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Abstract

In this study we reconsider the phenomenological problems related to tachyonic modes in the

context of extra time-like dimensions. First we reconsider a lower bound on the size of extra

time-like dimensions and improve the conclusion in the literature. Next we discuss the issues of

spontaneous decay of stable fermions through tachyonic decays and disappearance of fermions due

to tachyonic contributions to their self-energies. We find that the tachyonic modes due to extra

time-like dimensions are less problematic than the tachyonic modes in the usual 4-dimensional

setting because the most troublesome Feynman diagrams are forbidden once the conservation of

momentum in the extra time-like dimensions is imposed.
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Extra spatial coordinates are considered thoroughly in recent years. A glance at ArXiv

shows that there are hundreds of papers on extra dimensions in the last five years and

almost all of them being wholly or mainly on spatial extra dimensions. From the theoretical

point of view the scarcity of studies involving extra time-like dimensions [1, 2, 3, 4, 5, 6, 7]

is mainly due to the existence of tachyonic modes in such models, which are problematic

because of the violation of causality and unitarity and lack of an adequate field theoretic

description of tachyonic fields [2] while from the phenomenological point of view the most

serious problems are the extremely small empirical lower bound in literature on the size(s) of

extra time-like dimensions [8], the spontaneous decay of stable particles induced by negative

energy tachyons [2, 9], the imaginary self energy for charged fermions induced by tachyonic

photon modes, which in turn, seems to cause disappearance of the fermion into nothing in a

very short time [2]. In this study we will focus on the phenomenological difficulties and try

to seek if one may moderate the phenomenological problems mentioned above with the hope

that a thorough consistent formulation of the field theory of tachyons and their interactions

with the usual particles may be formulated in future (if tachyons exist at all). The first

phenomenological problem that will be considered here is the extremely small lower bound

derived from the lower bound on the lifetime of proton [8]. In the light of this extremely

small lower bound on the size of extra time-like dimension(s), in the order of a tenth of

the Planck scale, either one should dare to employ such ( unnaturally) small dimension(s)or

should use brane models where our physical world is a brane with an infinitesimal width in

the extra time-like direction [2] or a scheme where tachyonic modes are not allowed to be

produced [5, 6]. A possible relaxation of the bound on the size of extra time dimension(s)

would give more freedom to the model constructions with extra time-like dimension(s). So

we reconsider the lower bound obtained from the lower bound on the proton lifetime and

the calculation of a tree level Feynman diagram. We find that the calculation leads to no

bound on the size of extra time-like dimensions. In fact we just repeat the calculations in

[8] except we notice the fact that there is a cutoff momentum in the Fourier transform. In

other words the difference between our result and the original study results from the naive

application of the Fourier transform in [8] to get the non-relativistic potential corresponding

to the scattering of protons inside a nucleus by tachyonic photon modes. In the original

study the effect of tachyonic modes on fermion self-energies are neglected and no cutoff was

taken, the integration is from minus infinity to plus infinity in momenta while one should
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take a cutoff corresponding to the maximum momentum available to the protons inside

the nucleus. One obtains the same result as the one obtained in [8] when one lets the

cutoff momentum go infinity and neglects the self-energy contributions. Next we consider

the problems of the spontaneous decay of the particles through release of negative energy

tachyons and the imaginary mass induced through self energy diagrams of fermions. We

argue that these problems may be evaded by imposing conservation of momentum in the

extra time direction provided that the standard model particles are identified as the zero

modes of the Kaluza-Klein tower ( that is the standard identification).

First consider the following tree level diagram for the electromagnetic scattering of two

protons inside a nucleus [10, 11].

