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Abstract

In a diquark-diquark-antiquark picture of the pentaquark we study the decay Θ → K+n within

the framework of QCD sum rules. After evaluation of the relevant three-point function, we extract

the coupling gΘnK which is directly related to the pentaquark width. Restricting the decay dia-

grams to those with color exchange between the meson-like and baryon-like clusters reduces the

coupling constant by a factor of four. Whereas a small decay width might be possible for a positive

parity pentaquark, it seems difficult to explain the measured width for a pentaquark with negative

parity.
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I. INTRODUCTION

The experimental evidence for pentaquarks is now considered to be weak. However the

strong statement that they do not exist can only be made after tests, which are presently

being carried on [1]. Even if this state turns out to be unreal, its study generated many new

theoretical ideas which can be valuable in the future [2].

One of the most puzzling characteristics of the pentaquark is its extremely small width

(much) below 10 MeV which poses a serious challenge to all theoretical models. Many

explanations for this narrow width have been advanced [2]. In this work we calculate the

pentaquark decay width within the framework of QCD sum rules (QCDSR) [3]. Several

sum rule calculations have been performed for the mass of the pentaquark containing a

strange quark [4, 5, 6, 7, 8]. These calculations are based on two-point functions with

different interpolating currents. Surprisingly, all these determinations give similar masses

with reasonable values. A common problem of all determinations is the large continuum

contribution which has its origin in the high dimension of the interpolating currents and

results in a large dependence on the continuum threshold. Another problem is the irregular

behavior of the operator product expansion (OPE), which is dominated by higher dimension

operators and not by the perturbative term as it should be.

Here we present a sum rule determination for the decay width based on a three-point

function for the decay Θ → nK+. In this way we can extract the coupling gΘnK which is

directly related to the pentaquark width. To describe the pentaquark we use the diquark-

diquark-antiquark model with one scalar and one pseudoscalar diquark in a relative S-wave.

In [9, 10] it has been argued that such a small decay width can only be explained if

the pentaquark is a genuine 5-quark state, i.e., it contains no color singlet meson-baryon

contributions and thus color exchange is necessary for the decay. The analysis presented

both in [9] and in [10] is only qualitative. The narrowness of the pentaquark width can

then be attributed to the non-trivial color structure of the pentaquark which requires the

exchange of, at least, one gluon. In this work we will also test quantitatively the hypothesis

put forward in [9, 10] to see whether this mechanism is sufficient to explain the small width.
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II. CORRELATION FUNCTION

The investigation of the pentaquark decay width requires a three-point function which

we define as

Γ(p, p,) =
∫
d4x d4y e−iqy eip

,x Γ(x, y) ,

Γ(x, y) = 〈0|T{ηN(x)jK(y)η̄Θ(0)}|0〉 , (1)

where ηN , jK and ηΘ are the interpolating fields associated with neutron, kaon and Θ,

respectively [11].

We next consider the expression (1) in terms of hadronic degrees of freedom and write

the phenomenological side of the sum rule. Treating the kaon as a pseudoscalar particle, the

interaction between the three hadrons is described by the following Lagrangian density:

L = igΘnKΘ̄γ5Kn for P = +

L = igΘnKΘ̄Kn for P = − (2)

Writing the correlation function (1) in momentum space and inserting complete sets of

hadronic states we obtain an expression which depends on the following matrix elements:

− i V (p, p′) = < n(p′, s′)|Θ(p, s)K(q) > ,

〈0|ηN |n(p
′, s′)〉 = λNu

s′(p′) ,

〈K(q)|jK |0〉 = λK ,

〈Θ(p, s)|η̄Θ|0〉 = λΘū
s(p) for P = +

〈Θ(p, s)|η̄Θ|0〉 = −λΘū
s(p)γ5 for P = − (3)

Using the simple Feynman rules derived from (2) we can rewrite V (p, p′) as

V (p, p′) = − gΘnK ū
s′(p′)γ5u

s(p) P = +

V (p, p′) = − gΘnK ū
s′(p′)us(p) P = − (4)

The coupling constants λN and λΘ can be determined from the QCD sum rules of the

corresponding two-point functions. λK is related to the kaon decay constant through

λK =
fKm

2
K

mu +ms

. (5)
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Combining the expressions above we arrive at

Γphen =
−gΘnKλΘλNλK

(p′2 −m2
N )(q

2 −m2
K+)(p2 −m2

Θ)

× ΓE + continuum (6)

with

ΓE = σµνγ5qµp
′

ν − imN 6qγ5

+ i(mN ∓mΘ) 6p
′γ5

+ iγ5(p
′2 ∓mΘmN − qp′) (7)

We shall work with the σµνγ5qµp
′

ν structure because, as it was shown in [12], this structure

gives results which are less sensitive to the coupling scheme on the phenomenological side,

i.e., to the choice of a pseudoscalar or pseudovector coupling between the kaon and the

baryons.

