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The tensor force in HQET and the semileptonic

B decay to excited vector mesons D
(

3

2

−
, 1−

)

F. Jugeau, A. Le Yaouanc, L. Oliver and J.-C. Raynal

Laboratoire de Physique Théorique1
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Abstract

We extend the formalism of Leibovich, Ligeti, Stewart and Wise in the

1/mQ expansion of Heavy Quark Effective Theory for the B semileptonic

decays into excited D
(

3
2
+
)

mesons to the opposite parity states D
(

3
2
−
)

. For

D
(

3
2
+
)

the 1/mQ current perturbation dominates over the leading term at

zero recoil, while for D
(

3
2
−
)

the 1/mQ perturbation due to Lmag dominates

also at zero recoil. We show that the corresponding 1/mQ magnetic coupling

is proportional to the mixing between the states D
(

3
2
−
, 1−

)

and D
(

1
2
−
, 1−

)

induced by the tensor force. We point out some subtleties that appear in this

respect in HQET.
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In this note we deal with the relation between the tensor force and weak transi-

tions at zero recoil in Heavy Quark Effective Theory (HQET), and some subtleties

related to this question.

In the quark model, the tensor force between two quarks Q and q of unequal

masses is given by the expression [1]

HQq
tensor =

1

mQmq

U(rQq)

[

3(SQ · rQq)(Sq · rQq)

r2Qq

− (SQ · Sq)

]

(1)

where, for one-gluon exchange, U(rQq) is positive and proportional to αS

r3Qq
.

Expression (1) shows that in the case of heavy-light mesons (mQ ≫ mq), H
Qq
tensor

is proportional to 1/mQ. Therefore, the tensor force should appear in HQET at the

first order in the 1/mQ expansion.

In mesons, this force is responsible for mixing between the vector statesD
(

3
2

−
, 1−

)

and D
(

1
2

−
, 1−

)

. In the quark model, a straighforward calculation using (1) gives

< D
(

3
2

−
, 1−

)

|HQq
tensor|D

(

1
2

−
, 1−

)

> ∼ < ψ1|U(rQq)|ψ0 >

mQmq

(2)

where ψL(rQq) (L = 0, 1) are the radial wave functions of the ground state and of

the first orbitally excited state.

In HQET, the mixing between D
(

3
2

−
, 1−

)

and D
(

1
2

−
, 1−

)

, equivalent to (2), will

be given by the matrix element

< D
(

3
2

−
, 1−

)

(v, ε)|L(c)
mag,v(0)|D

(

1
2

−
, 1−

)

(v, ε) > (3)

with

L(Q)
mag,v =

1

2mQ

O(Q)
mag,v

O(Q)
mag,v =

gs
2
h
(Q)

v σαβG
αβh(Q)

v (4)

The 3
2

−
and the 1

2

−
fields of spin 1 are given by [2] [3]

Hv

(

1
2

−
, 1−

)

= P+/εv

F σ
v

(

3
2

−
, 1−

)

=

√

3

2
P+ε

ρ
v

[

gσρ − 1

3
γρ(γ

σ + vσ)
]

(5)

where P+ =
1 + /v

2
and the last expression follows from

F σ
v

(

3
2

+
, 1+

)

= −
√

3

2
P+ε

ρ
vγ5

[

gσρ − 1

3
γρ(γ

σ − vσ)
]

(6)
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multiplying by (−γ5) on the right.

The mixing will then be given by the matrix element

< D
(

3
2

−
, 1−

)

(v, ε)|L(c)
mag,v(0)|D

(

1
2

−
, 1−

)

(v, ε) >
√
mD3/2

mD1/2

=
1

2mc

Tr
[

M
(c)
σαβF

σ

v iσ
αβHv

]

(7)

where

F
σ

v = γ0F σ+

v γ0 =

√

3

2

[

gσρ − 1

3
(γσ + vσ) γρ

]

ε∗ρv P+ . (8)

Since γσF
σ

v = 0, the Dirac structure of M
(c)
σαβ could contain terms of the form

vσγαγβ, vσvαγβ, gσαvβ and gσαγβ. However, since the matrix element (7) is at zero

recoil, one has

vσF
σ

v = vβP+iσ
αβP+ = 0 (9)

and the only surviving term has the form gσαγβ. Therefore

M
(c)
σαβ = µ gσαγβ (10)

and the mixing matrix element (7) is proportional to the coupling µ,

< D
(

3
2

−
, 1−

)