FIG. 1: The Feynman diagram for the scattering of two protons with the initial 4-momenta and

the spins; p1, p2 and λ1, λ2 and the final 4-momenta and the spins p
′

1, p
′

2 and λ
′

1, λ
′

2.The wavy

line denotes the tachyonic Kaluza-Klein modes of photon

The scattering cross section corresponding to this diagram may be obtained from the

scattering amplitude of elastic fermion-fermion scattering. The differential cross section for
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elastic fermion-fermion scattering is related to scattering amplitude T by

dσ

dΩ
= |T |2 = 1

2p102p202p
′

102p
′

20

|M |2 (1)

where M is the matrix element given by

M =
e2

4π2
u(p

′

1
,λ

′

1
)γµu(p1,λ1)

1

k2 +m2
n + i0

u(p
′

2
,λ

′

2
)γ

µup2,λ2) (2)

where

m2
n =

n2

L2
(3)

and u’s are 4-component Dirac spinors,γµ are gamma matrices. One should also include the

exchange scattering where p
′

1 ↔ p
′

2, λ
′

1 ↔ λ
′

2, but we are only interested in the order of

magnitude results and the crossed term of (2) gives a similar contribution as (2) itself and

does not alter the conclusion. So it is sufficient to consider (2). In the non-relativistic limit

[10] the zero component of the proton 4-momenta p01, p02 and the photon 4-momentum

transfer k are approximated by

p0 ≃ m+
~p 2

2m
− ~p 4

8m3

k2 = (p1 − p′1)
2 = (p10 − p′10)

2 − (~p1 − ~p ′
1)

2 =
(~p 2

1 − ~p ′2
1 )2

4m
− ~k2

1√
2p0

u(p,λ) =

√

m+ p0

2p0







χ(λ)

~p.~σ
m+p0

χ(λ)





 ≃







(1− ~p2

4m2 )χ(λ)

1
2m

~p.~σχ(λ)





 (4)

Hence in the strict non-relativistic limit (i.e. p0 = m, 1− ~p2

4m2 = 1) T becomes

T =
e2

4π2
χ†(λ

′

1)χ(λ1)
1

|~k|2 −m2
n

χ†(λ
′

2)χ(λ2) |~k| < |~R| = R (5)

γk =







0 −σk

σk 0





 , γ0 =







I 0

0 −I







where we have introduced the cut-off R which should be taken in the order of the momentum

corresponding to the binding energy of the nucleus. This cut-off is explicitly written in Eq.(5)

because k2 ≃ −|~k|2 is not enough to indicate that T in (5) is the non-relativistic expression
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since the photon is off-shell in the propagator and one may take k2 ≃ −|~k|2 for relativistic

values of |~k| as well provided that k0 << |~k|. In other words the strict non-relativistic limit

implies k2 = −|~k| but k2 ≃ −|~k|2 does not necessarily imply the strict non-relativistic limit.

Therefore the explicit expression of the conserve is not true that is |~k| < |~R| is necessary.

In non-relativistic quantum mechanics the scattering amplitude for the elastic scattering of

a particle from a potential V, in the Born approximation may be written as [10, 11, 12]

T (~k) =
1

(2π)2

∫

d3~xe−i~k~xχ†(λ
′

1)χ
†(λ

′

2)V (~x)χ(λ1)χ(λ2) (6)

After comparing (5) and (6) one notices that

f(|~k|) =
∫

d3~xe−i~k~xV (~x) (7)

where

f(|~k|) =
e2

|~k|2−m2
n

for |~k| ≤ R

0 elsewhere
(8)

V (~x) is obtained as the Fourier transform of f(|~k|) as

V (~x) =
e2

(2π)3

∫

d3~k
ei
~k~x

|~k|2 −m2
n

=
e2

(2π)3

∫ R

0

|~k|2dk
|~k|2 − n2

L2

∫ π

0
exp{i|~k|r cos θ} sin θ dθ

∫ 2π

0
dφ

=
e2

2i(2π)2r

∫ R

−R

kdk

k2 − n2

L2

{exp(ikr)− exp(−ikr)}

=
e2

i(2π)2 r

∫ R

−R

k. exp(ikr)

k2 − n2

L2

dk (9)

We take the wave function of two protons inside a nucleus be

Ψ =

√

m3
π√
π

e−mπr (10)

where mπ denotes the mass of pions. Then the decay width is obtained as

Γ = Im〈Ψ|V (r)|Ψ〉 (11)