We now come back to (1) and write the interpolating fields in terms of quark degrees of

freedom as

jK(y) = s̄(y)iγ5u(y) ,

ηN(x) = ǫabc(dTa (x)Cγµdb(x))γ5γ
µuc(x) ,

η̄Θ(0) = −ǫabcǫdef ǫcfgsTg (0)C

× [d̄e(0)γ5CūT
d (0)][d̄b(0)CūT

a (0)] . (8)

The pentaquark current above (proposed in [6]) contains a pseudoscalar and a scalar

diquark. With these diquarks the two point function might receive a significant contribution

from instantons. In [13] we have studied a situation in which these instanton contributions

affected the two-point function but gave a negligible contribution to the three-point function.

Moreover, in [14] we have observed that instantons give a negligible contribution to heavy

baryon weak decays. Motivated by these results, in this first calculation we shall neglect

instantons.

Inserting the currents into (1), the resulting expression involves the quark propagator

in the presence of quark and gluon condensates, which is known from previous studies.

Using it we arrive at a final complicated expression for the correlator, which is represented

schematically by the sum of the diagrams of Fig. 1.
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Let us consider the phenomenological side (6) and, following [15], rewrite it generically

as:

Γ(q2, p2, p′2) = Γpp + Γpc1 + Γpc2 + Γcc (9)

where Γpp(q
2, p2, p′2) stands for the pole-pole part and reads

Γpp =
−gΘnKλΘλNλK

(p2 −m2
Θ)(p

′2 −m2
N )(q

2 −m2
K)

(10)

The continuum-continuum term Γcc can be obtained as usual, with the assumption of quark-

hadron duality [11].

The pole-continuum transition terms are contained in Γpc1 and Γpc2. They can be explic-

itly written as a double dispersion integral:

Γpc1 =
∫

∞

m2
K∗

b1(u, p
2) du

(m2
N − p′2)(u− q2)

,

Γpc2 =
∫

∞

m2
N∗

b2(s, p
2) ds

(m2
K − q2)(s− p′2)

. (11)

Since there is no theoretical tool to calculate the unknown functions b1(u, p
2) and b2(s, p

2)

explicitly, one has to employ a parametrization for these terms. We will use two different

parametrizations: one with a continuous function for the Θ and one where the pole term is

singled out.

We shall assume that the functions b1 and b2 have the following form:

b1(u, p
2) = b̃1(u)

∫
∞

m2
Θ

dω
b1(ω)

ω − p2

b2(s, p
2) = b̃2(s)

∫
∞

m2
Θ

dω
b2(ω)

ω − p2
(12)

with continuous functions b1,2(w), starting from m2
Θ. This is our parametrization A.

The functions b̃1(u) and b̃2(s) describe the excitation spectra of the kaon and the nucleon,

respectively. After Borel transform, the pole-continuum term contains one unknown constant

factor which can be determined from the sum rules.

In order to investigate the role played by the Θ continuum, we shall now explicitly force

the phenomenological side to contain only the pole part of the Θ, both in the pole-pole term

and in the pole-continuum terms. This can formally be done by choosing b1(ω) = b2(ω) =

δ(ω −m2
Θ) in (12) and the functions then read:

b1(u, p
2) =

b̃1(u)

m2
Θ − p2

,

b2(s, p
2) =

b̃2(s)

m2
Θ − p2

. (13)
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This is our parametrization B. In this case we have the Θ in the ground state. Again, in

the final expressions this gives additional constants which can be calculated.

III. SUM RULES

The sum rule may be written identifying the phenomenological and theoretical descrip-

tions of the correlation function. As mentioned above, we shall work with the σµνγ5qµp
′

ν

structure. In the case of the three-point function considered here, there are two independent

momenta and we may perform either a single or a double Borel transform. We first consider

the choice:

(I) q2 = 0 p2 = p′2 (14)

and perform a single Borel transform: p2 = −P 2 and P 2 → M2. In this case we take

m2
K ≃ 0 and single out the 1/q2-terms. The second choice is:

(II) q2 6= 0 p2 = p′2 . (15)

Here we perform two Borel transforms: p2 = −P 2 and P 2 → M2 and also q2 = −Q2 and

