
(Q)
λ = ζ

(Q)
1 (w)vλ + ζ

(Q)
2 (w)v′λ + ζ

(Q)
3 (w)γλ (Q = b, c) (A.14)

for the Current perturbations, and

R
(b)
σαβ = η

(b)
1 (w)vσγαγβ + η

(b)
2 (w)vσv

′
αγβ + η

(b)
3 (w)gσαv

′
β

R
(b)
αβ = χ

(b)
1 (w)γαγβ + χ

(b)
2 (w)v′αγβ (A.15)

for the Lagrangian magnetic perturbations.

We have also to consider the intermediate states D
(

3
2

−
, 1−

)

, D
(

3
2

−
, 2−

)

. The

corresponding 4× 4 matrices for the 3
2

−
states will be given in terms of those of 3

2

+

states (A.13) by [11]

Dσ
1−(v

′) = Dσ
1+(v

′)(−γ5) , Dσ
2−(v

′) = Dσ
2+(v

′)(−γ5) (A.16)

and the current matrix elements, including 1/mb corrections are

< D ( 3
2

−) (v′)|cΓb|B(v) > = τ
(2)
3/2(w) Tr

[

vσD
σ
(v′)ΓB(v)

]

+
1

2mb

{

Tr
[

T
(b)
σλD

σ
(v′)ΓγλB(v)

]

+ ρ
(b)
ke Tr

[

vσD
σ
(v′)ΓB(v)

]

+ Tr
[

V
(b)
σαβD

σ
(v′)ΓP+(v)iσ

αβB(v)
]}

+O(1/mc) (A.17)

where

T
(b)
σλ = vσ

[

σ
(b)
1 (w)vλ + σ

(b)
2 (w)v′λ + σ

(b)
3 (w)γλ

]

+ σ
(b)
4 (w)gσλ (A.18)

denotes the Current perturbations, and

V
(b)
σαβ = ρ

(b)
1 (w)vσγαγβ + ρ

(b)
2 (w)vσv

′
αγβ + ρ

(b)
3 (w)gσαγβ (A.19)

the corresponding Lagrangian perturbations. In defining (A.19) we perform a dif-

ferent Lorentz decomposition as done in [10] for the 1
2

+
, 3

2

+
states. The necessity of

this alternative parametrization is explained in ref. [21].
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Proceeding like in ref. [7], starting from the master formula (A.5), i.e. taking

the formal limit mc ≫ mb, and using now the vector currents (A.8), we find the

following sum rules for

(wi, wf , wif) = (w, 1, w) or (vi, vf , v) = (v, v′, v′) , (A.20)

respectively for the pseudoscalar B(v) → B(v′) or B∗(v, ε) → B∗(v′, ε′) transitions,

L1(w) =
∑

n

ξ(n)(w)L
(n)
1 (1) (A.21)

L2(w) + (w − 1)L3(w) =
∑

n

ξ(n)(w)L
(n)
2 (1)− 2

3
(w − 1)

∑

n

τ
(2)(n)
3/2 (w)ρ

(n)
3 (1) (A.22)

In (A.21) and (A.22) one has a relation between the elastic subleading form

factors of Lagrangian type L1(w), L2(w) and L3(w) and excited leading IW functions

ξ(n)(w), τ
(2)(n)
3/2 (w) and excited subleading form factors of Lagrangian type at zero

recoil, L
(n)
1 (1), L

(n)
2 (1) and ρ

(n)
3 (1). Notice that in the sums (A.21) and (A.22) the

terms ξ(0)(w)L
(0)
1 (1), ξ(0)(w)L

(0)
1 (1) do not contribute due to Luke theorem [9]

L1(1) = L1(1) = 0 . (A.23)

Therefore the SR (A.21), (A.22) actually reduce to

L1(w) =
∑

n 6=0

ξ(n)(w)L
(n)
1 (1) (A.24)

L2(w) + (w − 1)L3(w) =
∑

n 6=0

ξ(n)(w)L
(n)
2 (1)− 2

3
(w − 1)

∑

n

τ
(2)(n)
3/2 (w)ρ

(n)
3 (1) (A.25)

We see that L1(w) and L2(w) satisfy Luke theorem at w = 1, L1(1) = L2(1) = 0,

due to ξ(n)(1) = δn,0.