The evaluation of Γ = 〈Ψ|V (r)|Ψ〉 is done in the appendix and found to be

〈Ψ|V (r)|Ψ〉 = i
e2m3

π

π2
[

2mβ

(m2 − β2)2
ln(

β +R

β − R
)− (m2 + β2)

(m2 − β2)2
ln(

m+R

m−R
)

− 2mR

(m2 − β2)(m2 − R2)
] (12)
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where m = 2imπ, β = n
L
. One notices that 〈Ψ|V (r)|Ψ〉 is real if β > R (which is the

most natural choice). Otherwise it means that the tachyonic photon masses are in the

order of MeV . (In fact one obtains the result of [8] when one lets R → ∞.) In other

words the tachyonic photon modes can not lead to decay of proton through processes given

in Fig.1 unless the size of the extra dimension is larger than nuclear sizes. However this

does not imply that tachyonic modes can not induce spontaneous decay of protons once the

size(s) of extra time-like dimension(s) are taken smaller than the nuclear sizes. There are

other contributions which may induce spontaneous decay of protons although the size(s)

of the extra time-like dimension(s) are taken smaller than nuclear sizes. Such a possible

contribution is induced through fermion self-energies as discussed in the paragraph after the

next paragraph. An inspection of Eq.(13) reveals that the rate of spontaneous decay of a

proton (or quark) is much larger than the one would be induced by the process given in

Fig.1. Moreover fermion self-energy diagrams would induce an imaginary part for the pion

self-energy hence for its mass. This, in turn, would make the pion mass in Eq.(12) complex.

So there would be an imaginary contribution to Eq.(12) even in the case R < β, that is,

even in the case the size of the extra dimension(s) are much smaller than nuclear sizes. So

we will impose conservation of momentum in extra time-like dimensions in the paragraph

after the next paragraph to forbid fermion self-energy diagrams with tachyonic photons. In

that way the processes similar to Fig.1 are forbidden as well as the processes as in Fig.2.

One may question if the calculation of that process (given in Eq.(12) ) is unnecessary or

redundant once conservation of momentum is imposed in extra dimensions. In fact it is not.

The result of (12) gives more flexibility in model building. For example, one may consider

a process similar to the one given in Fig.1, where one of the incoming and outgoing protons

are replaced by their tachyonic Kaluza-Klein counterparts. ( These modes may be produced

in early universe in models where quarks are allowed to propagate in the extra time-like

dimensions). Such processes are not forbidden by conservation of momentum ( in extra

time-like dimensions) and their decay would be the same form as Eq.(12) provided that the

wave functions for protons and their tachyonic counterparts have the same form as (10). So

the reality of (12) is important in the discussion of the stability of protons in the presence

of tachyonic modes.

One might think that the scattering of high energy free protons ( e.g. in cosmic rays )

through processes similar to the one given in Fig.1 may change the bound given above. The
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cross section in that case can be directly found from (5) and is seen to be real. So the decay

width of a two free nucleon system due to a process similar to fig.1 is zero. One may notice

this fact without doing the calculation of the corresponding decay width explicitly. The

decay width, i.e. the imaginary part of 〈Ψ|V (r)|Ψ〉 is due to the mixture of the arguments

of the real exponent in Ψ and the complex exponential in V (r). If one takes Ψ be wave

function of two free protons ( which is expressed by a complex exponential) then in the

evaluation of 〈Ψ|V (r)|Ψ〉 the overall complex exponentials cancel and 〈Ψ|V (r)|Ψ〉 results in
a real number so it has no imaginary component. In other words the decay width of two free

protons due to tachyonic photon modes is always zero. However for confined particles one

may expect a wave function of the form of (10), which results in a non-zero decay width.