(v, ε)|L(c)
mag,v(0)|D

(

1
2

−
, 1−

)

(v, ε) >
√
mD3/2

mD1/2

= −4

√

2

3

µ

2mc

(11)

To see how in HQET the transition B → D
(

3
2

−
, 1−

)

at first order in 1/mQ at

zero recoil is related to this mixing, let us use the formalism of Leibovich, Ligeti,

Stewart and Wise [2], that was applied to 1
2

− → 3
2

+
transitions. Leibovich et al have

considered already the B → D
(

3
2

−
, 1−

)

transition at zero recoil (Section IV of [2]).

However, for our purpose, it will be instructive to use the general formalism, and

consider here the matrix elements at non-zero recoil to compare both cases 1
2

− → 3
2

+
,

1
2

− → 3
2

−
. At the end of the calculation we will take the zero recoil limit for the

B → D
(

3
2

−
, 1−

)

transition.

The study of the semileptonic decay B → D
(

3
2

−
, 1−

)

ℓνℓ is not only of academic

interest, since such orbitally excited state is expected at a mass <∼ 2.8 GeV. However,

we expect this state to be wide, since it can decay, among other modes, by S-wave

into D
(

3
2

+
, 1+

)

+ π.

First, we must notice that at non-zero recoil, the 1/mQ perturbations to the

matrix elements

< D
(

3
2

−
, 1−

)

(v′)|[h(c)v′ Γh
(b)
v ](0)|B(v) > (12)
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are of three types : current perturbations and perturbations of the lagrangian Lkin

and Lmag. The leading order matrix element (12) vanishes at zero recoil [2], and the

same happens for the Lkin perturbation, that behaves in powers of (w − 1) as the

leading term.

Concerning the current perturbation matrix element, it also vanishes at zero

recoil, as pointed out in ref. [2] (Section IV). This follows from the relation /vF σ
v =

F σ
v = F σ

v /v, that can be read from (5). This is at odds with the current perturbation

matrix element for B(v) → D
(

3
2

+
, 1+

)

(v′), that, in general, does not vanish at zero

recoil [2].

Therefore, we will only consider matrix elements of the Lmag perturbation, but

study in parallel the B(v) → D
(

3
2

±
, 1±

)

(v′) transitions, to grasp the difference

between both cases. As we will see below, due Lmag, the transition B(v) →
D

(

3
2

−
, 1−

)

(v′), unlike B(v) → D
(

3
2

+
, 1+

)

(v′), does not vanish at zero recoil.

Considering an arbitrary current cΓb, the relevant matrix elements are

1
√
mD3/2

mB

< D
(

3
2

±
, 1±

)

(v′)|i
∫

dxT
{

L(c)
mag,v′(x)[h

(c)

v′ Γh
(b)
v ](0)

}

+ i
∫

dxT
{

L(b)
mag,v(x)[h

(c)

v′ Γh
(b)
v ](0)

}

|B(v) >

=
1

2mc

Tr
[

R
(±)(c)
σαβ F

(±)σ
v′ iσαβP ′

+ΓHv

]

+
1

2mb

Tr
[

R
(±)(b)
σαβ F

(±)σ
v′ ΓP+iσ

αβHv

]

(13)

where the superindex ± in F
(±)σ
v′ indicates the parity of the state D

(

3
2

±
, 1±

)

, Hv

corresponds to the pseudoscalar state :

Hv

(

1
2

−
, 0−

)

= P+(−γ5) (14)

and mD3/2
is the mass of either the 3

2

+
or the 3

2

−
meson.

Using the conditions

F σ
v vσ = F σ

v γσ = 0 (15)

and the antisymmetry of iσαβ , that implies P+vαiσ
αβP+ = P ′

+v
′

αiσ
αβP ′

+ = 0, the

parametrizations for R
(±)(c)
σαβ , R

(±)(b)
σαβ follow :