A number of comments are worth here to be added.

(i) All current perturbation form factors, the elastic L4(w), L5(w) and L6(w)

and the inelastic ones cancel in the sum rules. Only perturbations of the Lagrangian

remain.

(ii) Only the 1
2

−
and 3

2

−
intermediate states contribute at the frontier (A.20).

(iii) The SR (A.24)-(A.25) are reminiscent of the SR (3)-(4), that relate elastic

subleading form factors of the current type to leading order excited IW functions

and subleading excited form factors at zero recoil. In this case, however, these latter
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form factors can be simply expressed, by the equations of motion, in terms of leading

IW functions and level spacings.

(iv) It can be easily shown, following the same type of arguments as in [7] that

higher excited states do not contribute to the SR (A.24)-(A.25) because we choose

the frontier (A.20).

(v) Notice that for the SR concerning 1/mQ perturbations to the Current, only

1
2

+
and 3

2

+
intermediate states survive. Similarly, in a symmetric way, for the 1/mQ

perturbations of the Lagrangian, only 1
2

−
and 3

2

−
intermediate states survive.

Writing the combinations L1(w) and L2(w) + (w− 1)L3(w) in terms of the Lkin

and Lmag matrix elements χi(w) [8] [9],

L1(w) = 2χ1(w)− 4(w − 1)χ2(w) + 12χ3(w)

L2(w) = 2χ1(w)− 4χ3(w)

L3(w) = 4χ2(w) (A.26)

We realize that, as obtained in Section 2, the combination L1(w) gets contributions

only from 1
2

−
intermediate states, while the combination L2(w) + (w − 1)L3(w) =

2χ1(w)+4(w−1)χ2(w)−4χ3(w) contains contributions from
1
2

−
and 3

2

−
intermediate

states, as we have found in Section 3. In terms of the χi(w) (i = 1, 2, 3), the SR

write

2χ1(w)− 4(w − 1)χ2(w) + 12χ3(w) =
∑

n 6=0

ξ(n)(w)L
(n)
1 (1)

2χ1(w)+4(w−1)χ2(w)−4χ3(w) =
∑

n 6=0

ξ(n)(w)L
(n)
2 (1)− 2

3
(w−1)

∑

n

τ
(2)(n)
3/2 (w)ρ

(n)
3 (1)

(A.27)

On the other hand, since only Lkin contributes to χ1(w) and to χ
(n)
1 (1), decomposing

L
(n)
1 (1) and L

(n)
2 (1) in terms of χ

(n)
i (1) like in the first two relations (A.26), we can

solve for χ2(w) and χ3(w) and find finally

χ1(w) =
∑

n 6=0

ξ(n)(w)χ
(n)
1 (1)

χ2(w) = −1

4

∑

n

τ
(2)(n)
3/2 (w)ρ

(n)
3 (1)
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χ3(w) =
∑

n 6=0

ξ(n)(w)χ
(n)
3 (1)− 1

12
(w − 1)

∑

n

τ
(2)(n)
3/2 (w)ρ

(n)
3 (1) (A.28)

From the definition of χ
(n)
1 (1), χ

(n)
3 (1) and ρ

(n)
3 (1) from the T -products as in (5)

and (6) for 1
2

− → 1
2

−
transitions, but allowing for n 6= 0, and the corresponding

one for 1
2

− → 3
2

−
transitions, we see that these relations are identical with (26)-(28),

obtained in Section 2 just from the definition of the form factors χi(w). The inelastic

form factors at zero recoil χ
(n)
1 (1) (n 6= 0) are given by the matrix elements 1

2

−

(n = 0)→ 1
2

−
(n 6= 0) of Lkin ponderated by the corresponding energy denominators.

Similarly, χ
(n)
3 (1) and ρ

(n)
3 (1) (n ≥ 0) are given by the matrix elements 1

2

−
(n = 0)

→ 1
2

−
(n 6= 0) and 1

2

−
(n = 0) → 3

2

−
(n ≥ 0) coming from Lmag.

Appendix B.

Although the QCDSR results (86) do not explicitely satisfy the constraints (82),

it could be of some interest to use these results to estimate the r.h.s. of (67)-(69)

varying the input for the slope ρ2 and the curvature σ2. The aim would be to see

how these bounds evolve as one approaches the limit ρ2 → 3
4
, σ2 → 15

16
.