Hence the quarks inside the nucleons may give such a non-zero decay width. On the other

hand we do not know the wave functions of quarks inside nucleons so it is impossible to obtain

an exact lower bound on the size of extra time-like dimensions by considering the quarks

inside nucleons. However one may expect this wave function not be drastically different

from (10). In that case one would expect the lower bound on the size of extra dimensions

be in the order of ( cut-off momentum)−1, that is, O( 1
1GeV

). In the same way one may put a

still smaller lower limit if quarks are made of composites of some other particles (preons). If

this generalization is reliable then one may relate the lower limit on the size of extra time-

like dimension(s) and the binding energy. In this case one may speculate that, if an extra

time-like dimension of the size much larger than the (Planck mass)−1 is discovered then it

excludes possibility of stable bound states with energies much higher than the inverse of the

size of the extra time-like dimension.

Next we consider the problem of the spontaneous decay of a particle (e.g. electron) into

a tachyon and the original particle, and the problem of imaginary mass contribution to the

stable fermions (e.g. electron or proton) through self energy diagrams involving a tachyon.

The decay of a particle ( say an electron) into another electron and a negative energy

tachyonic photon is kinematically allowed. It is difficult to identify these negative energy

tachyons with anti-tachyons because negative energy tachyons may be made positive energy

by a simple Lorentz boost [9]. So the result of such decays can be catastrophic because the

kinematics allows large negative values for the energy of such a tachyon and such a large

negative value energy destabilizes the whole vacuum. However once we identify the tachyon

with the Kaluza-Klein mode of the photon in the extra time dimension this decay becomes
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impossible since (at least in the transient time till the formation of the standing waves) there

will be a non-zero net momentum flow in the extra time direction due to the tachyon and

there is no other momentum to balance it. The problem of the imaginary contribution to the

 
FIG. 2: The Feynman diagram for the contribution of a photonic tachyon to fermion self-energy.

The wavy line denotes the tachyonic Kaluza-Klein modes of photon and the solid line denotes the

fermion

masses of stable fermions through self-energy diagrams involving tachyons can be avoided

in the same way i.e. by imposing the conservation of momentum corresponding to the extra

time-like dimension. Without taking this conservation into account, the contribution of the

self-energy diagram given in Fig.2 to the fermion mass (in the Pauli-Villars regularization

scheme) is of the form

δm ∝ e2 m

4π2
ln

µ2 − Λ2

µ2
, µ2 > 0 (13)

where m, e, µ, Λ stand for the fermion mass, the electric charge of the fermion, the mass of

the tachyonic photon, the Pauli-Villars regularization cut-off scale; respectively and we have

modified the propagator of the tachyonic photon mode ( in the Pauli-Villars regularization

scheme) by
1

k2 − µ2
→ (

1

k2 − µ2
)

Λ2 − µ2

k2 − µ2 + Λ2
(14)

By definition Λ > µ so Eq.(13) results in an imaginary contribution of the form

i
e2m

4π
(15)

which is independent of µ and Λ and essentially equal to the width of the spontaneous decay

of the fermion through release of a tachyonic photon. This result is extremely problematic

because it predicts a decay rate for the fermion comparable to the decay width of hadronic

resonances and moreover the result in Eq.(15) may be multiplied by a large number because
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the number of Kaluza-Klein modes is about Λ
µ0

where µ0 is the mass of the first Kaluza-Klein

mode and Λ is at most at the order of Planck mass. However if we require conservation of

the momentum in the extra time direction (at least in the transient time till the formation

of standing waves) then usual fermions (i.e. Kaluza-Klein zero modes of fermions) can only

radiate usual photons (i.e. Kaluza-Klein zero modes of photons) and the contribution to

the fermion self-energies given by Fig.2 is absent and hence the problem is removed. In

other words the contribution of a tachyonic photon to the electron mass ( as given in Fig.2)

results in extremely problematic results if the tachyonic mode is not due to an extra time

dimension. On the other hand the diagram in Fig.2 is forbidden ( hence the problem is

removed) if one considers the tachyon be due to an extra time dimension and require the

conservation of momentum corresponding to this dimension.