R
(±)(c)
σαβ = η

(±)(c)
1 vσγαγβ + η

(±)(c)
2 vσvαγβ + η

(±)(c)
3 gσαvβ + η

(±)(c)
4 gσαγβ

R
(±)(b)
σαβ = η

(±)(b)
1 vσγαγβ + η

(±)(b)
2 vσv

′

αγβ + η
(±)(b)
3 gσαv

′

β + η
(±)(b)
4 gσαγβ (16)

where the η’s depend on w. Other tensor structures give terms that, under the trace,

are linearly dependent on these terms.
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Owing to our remarks on the mixing (10) we have kept on purpose the term that

has the tensor structure gσαγβ. As pointed out by Leibovich et al., this term is not

independent from the others for 1
2

− → 3
2

+
transitions. They correctly choose, for

1
2

− → 3
2

+
, the basis (omitting the (+) superindex)

R
(c)
σαβ = η

(c)
1 vσγαγβ + η

(c)
2 vσvαγβ + η

(c)
3 gσαvβ

R
(b)
σαβ = η

(b)
1 vσγαγβ + η

(b)
2 vσv

′

αγβ + η
(b)
3 gσαv

′

β . (17)

However, this is not the natural basis for 1
2

− → 3
2

−
transitions. Indeed, from

(13)-(16) one gets, for three terms of R
(±)(c)
σαβ in (16) the following trace identity,

respectively for the transitions 1
2

− → 3
2

+
, 1

2

− → 3
2

−
,

Tr
{

[vσγαγβ + 2gσαvβ + 2(1± w)gσαγβ]F
(±)σ
v′ iσαβP ′

+ΓHv

}

= 0 . (18)

While the basis (17) is suitable for 1
2

− → 3
2

+
transitions, this is not the case for

1
2

− → 3
2

−
, because (1− w)gσαγβ vanishes at zero recoil.

The decay matrix elements of B mesons that are related to the mixing between

D
(

3
2

−
, 1−

)

and D
(

1
2

−
, 1−

)

, are the matrix element at zero recoil through the axial

current :

< D
(

3
2

−
, 1−

)

(v, ε)|i ∫ dxT
{

L(c)
mag,v(x)[h

(c)

v γµγ5h
(b)
v ](0)

}

|B(v)) >

√
mD3/2

mB

=
1

2mc

Tr
[

R
(−)(c)
σαβ F

(−)σ
v iσαβP+γµγ5Hv

]

(19)

where we have used (13) and (16) and the contribution of R
(−)(b)
σαβ vanishes at zero

recoil.

Using the decomposition (16) at zero recoil, we see that the terms vσγαγβ, vσvαγβ,

gσαvβ do not contribute because of the relations (9), and we are only left with the

term η
(−)(c)
4 (1)gσαγβ. One finds, after some Dirac algebra,

< D
(

3
2

−
, 1−

)

(v, ε)|i ∫ dxT
{

L(c)
mag,v(x)[h

(c)

v γµγ5h
(b)
v ](0)

}

|B(v) >

√
mD3/2

mB

= 2

√

2

3

η
(−)(c)
4 (1)

2mc

ε∗µ .

(20)

On the other hand, one can insert intermediate states in the T -product and obtain

< D
(

3
2

−
, 1−

)

(v, ε)|i ∫ dxT
{

L(c)
mag,v(x)[h

(c)

v γµγ5h
(b)
v ](0)

}

|B(v) >

√
mD3/2

mB

5



= ε∗µ
1

∆E

< D
(

3
2

−
, 1−

)

(v, ε)|L(c)
mag,v(0)|D

(

1
2

−
, 1−

)

(v, ε) >
√
mD3/2

mD1/2

(21)

where ∆E is the level spacing ∆E = mD3/2
−mD1/2

. Only the (n = 0) ground state

D
(

1
2

−
, 1−

)

contributes to the sum because the matrix element is at zero recoil and

one has ξ(1) = 1, ξ(n)(1) = 0 (n 6= 0). The factor in front of the r.h.s. of (21) comes

from the calculation of the trace

Tr [/ε∗P+γµγ5P+(−γ5)] = −2ε∗µ (22)

Therefore, comparing (20) and (21) one finds

2

√

2

3

η
(−)
4

2mc

=
1

∆E

< D
(

3
2

−
, 1−

)

(v, ε)|L(c)
mag,v(0)|D

(

1
2

−
, 1−

)

(v, ε) >
√
mD3/2

mD1/2

(23)

In conclusion, we have shown that in HQET the transition between B and

D
(

3
2

−
, 1−

)

mesons through the axial current at zero recoil is proportional to the

mixing between the states D
(

3
2

−
, 1−

)

and D
(

1
2

−
, 1−

)

due to the tensor force in-

duced by Lmag.
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