We denote the bounds under the form of the contribution of the OPE term of

the matrix elements (34), plus the 1
2

−
and 3

2

−
inelastic contributions,

−δ
(A1)
1/m2 ≥ OPE +

1

2

−

+
3

2

−

. (B.1)

In view of the theoretical comments on the bounds made in the preceding Section, we

can only provide some qualitative numerical illustrations that will show the general

trend of the results. We give some numerical results in Tables 1, 2 and 3 using the

parameters

mc = 1.25 GeV mb = 4.75 GeV Λ = 0.50 GeV

µ2
π = 0.50 GeV2 µ2

G = 0.36 GeV2 (B.2)

and for the curvature σ2 of the Isgur-Wise function we use its value in terms of the

slope ρ2 given by the “dipole” Ansatz [18]

ξ(w) =
(

2

w + 1

)2ρ2

(B.3)
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namely

σ2 =
ρ2

2
+ (ρ2)2 . (B.4)

We use this relation between the curvature and the slope because, as shown in [5],

(B.3) satisfies all the bounds that we have obtained for the derivatives of the elastic

IW function [3] [4] [5].

Parameters −δ
(A1)
1/m2 ≥ OPE+ 1

2

−
+ 3

2

−

(i) ρ2 = 1 σ2 = 1.5

χ′
1(1) = 0.15 Λ −δ

(A1)
1/m2

χ2(1) = −0.05 Λ ≥ 0.052 + 0.000 + 0.003

χ′
3(1) = 0.01 Λ = 0.055

(ii) ρ2 = 1 σ2 = 1.5

χ′
1(1) = 0.15 Λ −δ

(A1)
1/m2

χ2(1) = −0.05 Λ ≥ 0.052 + 0.113 + 0.003

χ′
3(1) = 0.15 Λ = 0.168

(iii) ρ2 = 0.9 σ2 = 1.26

χ′
1(1) = 0.15 Λ −δ

(A1)
1/m2

χ2(1) = −0.05 Λ ≥ 0.052 + 0.000 + 0.005

χ′
3(1) = 0.01 Λ = 0.057

(iv) ρ2 = 0.8 σ2 = 1.04

χ′
1(1) = 0.15 Λ −δ

(A1)
1/m2

χ2(1) = −0.05 Λ ≥ 0.001 + 0.001 + 0.017

χ′
3(1) = 0.01 Λ = 0.070

(v) ρ2 = 0.76 σ2 = 0.96

χ′
1(1) = 0.15 Λ −δ

(A1)
1/m2

χ2(1) = −0.05 Λ ≥ 0.052 + 0.004 + 0.088

χ′
3(1) = 0.01 Λ = 0.14

Table 1. The lower bound (58) for −δ
(A1)
1/m2 for different values of the parameters.

OPE denotes the contribution depending on µ2
π, µ

2
G and 1

2

−
, 3

2

−
the inelastic contri-

butions of the corresponding 1− excited states. We fix the values mc = 1.25 GeV,

mb = 4.75 GeV, Λ = 0.5 GeV, µ2
π = 0.50 GeV2, µ2

G = 0.36 GeV2.
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An order of magnitude estimation of the r.h.s. of relation (36) assumes that the

inelastic term is roughly a factor χ of the OPE result [19], i.e.

−δ
(A1)
1/m2 = (1 + χ)

[

µ2
G

6m2
c

+
µ2
π − µ2

G

8

(

1

m2
c

+
1

m2
b

+
2

3mcmb

)]

. (B.5)

Taking χ = 0.5± 0.5 [19], one gets, for µ2
π = 0.50, µ2

G = 0.36,

−δ
(A1)
1/m2

∼= 0.09± 0.05 . (B.6)

We observe from the results of Table 1 that the lower bound grows rapidly as

one approaches the lower bounds ρ2 = 3
4
, σ2 = 15

16
. However, for the values chosen

for ρ2, σ2, the guess (B.6) can be accomodated with the QCDSR estimations for

χi(w) (i = 1, 2, 3).