Q2 → M
′2. We have also considered the choice q2 = p2 = p′2 = −P 2, performing one

single Borel transform (P 2 → M2). However, in the present calculation we were not able to

find a stable sum rule. Introducing the notation G = −gΘnKλΘλNλK and using (I) and (II)

we obtain the following sum rules:

Method I:

Γpp(M
2) + Γpc2(M

2) =
∫ s0

0

ds ρth(s) e
−s/M2

(16)

with

Γpp(M
2) = G

e−m2
Θ
/M2

− e−m2
N
/M2

m2
Θ −m2

N

(17)

and for the pole-continuum part we obtain

Γpc2(M
2) = Ae−m2

N∗/M
2

param. A

Γpc2(M
2) = Ae−m2

Θ
/M2

param. B (18)

In both parametrizations the term Γpc1 is exponentially suppressed and, as discussed in [15],

has been neglected. A is an unknown constant and can be determined from the sum rules.

Method II

Γpp(M
2,M

′2) + Γpc2(M
2,M

′2) = (19)
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∫ u0

0

du
∫ s0

0

ds ρth(s, u) e
−s/M2

e−u/M
′
2

(20)

with

Γpp = Ge−m2
K
/M

′
2 e−m2

Θ
/M2

− e−m2
N
/M2

m2
Θ −m2

N

(21)

and with

Γpc2 = Ae−m2
K
/M

′
2

e−m2
N∗/M

2

(22)

for parametrization A and

Γpc2 = Ae−m2
K
/M

′
2

e−m2
Θ
/M2

(23)

for parametrization B. Also in this case Γpc1 is exponentially suppressed. In the above

expressions ρth is the double discontinuity computed directly from the theoretical (OPE)

description of the correlation function (see [11] for details and also [16]) and s0 is the con-

tinuum threshold of the nucleon defined as s0 = (mN + ∆N)
2.

IV. RESULTS

The hadronic masses are mN = 938 MeV, mN∗ = 1440 MeV, mK = 493 MeV and

mΘ = 1540 MeV. For each of the sum rules above (Eqs. (16) and (19)) we can take the

derivative with respect to 1/M2 and in this way obtain a second sum rule. In each case we

have thus a system of two equations and two unknowns (G and A) which can then be easily

solved.

In the numerical analysis of the sum rules we use the following values for the condensates:

〈qq〉 = −(0.23 ± 0.02)3 GeV3, 〈ss〉 = 0.8 〈qq〉, < s̄gsσ.Gs >= m2
0 〈s̄s〉 with m2

0 = 0.8 GeV2

and 〈g2sG
2〉 = 0.5 GeV4. The gluon condensate has a large error of about a factor 2, but its

influence on the analysis is relatively small. The couplings constants λN and λΘ are taken

from the corresponding two-point functions:

λN = (2.4± 0.2)× 10−2GeV3 (24)

λΘ = (2.4± 0.3)× 10−5GeV6 (25)

The coupling λK is obtained from (5) with fK = 160 MeV, ms = 100 MeV and mu = 5

MeV:

λK = 0.37GeV2 . (26)
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In Fig. 1, among these OPE diagrams there are two distinct subsets. In the first (from

1a to 1g) there is no gluon line connecting the petals and therefore no color exchange. A

diagram of this type we call color-disconnected. In the second subset of diagrams (1h, 1i

and 1j) we have color exchange. If there is no color exchange, the final state containing

two color singlets was already present in the initial state, before the decay, as noticed in [8].

In this case the pentaquark had a component similar to a K − n molecule. In the second

case the pentaquark was a genuine 5-quark state with a non-trivial color structure. We

may call this type of diagram a color-connected (CC) one. In our analysis we write sum

rules for both cases: all diagrams and only color-connected. The former case is standard

in QCDSR calculations and therefore we shall omit details and present only the results.

The latter case implies that the pentaquark is a genuine 5-quark state and the evaluation

of gΘnK will thus be based only on the CC diagrams. We shall work in the Borel window

given by 1GeV2 < M2,M ′2 < 1.5GeV2. Since the strange mass is small, the dominating

diagram is Fig. 1b of dimension three with one quark condensate. In the range considered,

the dimension 5 condensates are substantially suppressed compared to this term.

We have found out that the contribution from the pole-continuum part is of a similar size

as the pole part. For lower values of M2 around 1 GeV2, the pole contribution dominates,

however, for larger values of M2 the importance of the pole-continuum contribution grows

and eventually becomes larger than the pole part. This is an additional reason to restrict

the analysis to small values for the Borel parameters.