In this study we have re-examined some phenomenological difficulties due to tachyonic

photon modes in the study of extra time-like dimension(s). We have shown that the lower

bound on the size of extra time dimension(s) due to the lower bound on the lifetime of proton

may be relaxed and the presence of tachyons related to the extra time dimension(s) is not

as problematic as the tachyons in the usual 4-dimensional picture. Although we believe that

we have made some progress in the phenomenological viability of extra time-like dimensions

there are still some points to be studied further. We hope that this study will facilitate more

freedom in model building in future studies.
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APPENDIX A

In this appendix we give the details of the evaluation of the integral given in (12).

∫ R

−R

kdk

k2 − n2

L2

∫ ∞

0
re(ik−2mπ)rdr

∫ π

0
sin θdθ

∫ 2π

0
dφ = 4π

∫ R

−R

kdk

k2 − n2

L2

∫ ∞

0
re(ik−2mπ)rdr

= −4π
∫ R

−R

kdk

(k2 − n2

L2 )(k + 2 imπ)2
(A1)

9



The denominator of the integral may be written as

1

(k + β)(k − β)(k +m− ǫ)(k +m+ ǫ)
=

1

(x− x1)(x− x2)(x− x3)(x− x4)
(A2)

where

m = 2imπ , β =
n

L

x = k, x1 = −β, x2 = β, x3 = −m+ ǫ, x4 = −m− ǫ (A3)

We use the identity

1

(x− x1)(x− x2)
=

1

x1 − x2

[
1

x− x1

− 1

x− x2

] (A4)

to write (A2) as

1

(x− x1)(x− x2)(x− x3)(x− x4)

=
1

x1 − x2

{ 1

(x1 − x3)(x1 − x4)
.

1

x− x1

− 1

(x2 − x3)(x2 − x4)
.

1

x− x2

}

+
1

x3 − x4

{ 1

(x1 − x3)(x2 − x3)

1

x− x3

− 1

(x1 − x4)(x2 − x4)

1

x− x4

} (A5)

The second term in (A5)is

1

x3 − x4
{ 1

(x1 − x3)(x2 − x3)

1

x− x3
− 1

(x1 − x4)(x2 − x4)

1

x− x4
}

=
1

2ǫ
{a 1

x− x3

− b
1

x− x4

} =
1

2ǫ
{(a− b)x+ bx3 − ax4

(x− x3)(x− x4)
} (A6)

where

a =
1

(x1 − x3)(x2 − x3)
, b =

1

(x1 − x4)(x2 − x4)
(A7)

(a− b)x

x3 − x4
=

2mx

[(m− ǫ)2 − β2][(m+ ǫ)2 − β2]
(A8)

bx3 − ax4

x3 − x4
= − β2 − 3m2 − ǫ2

[(m− ǫ)2 − β2][(m+ ǫ)2 − β2]
(A9)

then (A6) becomes

1

x3 − x4

{ 1

(x1 − x3)(x2 − x3)

1

x− x3

− 1

(x1 − x4)(x2 − x4)

1

x− x4

}

= { 2mx

[(m− ǫ)2 − β2][(m+ ǫ)2 − β2]

− β2 − 3m2 − ǫ2

[(m− ǫ)2 − β2][(m+ ǫ)2 − β2]
} 1

(x− x3)(x− x4)
(A10)
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After combining (A6), (A10) and using the explicit values of x1, x2, x3, x4; and letting ǫ → 0

one obtains

k

(k2 − β2)(k +m)2
= − 1

2β(m− β)2
k

k + β
+

1

2β(m+ β)2
k

k − β

+
2m

(m2 − β2)2
k2

(k +m)2
− β2 − 3m2

(m2 − β2)2
k

(k +m)2
(A11)

The evaluation of the integral (A1) by the use of (A11) gives

〈Ψ|V (r)|Ψ〉 = i
e2m3

π

π2
[

2mβ

(m2 − β2)2
ln(

β +R

β − R
)− (m2 + β2)

(m2 − β2)2
ln(

m+R

m− R
)

− 2mR

(m2 − β2)(m2 − R2)
] (A12)
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