Let us comment on the different entries of Table 1. Our results can only pretend

to give the qualitative trend of the bounds. In the choice of parameters (i) we have

used the central values (86) and ρ2 = 1. The lower bound on −δ
(A1)
1/m2 is dominated

by the OPE contribution, and specially the 1
2

−
contributions are very small because

of a strong cancellation between two terms in (58). In the second row (ii), just

as an illustration, we have taken the central values of (86) except for χ′
3(1), for

which we have taken the large value suggested by Grinstein and Ligeti [16] to fit

the different experiments on B → D(D∗)ℓν, keeping however ρ2 = 1. We observe

that now the 1
2

−
contribution becomes very large. In choices (iii), (iv) and (v) we

take still the central values of (86) and we decrease the value of ρ2 = 0.9, 0.8, 0.76,

and consequently the curvature. For (v) the inelastic contributions become sizeable,

specially for the 3
2

−
contributions. Of course, the bounds diverge for ρ2 = 3

4
, σ2 = 15

16
.

This value for ρ2 is not far away from the QCDSR value ρ2ren = 0.7. However,

strictly speaking, we cannot make a comparison because we do not have computed

the radiative corrections to our bound. The same comment applies to the functions

χi(w) computed in the QCDSR approach. Therefore, our numerical results can only

be indicative of what can be expected.

In Tables 2 and 3 we give the lower bounds on −ℓ1(1) and −ℓ2(1) and the

corresponding lower bounds on −δ
(+)
1/m2 , −δ

(1)
1/m2 , using the same sets of parameters

as in Table 1.
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Parameters −ℓ1(1) ≥ OPE + 1
2

−
+ 3

2

− −δ
(+)
1/m2 ≥ OPE+ 1

2

−
+ 3

2

−

(i) ρ2 = 1 σ2 = 1.5

χ′
1(1) = 0.15 Λ −ℓ1(1) ≥ −δ

(+)
1/m2

χ2(1) = −0.05 Λ (0.075 + 0.288 + 0) GeV2 ≥ 0.007 + 0.025 + 0

χ′
3(1) = 0.01 Λ = 0.363 GeV2 = 0.032

(ii) ρ2 = 1 σ2 = 1.5

χ′
1(1) = 0.15 Λ −ℓ1(1) ≥ −δ

(+)
1/m2

χ2(1) = −0.05 Λ (0.075 + 3.967 + 0) GeV2 ≥ 0.007 + 0.345 + 0

χ′
3(1) = 0.15 Λ = 4.042 GeV2 = 0.351

(iii) ρ2 = 0.9 σ2 = 1.26

χ′
1(1) = 0.15 Λ −ℓ1(1) ≥ −δ

(+)
1/m2

χ2(1) = −0.05 Λ (0.075 + 0.534 + 0) GeV2 ≥ 0.007 + 0.046 + 0

χ′
3(1) = 0.01 Λ = 0.609 GeV2 = 0.053

(iv) ρ2 = 0.8 σ2 = 1.04

χ′
1(1) = 0.15 Λ −ℓ1(1) ≥ −δ

(+)
1/m2

χ2(1) = −0.05 Λ (0.075 + 1.802 + 0) GeV2 ≥ 0.007 + 0.156 + 0

χ′
3(1) = 0.01 Λ = 1.877 GeV2 = 0.163

(v) ρ2 = 0.76 σ2 = 0.96

χ′
1(1) = 0.15 Λ −ℓ1(1) ≥ −δ

(+)
1/m2

χ2(1) = −0.05 Λ (0.075 + 9.484 + 0) GeV2 ≥ 0.007 + 0.824 + 0

χ′
3(1) = 0.01 Λ = 9.559 GeV2 = 0.831

Table 2. The lower bounds for −ℓ1(1) (65) and −δ
(+)
1/m2 (68) for the same set of

parameters and notations of Table 1.
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Parameters −ℓ2(1) ≥ OPE + 1
2