We have evaluated the sum rules for the coupling constant computed with all diagrams

of Fig. 1 and we have found that they are very stable. We give the values of the coupling

extracted at M2 = 1.5 GeV2 and M ′2 = 1 GeV2 in Table I. In what follows we shall present

our results for the coupling constant gΘnK obtained with the color connected diagrams only.

In Fig. 2 we show the coupling, given by the solution of the sum rule I A (16), as a function of

the Borel mass squared M2. Different lines show different values of the continuum threshold

∆N . As it can be seen, gΘnK is remarkably stable with respect to variations both in M2 and

in ∆N . In Fig. 3 we show the coupling obtained with the sum rule II A (19). We find again

fairly stable results which are very weakly dependent on the continuum threshold. In Fig.

4 we show the results of the sum rule I B. In Fig. 5 we present the result of the sum rule II

B. The meaning of the different lines is the same as in the previous figures. The results are

similar to the cases before.
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In Table I we present a summary of our results for gΘnK giving emphasis to the difference

between the results obtained with all diagrams and with only the color-connected ones. For

the continuum thresholds we have employed ∆N = ∆K = 0.5 GeV.

Table I:gΘnK for various cases

case |gΘnK| (CC) |gΘnK | (all diagrams)

I A 0.71 2.59

II A 0.82 3.59

I B 0.84 3.24

II B 0.96 4.48

For our final value of gΘnK we take an average of the sum rules I A - II B. It is interesting

to observe that the influence of the continuum threshold is relatively small, especially when

compared to the corresponding two-point functions.

Considering the uncertainties in the continuum thresholds, in the coupling constants

λK,N,Θ and in the quark condensate we get an uncertainty of about 50%. Our final result

then reads:

|gΘnK |(all diagrams) = 3.48 ± 1.8 ,

|gΘnK|(CC) = 0.83 ± 0.42 . (27)

Including all diagrams, the prediction for ΓΘ is then 13 MeV (652 MeV) for a positive

(negative) parity pentaquark. In the CC case we get a width of 0.75 MeV (37 MeV) for

a positive (negative) parity pentaquark. The measured upper limit of the width is around

5-10 MeV both in the Kn channel (considered here) and in the Kp channel.

We see that it is very difficult to obtain the measured decay width for a negative parity

pentaquark.

V. SUMMARY AND CONCLUSIONS

We have presented a QCD sum rule study of the decay of the Θ+ pentaquark using a

diquark-diquark-antiquark scheme with one scalar and one pseudoscalar diquark. Based on
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the evaluation of the relevant three-point function, we have computed the coupling constant

gΘnK . In the operator product expansion we have included all diagrams up to dimension 5.

In this particular type of sum rule a complication arises from the pole-continuum transitions

which are not exponentially suppressed after Borel transformation and must be explicitly

included. The analysis was made for two different pole-continuum parametrizations and in

two different evaluation schemes. The results are consistent with each other. In addition, we

have tested the ideas presented in [9, 10] by including only diagrams with color exchange.

Our final results are given in eq. (27).

We find that for a positive parity pentaquark a width much smaller than 10 MeV would

indicate a pentaquark which contains no color-singlet meson-baryon contribution. For a

negative parity pentaquark, even under the assumption that it is a genuine 5-quark state,

we can not explain the observed narrow width of the Θ.
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (J)

FIG. 1: The main diagrams which contribute to the theoretical side of the sum rule in the relevant

structure. a) - g) are the color-disconnected diagrams, whereas h) - j) are the color-connected

diagrams. The cross indicates the insertion of the strange mass.
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FIG. 2: |gΘnK | in case I A with three different continuum threshold parameters. Solid line:

∆N = 0.5 GeV, dotted line:∆N = 0.4 GeV, dash-dotted line: ∆N = 0.6 GeV.
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FIG. 3: |gΘnK | in case II A. Solid line: ∆N = 0.5 GeV. Dotted line: ∆N = 0.4 GeV. Dashed line:

∆N = 0.6 GeV. M
′2 = 1 GeV2.
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FIG. 4: |gΘnK | in case I B with three different continuum threshold parameters. Solid line: ∆N =

0.5 GeV, dotted line:∆N = 0.4 GeV, dash-dotted line: ∆N = 0.6 GeV.
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FIG. 5: |gΘnK | in case II B. Solid line: ∆N = 0.5 GeV. Dotted line: ∆N = 0.4 GeV. Dashed line:

∆N = 0.6 GeV. M
′2 = 1 GeV2.
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