−
+ 3

2

− −δ
(1)
1/m2 ≥ OPE+ 1

2

−
+ 3

2

−

(i) ρ2 = 1 σ2 = 1.5

χ′
1(1) = 0.15 Λ −ℓ2(1) ≥ −δ

(1)
1/m2

χ2(1) = −0.05 Λ (0.308 + 0.028 + 0.017) GeV2 ≥ 0.027 + 0.002 + 0.001

χ′
3(1) = 0.01 Λ = 0.353 GeV2 = 0.030

(ii) ρ2 = 1 σ2 = 1.5

χ′
1(1) = 0.15 Λ −ℓ2(1) ≥ −δ

(1)
1/m2

χ2(1) = −0.05 Λ (0.308 + 0.101 + 0.017) GeV2 ≥ 0.027 + 0.009 + 0.001

χ′
3(1) = 0.15 Λ = 0.426 GeV2 = 0.037

(iii) ρ2 = 0.9 σ2 = 1.26

χ′
1(1) = 0.15 Λ −ℓ2(1) ≥ −δ

(1)
1/m2

χ2(1) = −0.05 Λ (0.308 + 0.052 + 0.031) GeV2 ≥ 0.027 + 0.004 + 0.003

χ′
3(1) = 0.01 Λ = 0.391 GeV2 = 0.034

(iv) ρ2 = 0.8 σ2 = 1.04

χ′
1(1) = 0.15 Λ −ℓ2(1) ≥ −δ

(1)
1/m2

χ2(1) = −0.05 Λ (0.308 + 0.175 + 0.104) GeV2 ≥ 0.027 + 0.015 + 0.009

χ′
3(1) = 0.01 Λ = 0.587 GeV2 = 0.051

(v) ρ2 = 0.76 σ2 = 0.96

χ′
1(1) = 0.15 Λ −ℓ2(1) ≥ −δ

(1)
1/m2

χ2(1) = −0.05 Λ (0.308 + 0.922 + 0.548) GeV2 ≥ 0.027 + 0.080 + 0.048

χ′
3(1) = 0.01 Λ = 1.778 GeV2 = 0.155

Table 3. The lower bounds for −ℓ2(1) (66) and for −δ
(1)
1/m2 (69) for the same set of

parameters and notations of Table 1.

Concerning Table 2, we observe that the bounds on −ℓ1(1) and on −δ
(+)
1/m2 are

now dominated by the 1
2

−
contribution, and that the OPE contribution is small,

contrarily to the bounds on −δ
(A1)
1/m2 , −ℓ2(1) and −δ

(1)
1/m2 . On the other hand, the

sets of parameters (i), (iii) and (iv) are unphysical, since the lower bound on −ℓ1(1)

is very large. In Table 3 we observe that the bounds on −ℓ2(1) and on −δ
(1)
1/m2 are

always dominated by the OPE contribution, except when ρ2 and σ2 approach 3
4
and

15
16
, like in the set of parameters (iii) and (iv).

30



Appendix C. Radiative corrections

The radiative corrections to the relations (51), (52) have been computed by

Dorsten within HQET [6]. In this approach there are two parameters, namely the

subtraction point µ and the cut-off ∆ on the sums. To avoid large logarithms, one

should take 2∆ ∼= µ.

Our relations (51), (52) are modified in the following way (formulas (34), (35)

and (18) of [6]), adopting 2∆ = µ to simplify :

n(µ/2)
∑

n=0

[

τ
(2)(n)
3/2 (1)

]2
=

4

5
σ2(µ)− ρ2(µ)

(

1 +
32αs

27π

)

+
4

5

193αs

675π
(C.1)

n(µ/2)
∑

n>0

[

ξ(n)
′

(1)
]2

=
5

3
σ2(µ)− 4

3
ρ2(µ)

(

1 +
20αs

27π

)

− [ρ2(µ)]2 +
5

3

148αs

675π
(C.2)

Taking αs = 0.3 for µ = 2 GeV, we obtain, keeping the algebraic factors as in (51),

(52)
n(µ/2)
∑

n=0

[

τ
(2)(n)
3/2 (1)

]2
=

4

5
σ2(µ)− 1.11ρ2(µ) + 0.02 (C.3)

n(µ/2)
∑

n>0

[

ξ(n)
′

(1)
]2

=
5

3
σ2(µ)− 4

3
1.07ρ2(µ)− [ρ2(µ)]2 + 0.03 (C.4)

We observe that the radiative corrections do not modify in a significant way our

results, since the corrections are small. However, we must emphasize that, using

(B.4) as a model of a relation between slope and curvature, the divergences of the

denominators of the bounds are shifted away from ρ2 = 3
4
to slightly higher values.
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